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StructSLAM: Visual SLAM With
Building Structure Lines

Huizhong Zhou, Danping Zou, Ling Pei, Rendong Ying, Peilin Liu, Member, IEEE, and Wenxian Yu

Abstract—We propose a novel 6-degree-of-freedom (DoF) visual
simultaneous localization and mapping (SLAM) method based on
the structural regularity of man-made building environments. The
idea is that we use the building structure lines as features for
localization and mapping. Unlike other line features, the building
structure lines encode the global orientation information that
constrains the heading of the camera over time, eliminating the
accumulated orientation errors and reducing the position drift
in consequence. We extend the standard extended Kalman filter
visual SLAM method to adopt the building structure lines with a
novel parameterization method that represents the structure lines
in dominant directions. Experiments have been conducted in both
synthetic and real-world scenes. The results show that our method
performs remarkably better than the existing methods in terms of
position error and orientation error. In the test of indoor scenes of
the public RAWSEEDS data sets, with the aid of a wheel odometer,
our method produces bounded position errors about 0.79 m along
a 967-m path although no loop-closing algorithm is applied.

Index Terms—Indoor scenes, line features, Manhattan-world as-
sumption, visual simultaneous localization and mapping (SLAM).

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) is a
critical issue of autonomous vehicle navigation that has

been studied over many years in both computer vision and
robotics communities. Visual SLAM, which uses cameras as
the sensor inputs, is favorable to be applied in platforms where
the requirement of cost, energy, and weight of the system is
limited, e.g., the micro air vehicle systems. Lots of visual
SLAM methods have been proposed in the last decade. Many of
them use points as features to estimate both the camera pose and
the map of the surroundings represented by sparse point clouds.
The state-of-the-art visual SLAM algorithms [1], [2] can pro-
duce results that rival laser range scanner accuracy when the
scene contains stable feature points. However, if there are few
feature points in the scene, visual SLAM algorithms usually
produce a large drift error both in position and orientation or
even fail to work. It usually happens in scenes that consist of
mainly textureless surfaces. Some also use line features for
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Fig. 1. (Left) Building structure lines used for visual SLAM. (Right) Esti-
mated 3-D structures and camera trajectories.

visual SLAM [3]–[6]. The line features are good complements
when there are not enough point features in the scene. However,
the line-based visual SLAM methods exhibit essentially no
significant improvement on performance and sometimes yield
worse results due to the difficulty in tracking line robustly.
Whether using point or line features, visual SLAM methods
have the well-known drift problem, which means that the
localization errors are accumulated over time. Without some
special treatments, e.g., loop-closing algorithms [7], or some
aiding sensors, it is difficult to reach desirable accuracy in a
large-scale environment.

Man-made buildings are everywhere in our living environ-
ments, exhibiting strong structural regularity. In most cases, the
man-made buildings can be abstracted as blocks that are stacked
together with three dominant directions, which is known as the
Manhattan-world assumption [8]. Researchers have used the
observation as prior knowledge for applications such as indoor
modeling [9], [10], scene understanding [11], and heading
estimation [12]. Inspired by this strong regularity of man-made
buildings, we propose a novel visual SLAM method, which
adopts building structure lines for localization and mapping. By
building structure lines, we mean the lines aligned with three
dominant directions of the buildings, as shown in Fig. 1.

The major difference between the structure line features and
the line features used in existing visual SLAM systems [6] is
that the structure lines encode the global orientation informa-
tion. The benefit of adopting the building structure lines as the
landmarks is obvious: The accumulated orientation error can
be eliminated. In consequence, it will reduce the accumulated
position error and improve the accuracy of the SLAM system.
As we can see in the experiments, the proposed method outper-
forms the state-of-the-art visual SLAM methods in both accu-
racy and robustness. In the test of using the RAWSEEDS data
sets, by using odometer as the motion predictor, our method
produces bounded position errors less than 1 m along a 967-m
path without applying any loop-closing algorithms. We also
show the robustness of our method under challenging cases
where the existing visual SLAM methods fail. We highlight the
main contributions of our work as follows.
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We employ building structure lines of three dominant direc-
tions for 6-degree of freedom (DoF) SLAM through a novel
parameterization method, which constrains the camera orien-
tation globally and reduces the overall drift error consequently,
making the 6-DoF visual SLAM in the environments with man-
made buildings much more stable and accurate.

