
Determining Motion Boundaries From
Image Boundaries Using Deep

Descriptor Matching

Author: Maxim Tatarchenko
Supervisor: Eddy Ilg

28th September, 2014

Contents

1 Introduction 2

2 Approach 3
2.1 Outline . 3
2.2 Response maps . 6
2.3 Correspondences . 9

3 Evaluation 11

4 Conclusions 15

Bibliography 16

1

Chapter 1

Introduction

Image boundaries, as stated in [3], are pixels that mark the transition from one
relatively constant property region to another. In the case of optical flow estima-
tion we are particularly interested in motion boundaries. This project presents an
approach to extract initial motion boundary clues from image boundaries. We then
use the detected motion boundaries to modify the diffusivity term of the energy
functional from [1] to account for motion discontinuities to improve optical flow
estimation.

The overall idea is to perform global sparse descriptor matching along the two
sides of a boundary using the deep matching approach from [4]. To obtain the
initial boundaries from the images we use the generalized boundary detector from
[3]. In a first step, the extracted boundaries are disconnected into lists of boundary
segments. On the two sides of each boundary segment, which we arbitrarily label A
and B, we first compute HOG descriptors. The general approach is then to match
the A and B sides of the segments separately.

If both sides of the boundary segment from the first image match to a single
boundary segment in the second image, the segment is not a motion boundary as
both sides move simultaneously. This means, that the segment should be excluded
from the boundary map. Otherwise, the segment can be a motion boundary and
we consider it to be important for optical flow estimation. In theory, the approach
further makes it possible to determine which side of the motion boundary belongs
to the foreground and which to the background. However, this has some limitations
in practice.

2

Chapter 2

Approach

2.1 Outline
In a first step, we extract boundary maps from two consecutive video frames

(denoted 𝐼 𝑡 and 𝐼 𝑡+1 respectively) using the generalized boundary detector from
[3]. To only consider meaningful boundaries, we first remove all the values from
the maps that are below a certain threshold.

Figure 2.1: If the mask is centered on a non-zero pixel which has more than two
non-zero neighbors (left), there is a branch and all the pixels in the mask are set
to zero (right).

Boundaries in such maps may have branches, which makes it hard to define
sides and to perform matching afterwards. Therefore, we preprocess boundary
maps to obtain two lists of disconnected boundary segments. To find and remove
the branches, we scan the boundary map with a 3x3 filter mask. Whenever the
central element of the mask is non-zero and has more then two non-zero neighbors,
there is a branch in the boundary map. This is illustrated in Figure 2.1. To remove
it, we set the entire pixels within the mask to zero.

3

2. Approach 4

Figure 2.2: Descriptors are placed along
the boundary segment on both sides.

The next step is to compute descrip-
tor values along each boundary segment
on both sides (see Figure 2.2). Similar
to [2], we use HOG descriptors consist-
ing of 9 local histograms. Each gradient
histogram comprises 15 different orienta-
tions and is computed in a 7x7 neighbor-
hood. Thus, each descriptor is represented
as a 135-dimensional vector. We want ev-
ery single descriptor to only capture in-
formation from one side of the boundary
segment (denoted A and B). To achieve
this, we transform boundary segments into
straight lines and warp the image around them respectively, as illustrated in Figure
2.3. Descriptor values are then computed on the warped images (see Figure 2.4).

Figure 2.3: Boundary segments (yellow) from original images (left) are trans-
formed into straight lines and images are warped respectively. Warped images
(right) are then used for descriptor computation.

After that, we want to compute similarities between descriptors along both
sides of the warped boundary segments. Following the deep matching approach,
we then construct response maps. These are images containing similarities be-
tween a certain descriptor from 𝐼 𝑡 and all the descriptors from 𝐼 𝑡+1. To capture
information about different scales in the image and avoid local maxima during the
matching step later, it makes sense to consider descriptors of different sizes (here
denoted levels). Higher-level descriptors are computed by aggregating lower-level
descriptors, as illustrated in Figure 2.5. Details of response map computation are
presented in Section 2.2.

2. Approach 5

Figure 2.4: The HOG descriptors are computed on
the warped images as a concatenation of 9 local ori-
entation histograms.

Next, we aggregate re-
sponses from different levels of
response pyramids to obtain
a set of matches for reference
points of 𝐼 𝑡 (see Section 2.3 for
a detailed description). Using
voting, we then find final cor-
respondences for each side of
whole boundary segments. The
voting score for a boundary
segment is the sum of weights
of matches coming from differ-
ent pyramid levels and point-
ing to this segment. Based on
these final correspondences, the
decision is made: if both sides
of the segment from 𝐼 𝑡 point to
the same segment in 𝐼 𝑡+1, this
means the boundary segment is not a motion boundary and it can be excluded
from the boundary map used for optical flow estimation. Otherwise, the segment
is a potential motion boundary and is therefore preserved.

