Multi-view 3D Models from Single Images with a Convolutional Network

ECCV 2016

Maxim Tatarchenko Alexey Dosovitskiy Thomas Brox

University of Freiburg


We present a convolutional network capable of inferring a 3D representation of a previously unseen object given a single image of this object. Concretely, the network can predict an RGB image and a depth map of the object as seen from an arbitrary view. Several of these depth maps fused together give a full point cloud of the object. The point cloud can in turn be transformed into a surface mesh. The network is trained on renderings of synthetic 3D models of cars and chairs. It successfully deals with objects on cluttered background and generates reasonable predictions for real images of cars.

Paper Code BibTeX