The maps constructed by the 3-D structure lines provide extra
information of the scene, which could be useful for scene mod-
eling and understanding. The proposed visual SLAM method is
of potential use in applications of indoor vehicular technology,
such as indoor car parking, and autonomous service robots.

II. RELATED WORK

Most visual SLAM methods use feature points as the input
to estimate the ego-motion of the sensor body and the map of
the surroundings. They can be classified into two categories:
structure-from-motion (SFM) method [2], [13] and filter-based
method [14]. In SFM methods, the ego-motion and map are
estimated in a deterministic way, usually through optimizations
operated locally and globally. The representative work of this
kind is the Parallel Tracking and Mapping (PTAM) system [2].
The PTAM system can handle hundreds of feature points in real
time by putting the time-consuming bundle adjustment into a
separated thread. The filter-based methods [14], [15], however,
work in a probabilistic way, where the accuracy of the estimates
is maintained by covariances. Although filter-based methods
are less efficient than SFM methods, they are more favorable
to be used in fusing with other sensors since the covariances
are available.

Some methods use line features for localization and map-
ping [3]–[6]. In their work, line features are represented
by segments with two end points. Other methods using line
features adopt different settings rather than a monocular pinhole
camera. Jeong and Lee in [16] proposed a SLAM method using
vertical line features in indoor environments captured by an
omnidirectional camera. In [17], Chandraker et al. used the
stereo camera to capture line features. Line feature, as a higher
level structure representation than point feature, can be used to
improve the quality of the output maps. In [10] and [18], the
authors attempted to automatically discover 3-D lines from the
output of point-based SLAM algorithms and then used them
to detect planar structures. The final model was represented
by planar structures that are helpful for scene modeling and
understanding. In [19], Sola et al. gave an excellent review
of different parameterization methods for both point and line
features.

The disadvantage that line features are more difficult to track
than point features makes line-based SLAM methods less popu-
lar than point-based SLAM methods, as lines are often partially
occluded in the image, and their end points are difficult to lo-
cate. In [20], a novel method was proposed to improve extended
Kalman filter (EKF) SLAM by using vanishing points as global
features in indoor environments. Their experimental results
show that with the help of vanishing points, the SLAM perfor-
mance is significantly improved. In [21], Zhang et al. adopted
vertical lines and floor lines as features for solving the 3-DoF
SLAM problem. To reduce the accumulated heading error,

Fig. 2. Structure line l with the dominant direction η is represented in the
parameter plane (XZ-plane in the world frame) by a point A, together with its
dominant direction η, where A is the intersection of the structure line and the
parameter plane. O′ is the camera center projected onto the parameter plane
along the dominant direction. The shadow around A indicates the covariance
of the structure line on the parameter plane.

vanishing points were employed as extra measurements and
used for loop closing. Their work impressively shows that if
the structural regularity is properly used, the accuracy of SLAM
can be significantly improved.

Inspired by the previous work, we seek to use the structural
regularity to solve the 6-DoF SLAM problem with a single
pinhole camera in environments containing man-made build-
ings. We propose to use the building structure lines that lie
in three dominant orientations under the Manhattan-world as-
sumption for localization and mapping. We will show that the
extension of the EKF visual SLAM method that incorporates
building structure lines can achieve remarkable robustness and
accuracy in large-scale indoor environments and produce maps
consisting of 3-D building line structures that could be useful
for 3-D CAD map generation and scene understanding.