Figure 2.5: To consider different scales in the image during response map com-
putation, we use descriptors of different sizes (marked red). A descriptor for pixel
𝑖 on a higher level (𝐷𝑘+1

𝑖) is computed as an aggregation of lower-level responses
of neighboring descriptors with indexes {𝑖, 𝑖 − 𝑠, 𝑖 + 𝑠}.

2. Approach 6

2.2 Response maps
Response maps represent similarities between a certain descriptor from 𝐼 𝑡 and

all the descriptors from 𝐼 𝑡+1. To further capture information from different scales
in the image, pyramids of response maps are computed which we name response
pyramids. Let us follow the complete process of response pyramid computation
and consider one boundary segment 𝑐𝑡

𝑖 from the set of boundary segments 𝐶𝑡 of 𝐼 𝑡.
We want to find a corresponding boundary segment for 𝑐𝑡

𝑖 in the set of boundary
segments 𝐶𝑡+1 of 𝐼 𝑡+1. For every reference pixel 𝑗 of 𝑐𝑡

𝑖 we compute a response map
𝑆0

𝑖,𝑗 of level 0 consisting of response values.

Figure 2.6: Jet color-coding
is used to visualize response
maps. Red corresponds to high
similarities, blue to low ones.

Each entry of 𝑆0
𝑖,𝑗 is the similarity between the

descriptor for pixel 𝑗 of the boundary segment 𝑖
from 𝐼 𝑡 and some other descriptor from 𝐼 𝑡+1. To
calculate response values, we use the non-negative
cosine similarity function on descriptor vectors (de-
noted 𝐷𝑒𝑠𝑐𝑡 and 𝐷𝑒𝑠𝑐𝑡+1 for descriptors from 𝐼 𝑡 and
𝐼 𝑡+1 respectively).

𝑠𝑖𝑚 = ⟨𝐷𝑒𝑠𝑐𝑡, 𝐷𝑒𝑠𝑐𝑡+1⟩
‖𝐷𝑒𝑠𝑐𝑡‖ · ‖𝐷𝑒𝑠𝑐𝑡+1‖

, 0 ≤ 𝑠𝑖𝑚 ≤ 1 (2.1)

The cosine similarity has the advantage of be-
ing in the range [0..1]. In general, it is possible to
use some other measure to compute similarities (e.g.
Euclidean distance). Instead of computing response maps densely for each pixel 𝑗
of 𝑐𝑡

𝑖, we only consider each 𝑠-th pixel, 𝑠 denoting the stride. We visualize response
values using jet color-coding (see Figure 2.6). An example of the response pyramid
computation for a pixel is shown in Figure 2.7.

Following the approach from [4], we propagate initial responses from the zero
level to higher levels. At each level response maps are first max-pooled to account
for small deformations. For computational reasons, the response maps are then
subsampled. Afterwards, adjacent responses from level 𝑘 − 1 are aggregated as
follows to obtain the new response map of level 𝑘:

𝑆𝑘
𝑖,𝑗 = 𝑆𝑘−1

𝑖,𝑗−𝑠 + 𝑆𝑘−1
𝑖,𝑗 + 𝑆𝑘−1

𝑖,𝑗+𝑠 (2.2)

Similar to [4], to better propagate responses from lower to higher levels and
make them more distinct, we apply a power transformation (𝑆𝑘

𝑖,𝑗)𝜆 with 𝜆 = 1.6.
All these steps are summarized in Algorithm 2.1.

2. Approach 7

Algorithm 2.1: Computing response maps for every boundary segment of 𝐼 𝑡

input : 𝐶𝑡 = {𝑐𝑡}, 𝐶𝑡+1 = {𝑐𝑡+1} - Sets of boundary segments
output: {𝑆𝑘

𝑖,𝑗}, 𝑖 = 1..|𝐶𝑡|, 𝑗 = 1..|𝑐𝑡
𝑗| - A set of response maps

s = 8
foreach pixel 𝑗 of 𝑐𝑡

𝑖 in 𝐶𝑡 stride 𝑠 do
Compute initial response map 𝑆0

𝑖,𝑗:
foreach pixel 𝑦 of 𝑐𝑡+1

𝑥 in 𝐶𝑡+1 do
𝑆0

𝑖,𝑗(𝑥, 𝑦) = sim(𝐷𝑒𝑠𝑐𝑡(𝑖, 𝑗), 𝐷𝑒𝑠𝑐𝑡+1(𝑥, 𝑦))
end

end
𝑘 = 1
Set descriptor size: 𝑠𝑧 = 16
Compute response maps of higher levels:
while sz < |𝑐𝑡