III. BUILDING STRUCTURE LINES

Most man-made buildings exhibit the Manhattan-world
property, namely, surfaces are aligned with three dominant
directions. In other words, the intersecting lines of those sur-
faces are also aligned with three dominant directions. We say
that the lines that can be aligned with those dominant directions
are structure lines as shown in Fig. 1. Each structure line is
associated with a dominant direction that can be represented by
a vanishing point in the image.

To parameterize the structure lines, we select three orthogo-
nal planes through the origin of the world frame, namely, XY ,
Y Z, and ZX planes. A structure line can be represented by a
point on a parameter plane and the related dominant direction.
The plane for parameterizing is selected by comparing the
angular distances between the related dominant direction and
the normals of the planes. The one with the nearest angular
distance is chosen as the parameter plane.

The structure line is then represented by a point in the
parameter plane with inverse depth representation similar to
that in [15], namely

l = (ca, cb, θ, h)
T . (1)

Here, [ca, cb]T is the camera center (O′ in Fig. 2) projected
onto the parameter plane along the dominant direction (η in
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Fig. 2). θ is an angle describing the ray through the projection
of the camera center and the intersection point (A in Fig. 2) of
the structure line and the parameter plane. h is the inverse depth
value, where 1/h is the distance between the projection of the
camera center and the intersection point on the parameter plane,
as shown in Fig. 2. This inverse-depth representation is adopted
to minimize the nonlinear effect in initialization as described
in [15]. In the following sections, we will present our SLAM
framework in detail.

IV. VISUAL SIMULTANEOUS LOCALIZATION AND

MAPPING FRAMEWORK WITH STRUCTURE LINES

The main task of visual SLAM is to estimate the camera mo-
tion and build the 3-D map of the surrounding simultaneously
from the features detected in the image sequences. We employ
the EKF framework to solve the SLAM problem similar to that
in [1], where all the variables to be estimated are put into a state
vector x. It includes the camera state vector xc, consisting of its
orientation represented by a quaternion qwc, its position pw, the
velocity vw in the world frame, and the angular velocity ωc in
the camera frame. The remainder of the state vector x consists
of the vectors representing the feature points xp. We extend the
framework by appending the vectors representing the structure
lines xl. A state vector in our SLAM framework is therefore
written as

x =
[
xT
c ,x

T
p ,x

T
l

]T
(2)

where xp = [mT
1 ,m

T
2 , . . .]

T
, and xl = [lT1 , l

T
2 , . . .]

T
. Both the

point and structure line features are represented by the inverse-
depth parameterization (mi ∈ R

6×1 and li ∈ R
4×1). The esti-

mation uncertainty is described by a covariance matrix, i.e.,

Σ =

⎡
⎣Σcc Σcp Σcl

Σpc Σpp Σpl

Σlc Σlp Σll

⎤
⎦ (3)

where the diagonal block matrices are covariances of the cam-
era, point features, and structure line features. The remain-
ing block matrices are the cross-variances between different
variables.

A. Estimating Dominant Directions

Like points, we need to add new structure lines in the state
frequently to grow the map. Before initializing any structure
lines, it requires the estimation of the dominant directions in the
world frame. This can be done by backprojecting the vanishing
points detected in the image into the world frame.

The vanishing point v can be computed by intersecting the
parallel lines in the image. Mathematically, this can be achieved
by solving the linear system, i.e.,

sTv = 0 (4)

where s is a 3 ×M matrix of which the columns represent the
equation of the parallel lines. Here, we use 3 × 1 homogeneous
coordinates to represent the vanishing point v.

We use the J-linkage to classify the parallel lines in the image
as described in [22] and [23] and then compute a rough estimate
of the vanishing point using (4). Then, we refine the result
by a nonlinear least squares optimization that minimizes the
distances from the end points of the observed line segment to
the line connecting the vanishing point and the midpoint of the
observed line segment.

After we get the vanishing point v in the image, the dominant
direction in 3-D space can be obtained, i.e.,

η ∝ RwcK−1v. (5)

Here, η is a 3 × 1 vector representing the dominant direction in
3-D space, and Rwc is the camera rotation matrix correspond-
ing to qwc, indicating the rotation transform from the camera
frame to the world frame. K is the intrinsic matrix of the camera
that can be calibrated ahead. The distortion in the image can be
removed after calibration.

Conversely, if the dominant directions are known, their cor-
responding vanishing points in the image can be obtained, i.e.,

v = KRcwη. (6)

Here, Rcw = (Rwc)T represents the rotation transform from
the world frame to the camera frame. The vanishing point v in
the image can be used to determine the dominant of the newly
detected line segments in the image, which will be described in
the following section.

As the dominant directions are assumed to be perpendicular
to each other, it requires at least two sets of parallel lines to
estimate them. (The third direction can be obtained by the cross
product of the first two directions.) We use (4) and (5) to esti-
mate rough values of the dominant directions and orthogonalize
them using cross product. Then, the three directions are slightly
adjusted by a rotation minimizing the distances between the
vanishing points computed from (6) and the observed ones
obtained from (4). If there are more than three sets of parallel
lines detected, we use the three sets with the largest number of
members for estimation.

B. Initialization of Structure Lines

New structure lines are initialized when some line segments
newly appear in the image. Before initializing new structure
lines, we attempt to determine the dominant directions related
to the new line segments. We project the dominant direction ηi
onto the image to get the corresponding vanishing points vi

using (6). By drawing a line through the vanishing point and the
midpoint of the observed line segment, if the line can be aligned
with the observed line segment closely (within a four-pixel
alignment error in our experiments), the dominant direction of
the observed line segment is set to be ηi.

If there is one vanishing point inside the image, a line
segment may be aligned with two possible vanishing points. It
will cause ambiguity in initializing structure lines. We simply
discard these line segments to avoid generating structure lines
assigned with false dominant directions.

It is not necessary to initialize structure lines for all new
line segments, since it may increase the computational cost and
make data association difficult. We select only long segments
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that are not close to predicted structure lines in the image for
initialization.

The initialization process has two phases. The first phase is to
compute the projection of the camera center onto the parameter
plane along the dominant direction, namely, (ca, cb). The sec-
ond phase is to obtain the orientation from the projection of the
camera center to the intersection of the structure line on the pa-
rameter plane, represented by a normal vector [cos(θ), sin(θ)]T .
The state of the structure line is initialized as l = [ca, cb, θ, h]

T

with a default depth value 1/h. The covariance matrix Σ is also
required to be augmented after one new structure line is added.
The details of initialization are described in Appendix A.

After a structure line is initialized, we also keep the image
patch around the midpoint of the line segment, which is used
for data association introduced in the latter section. In our
experiments, the image patch is set to be of size 11 × 11 pixels.

C. Dynamic Model and State Prediction

We used a constant velocity and a constant angular velocity
in the camera dynamic model, the same as that in [1], that is

fc(xc) =

⎛
⎜⎜⎝
p̄w

q̄wc

v̄w

ω̄c

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
pw + vwΔt
qwc · q(ωc)Δt
vw

ωc

⎞
⎟⎟⎠ . (7)

Here, we use a bar sign to identify the predicted variables. The
dynamic is perturbed by the noise n = [δvwT, δωT ]

T
, whose

covariance is written as Σn. The state of features (including
both points and lines) remains unchanged, namely

x̄ =
[
x̄T
c , x̄

T
p , x̄

T
l

]T
=

[
fc(xc)

T ,xT
p ,x

T
l

]T
. (8)

Given the Jacobian of the dynamic model and the noise

Fx =

[
∂fc
∂xc

0

0 I

]
, andFn =

[
∂fc
∂n
0

]
. (9)

The propagated uncertainty can be described as

Σ̄ = FxΣFT
x + FnΣnF

T
n . (10)

In many robotic platforms, there are usually sensors that can
be used to predict the motion of the robot, such as IMU and
wheel odometer. In those cases, we simply extract the velocity
and angular velocity information from them and replace v̄w and
ω̄c, respectively.