𝑗| do
foreach pixel 𝑗 of 𝑐𝑡

𝑖 in 𝐶𝑡 step 𝑠 do
Max-Pool(𝑆𝑘−1

𝑖,𝑗)
Subsample(𝑆𝑘−1

𝑖,𝑗)
𝑆𝑘

𝑖,𝑗 = 𝑆𝑘−1
𝑖,𝑗−𝑠 + 𝑆𝑘−1

𝑖,𝑗 + 𝑆𝑘−1
𝑖,𝑗+𝑠

𝑆𝑘
𝑖,𝑗 = (𝑆𝑘

𝑖,𝑗)𝜆

end
𝑠 = 𝑠 * 2
𝑘 = 𝑘 + 1
𝑠𝑧 = 𝑠𝑧 * 2

end

2. Approach 8

Figure 2.7: Response pyramid computation between a point descriptor (white
cross) from 𝐼𝑡 (1) and all the descriptors along the boundaries of 𝐼𝑡+1 (2). High
responses for side A (3) where descriptors capturing snow are compared. For side
B responses on levels 1, 2 (5,6) are more distinct than on level 0 (4).

2. Approach 9

2.3 Correspondences
At this step of the process, we convert similarity information stored in response

maps into point-to-point correspondences. For each reference point from 𝐼 𝑡 we find
a set of weighted correspondence hypotheses. These hypotheses are computed hier-
archically, the ones originating at higher levels of response pyramids are considered
to describe larger areas and thus to be more important.

Figure 2.8: An example of final correspondences for reference points of a bound-
ary segment. The top row shows initial images with marked boundary segments.
The actually corresponding segments are shown in red. The bottom row shows the
estimated correspondences for the boundary segment of interest from 𝐼𝑡 (red in
bottom images). All the boundary segments from 𝐼𝑡+1 are shown in green. There
are some outliers on side A due to the homogeneous background. Side B matches
almost perfectly.

In each response map for each boundary segment, we find the maximal response
value and propagate this information down the pyramid (backward propagation)

2. Approach 10

to get correspondences between single reference pixels belonging to the respective
patch. During the backward propagation it is important to follow the correct paths
that emerged during max-pooling and subsampling.

Weights for correspondences are computed according to the following heuristic:

𝑤 = 𝑠𝑖𝑚 · (𝑙 + 1) · 𝑆, (2.3)

where 𝑙 is the level of the response pyramid at which the correspondence originates
and 𝑆 is the value of the maximum in this response map, while 𝑠𝑖𝑚 is the bottom
level descriptor similarity from (2.1). Based on the sets of weights {𝑤𝑘}, we can
find one global best correspondence for each reference pixel (illustrated in Figure
2.8).

All the obtained correspondence sets are then used to find matches between
whole boundary segments. Let us consider segment 𝑐𝑡

𝑖 and its set of correspon-
dences pointing to different segments of 𝐶𝑡+1. Using voting, we select the best
matching boundary segments for both the A and B sides of 𝑐𝑡

𝑖 denoted 𝑐𝑡+1
𝑗𝐴 and

𝑐𝑡+1
𝑗𝐵 respectively. Having 𝑗𝐴 = 𝑗𝐵 means that both sides of the bondary segment

moved together and we should not consider this segment as a motion boundary.
If 𝑗𝐴 ̸= 𝑗𝐵, the segment is considered to be a potential motion boundary and is
included into the output boundary map used later for optical flow estimation.

Chapter 3

Evaluation

The proposed approach was evaluated on a subset of images from the Sintel
dataset containing the most complicated cases. In general, there was a signifi-
cant increase in performance compared to standard LDOF with the deep match-
ing. Evaluation results are presented in Table 3.1. The numbers show the esti-
mated end-point-error in different cases: the original LDOF [1] implementation
with matches from deep matching [4] (DM) extended by our motion boundary
detector (+MBD) and occlusion check (+OCC) or both (+OCC + MBD).
The occlusion check is performed by allowing the sources of a target pixel to only
come frome one pixel cluster. If a target sources from different clusters, the source
with the lower error is kept and the source with the higher error is marked as
occluded. Occluded pixels are then disabled in the data term during energy mini-
mization.

Figure 3.1: Homogeneous background
makes it hard to find matches robustly.

On average, the accuracy increases
when adding motion boundary infor-
mation in both cases, with or without
occlusion check (improvement is 10%
and 4% respectively). This shows that
it is beneficial to use the occlusion check
and the motion boundary detector in
combination. In general, the algorithm
tends to underestimate the correct solu-
tion. We use a quite simple heuristic to
make decisions about a segment being
a motion boundary or not (both sides
correspond to the same or different boundaries). Many motion boundaries are not
detected this way, because for small motions, both sides can still be matched.