D. Measurement Model of Structure Lines

The measurements or observations are the line segments
detected by the LSD detector [24]. To compute the innovation,
it requires getting the image position of the structure line
and measuring the distance between the structure line and its
associated line segments.

The image of a structure line can be computed by connecting
the image positions of the associated vanishing point and inter-
section of the structure line and the parameter plane, as shown
in Fig. 2. The detailed computation is present in Appendix B.

Suppose sj is the line segment associated with the ith struc-
ture line. We denote the projection of the structure line in the
image by l̄i = (l̄1i , l̄

2
i , l̄

3
i )

T
. The signed distances between the

end points of the line segment, i.e., saj , s
b
j , and the projected

structure line, i.e., l̄i, make up the measurement function

mij =

⎡
⎢⎣

saj ·̄li√
(l̄1i )

2
+(l̄2i )

2

sbj ·̄li√
(l̄1i )

2
+(l̄2i )

2

⎤
⎥⎦ . (11)

The following cases make the measurement model of a
structure line be carefully designed: 1) A structure line is
usually related to several segments detected in the image; 2)
a measurement with a long line segment should play a stronger
role than that with the shorter line segments.

For the first case, we allow associating one structure line
with multiple line segments, which means that the measurement
function of a structure line li has the following form:

mi =
[
mT

i1, . . . ,m
T
ij , . . .

]T
. (12)

To make the measurement impact of line segments propor-
tional to their lengths, we simply break the long line segment
into several short segments and compute the measurement
function. By doing this, longer segments will lead to more
residuals and get more impact on EKF update step. In our
experiments, we break long segments into short segments with
a length of 30 pixels in the image.

The measurement function of the whole state is

h(x) =
[
m(x)T ,p(x)T

]T
=

[
mT

1 , . . . ,m
T
i , . . . ,p1, . . . ,p

T
k , . . .

]T
+ n. (13)

Here, p(x) is the measurement function for feature points [14].
n is the measurement noise described by a covariance matrix
of which only the dialog elements are nonzero value σ2. The
value σ is usually set to be several pixels, depending on the
feature detection accuracy (two pixels in our experiments).

The innovation is computed as

r(x) =
[
0−m(x)T ,uT − p(x)T

]T
=7

[
−mT

1 , . . . ,−mT
i , . . . ,

uT
1 − pT

1 , . . . ,u
T
k − pT

k , . . .
]T

(14)

where ui represents the feature points detected in the image.

E. State Update

The EKF update follows the standard Kalman filter formula-
tion, i.e.,

Innovation covariance : S =HΣ̄HT +N

Kalman gain : K =Σ̄HTS−1

State update : x ←x̄+Kr

Covariance update : Σ ←Σ̄−KSKT . (15)

Here, H is the Jacobian of h(x), and innovation r is the r(x)
defined in (14). Instead of attempting to get the analytic form,
which requires complicated calculation, we use the central dif-
ference to obtain the Jacobian matrices in our implementation.
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We also use only parts of measurements to update the state
to obtain a tentative estimate, whose steps are the same as (15),
except for using parts of H,N, and r. Partial update is useful
for rejecting outliers in robust association and has shown its
remarkable performance in existing work [25]. We also use
partial update in data association to reject outliers as stated in
the following section.

F. Robust Data Association for Structure Lines

It is more difficult to associate the observations with the
structure lines than the feature points, as lines are usually bro-
ken into several segments in the image, and the textures along
different structure lines usually resemble each other. There are
some work dedicated in finding effective descriptors for line
features [26], [27]. In consideration of the running time effi-
ciency, we simply use the image patch around the midpoint of
the initially associated line segment as the descriptor. We find
that this simple representation yields promising results while
keeping high computational efficiency in practice. Although a
better line descriptor may be found, it is not our main interest
here. We leave this in the future work.

The first step of data association of the structure lines is
to find the candidate segments that are close to the predicted
structure lines and have similar appearances with the structure
line by comparing the image patches. The closeness between a
predicted structure line and a line segment is determined by the
χ2-distance computed as

χ2 = rTi
(
HiH

T
i

)−1
rTi . (16)

Here, ri is the 2× 1 residual vector [see (11) and (14)] of
the ith structure line, and Hi is the corresponding Jacobian
matrix. The line segment with χ2 value larger than 5.99 (with
a probability less than 5%) is rejected. After that, the similarity
between the line segment and the structure line is measured
by zero-mean normalized cross-correlation (ZNCC) ∈ [−1, 1]
between two image patches. In our experiments, ZNCC is set
to 0.8 for most cases.

After obtaining the candidate segments, we use RANSAC to
figure out the remaining outliers as described in the point-based
visual SLAM method [25]. However, unlike point features,
one straight line usually has multiple line segments associated
considering the fact that lines are easily separated into several
segments through line detection algorithms. Hence, we make
some changes to adapt it to our framework, which is outlined as
follows.

1) A line segment is randomly sampled from all candidate
segments.

2) We run a tentative EKF update using the line segment
selected and use the updated state to predict all the
structure lines on the image again.

3) Inliers are determined by checking the distance between
the structure line and its associated segment. If the
distance is smaller than a threshold (3 is used in our
approach), we treat the associated line segment as an
inlier. We therefore get an inlier set after above steps.

We do these steps recursively until reaching the maximum
number of RANSAC iterations. Finally, the inlier set with the

Fig. 3. Top view of the camera trajectory (cyan) and feature location projec-
tions in the XZ-plane. Blue squares represent point features, whereas red
crosses stand for vertical lines. Here, we do not mark the horizontal lines.

largest number of members is our inlier set. The remaining line
segments are treated as outliers and excluded from the EKF
update in (15). After that, we run EKF update using all the inlier
segments.

Outlier rejection works in a similar way when both points and
structure lines are used in the framework. As we can see in the
experimental results in Fig. 17, the false associations produced
by ZNCC matching will be removed by outlier rejection, which
increases the robustness of the algorithm.

G. Feature Management

Since the number of features in the map grows over time, it
will reduce the runtime efficiency significantly as the dimension
of the state becomes large. Similar to managing point features,
we also set a maximum number of structure lines that are kept
in the state for each dominant direction. New structure lines are
initialized only when the number of structure lines is less than
expected.

To limit the number of line features within a reasonable
level, we need to remove the old features that do not appear
in the image. To manage the features, we keep a number of
matching failure (NoF) variable for each feature to indicate the
number of successive steps that it fails to be associated with any
observations. NoF is reset to zero when the feature succeeds
in matching some observations again. When the number of
features exceeds a predefined threshold (two times the expected
feature number of 15 is used in our experiments), the features
with the largest NoF are removed from the state. The covariance
matrix is also updated accordingly.

V. EXPERIMENT

A. Synthetic Scenes

To better understand the characters of different algorithms,
we synthesize a simple scene for evaluation. The synthetic
scenario consists of 20 × 20 m four-side barriers, including
88 lines (80 vertical, 8 horizonal) and 160 points. A perspec-
tive camera (90◦ FOV, 640 × 320 pixels, added with a two-
pixel Gaussian measurement noise) moves inside the barriers
and completes a square trajectory in the XZ-plane, with the
heading toward the barriers. A total of 794 sequential images
are generated, and in each frame, we let the number of lines
and points be approximately the same.

Four methods are used for comparison: the point-based
method [15], the line-based method [3], the proposed method
using only structure lines, and the proposed method using
both points and structure lines. All initialization conditions and
related parameters are kept the same for the four approaches.
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Fig. 4. Final maps produced by using (a) line features and (b) structure lines.
(c) Error distribution of the orientations of the reconstructed vertical line
features (blue: using line features; red: using structure lines, partly visible).