11

3. Evaluation 12

DM +MBD +OCC +OCC +MBD
Image 1 10.6535 14.2146 7.6880 7.4799
Image 2 43.1911 35.9326 45.2541 31.3443
Image 3 6.5338 6.4594 6.6542 7.1010
Image 4 3.6892 3.0682 4.5372 2.9283
Image 5 38.1519 38.9580 37.4398 37.9217
Image 6 47.3305 39.3391 50.9888 37.9868
Image 7 52.9657 52.0020 53.1377 51.4845
Image 8 16.6995 14.7963 17.2986 14.6974
Image 9 11.8467 13.5595 11.3391 9.0520
Image 10 12.2100 14.7699 12.8212 16.5183
Image 11 8.4036 8.0631 7.7931 7.3595

Average error 22.8796 21.9239 23.1774 20.3522

Table 3.1: Optical flow estimation end-point-error on images from the Sintel
dataset. DM column contains results for standard LDOF with matches from deep
matching [4]. Other columns show results with added motion boundary detector
(+MBD), occlusion check (+OCC) and both (+OCC +MBD).

Figure 3.2: Boundaries estimated by Gb can
significantly deviate from the actual bound-
aries in the image.

Another limitation of the ap-
proach is its inability to adequately
handle homogeneous background.
For example, many frames from the
Sintel dataset contain snow, which
has no structure and is almost the
same color everywhere (see Figure
3.1). This means that every descrip-
tor capturing information about a
part of such background will have
high responses in many areas of the
image. Such an ambiguity can lead
to mismatches. There is also a prob-
lem related to the limited accuracy of the boundary detector. The Gb algorithm
finds boundary estimates, that can significantly deviate from the true boundaries
(see Figure 3.2). In some cases this also leads to errors in descriptor matching.

An example result for a pair of images is illustrated in Figure 3.3. The esti-
mated flow field becomes more accurate. Blur on the motion boundaries is partially
removed. However, on some images there is a decrease in performance. An illus-
tration of such a case is shown in Figure 3.4. Due to occlusion, it is not possible to

3. Evaluation 13

find the correct match for a certain boundary segment. This means the matches
of A and B sides point to different boundary segments and the boundary is con-
sidered a motion boundary although it is not. This then leads to errors in optical
flow estimation.

Figure 3.3: Example output for a pair of images (1 and 2). The initial boundary
map after preprocessing is shown in 3 and the final one containing only motion
boundaries in 4. The ground truth optical flow field is shown in 5, the occlusions
estimated with occlusion check in 6. The flow field shown in 8 was estimated using
information about the motion boundaries and occlusions. It is clearly more accu-
rate than the flow field estimated using standard LDOF with the deep matching
shown in 7. The flow on the motion boundaries becomes less blurred. Some finer
details (i.e. hand marked by a red ellipse in 8) are more clear.

3. Evaluation 14

Figure 3.4: Example output for a pair of images (1 and 2). The initial boundary
map after preprocessing is shown in 3 and the final one containing only motion
boundaries in 4. The ground truth optical flow field is shown in 5, the occlusions
estimated with occlusion check in 6. Due to almost full occlusion of the area
marked by the red ellipse in 1, matches for the corresponding boundary segment
are wrong. The boundary is mistakenly treated as a motion boundary. Additionally,
the matches from deep matching in the area above the boundary are wrong and
disconnecting it by the boundary leads to an error in the estimated optical flow
field visualized in 8. This error is not present in 7, where the motion boundary
detector is not used.

Chapter 4

Conclusions

This project presented an approach for extracting initial motion boundary clues
from images by performing global sparse descriptor matching along image bound-
aries. The extracted motion boundaries were then used to enhance optical flow
estimation. Using the proposed approach together with occlusion checks gives a
significant performance improvement. On the selected cases, the accuracy of opti-
cal flow estimation increased by 10% (compared to standard LDOF with matches
from deep matching).

In most of the cases the approach tends to underestimate the true motion
boundaries and therefore does not generate false positives. However, in the case
of occlusions correct matches are impossible to determine and false positives do
occur. Other limitations of the approach include its inability to adequately handle
homogeneous areas and the susceptibility to errors of boundary estimates produced
by the Gb algorithm. These problems need to be addressed in future work.

15

Bibliography

[1] Brox, T., C. Bregler, and J. Malik (2009). Large displacement optical flow. In
IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR).

[2] Brox, T. and J. Malik (2011). Large displacement optical flow: descriptor
matching in variational motion estimation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 33 (3), 500–513.

[3] Leordeanu, M., R. Sukthankar, and C. Sminchisescu (2012). Efficient closed-
form solution to generalized boundary detection. In European Conference on
Computer Vision (ECCV).

[4] Weinzaepfel, P., J. Revaud, Z. Harchaoui, and C. Schmid (2013). Deepflow:
Large displacement optical flow with deep matching. In IEEE Intenational
Conference on Computer Vision (ICCV).

16

	Introduction
	Approach
	Outline
	Response maps
	Correspondences

	Evaluation
	Conclusions
	Bibliography