Fig. 5. RMSE of the camera pose (translation in X , Y , Z and orientation in
roll, pitch, yaw) using the point-based method (red, circle), the line-based
method (green, star), the structure-line-based method (blue, square), and the
structure-line-and-point-hybrid method (cyan, triangle) over 25 Monte Carlo
runs. The dashed vertical lines mark the frames (frames 120, 320, 520, and
720) where the camera starts to turn into a corner (four corners altogether).

The estimated trajectories are shown in Fig. 3. It is clear that the
methods using only points and only lines perform worse than
our method. They fail to construct the square shape of the
barriers and have a large close-loop error. The advantage of
using structure lines is obvious: With the global orientation
information encoded in the structure lines, both the trajectories
and the 3-D landmarks coincide well with the ground truth.

Fig. 4 presents the side-by-side comparison between the 3-D
maps of the line-based method and our method. As shown in the
figure, the orientations of many lines are incorrect in the line-
based method. We take the vertical lines as an example, whose
direction error distribution is shown in Fig. 4(c). There are
15 out of 86 vertical lines with errors of more than 2◦, whereas
our method does not have such problems, i.e., all lines are well
aligned with their true directions.

To provide a quantitative analysis, we perform Monte Carlo
experiments of 25 runs. At each frame, the root-mean-square
error (RMSE) for each camera pose component (translation in
X , Y , Z and orientation in roll, pitch, yaw) over 25 runs is
calculated. The results are shown in Fig. 5. When the camera
turns around the first corner, both the point-based method and
the line-based method start to show an increase in the estima-
tion error. Particularly for the line-based method, the orienta-
tion error in pitch largely increases at each corner and finally
reaches as high as 0.3180 rad (more than ten times of the
proposed method 0.0143 rad). It may be due to the redundant
DoF of the line representation by two points [3]: The two non-

Fig. 6. Averaged NEES of the camera pose (translation in X , Y , Z and orien-
tation in roll, pitch, yaw) over 25 runs. The dashed black lines mark the
consistency band limit of 95% confidence for 6 DOF and N = 25 runs,
namely, η̄ = 7.432 and η = 4.719 (η̄ = χ2

25×6(1 − 0.975)/25 = 7.432, η =

χ2
25×6(1 − 0.025)/25 = 4.719) [28]. If the averaged NEES is larger than η̄

for more than 2.5% of the whole time, the filter is considered inconsistent [29].

overlap points can locate anywhere along the line, making it
more difficult to let the line converge to the real pose.

In contrast, the position errors of the proposed method are
always kept within a small value (0.2 m) during the whole
trajectory (4 × 20 m), and it slightly increases if using structure
lines alone (e.g., RMSE in X, structure line only: 0.1311 m,
hybrid: 0.0576 m). It therefore clearly shows that structure
lines play a critical role in our proposed method, where both
points and structure lines are adopted. To test the consistency
of our algorithm, we use the averaged normalized estimation
error squared (NEES), as explained in [29]. As shown in Fig. 6,
the methods using only lines and only points are inconsistent,
mostly because of their inaccuracy. The averaged NEES of
our methods is, however, constantly under the upper limit and
considered as consistent.

In summary, the simple case demonstrates that adopting
structure lines in the SLAM framework will lead to a remark-
able improvement in the estimation accuracy of both orientation
and position. In the following experiments, we will test our
method in real-world scenes with or without the ground truth.

B. Benchmark With Large-Scale Indoor Scenes

We test our methods on the data set of Biccoca_2009-02-
25b and Biccoca_2009-02-27a from the RAWSEEDS 2009 [30],
which have been proposed as benchmarks for SLAM problems.
The data sets are collected by a wheel robot mounted with
multiple sensors in an office building. The indoor scenarios
consist of a wide range of different architectural features,
e.g., halls, wide and narrow corridors, passageways between
buildings and libraries, and the light conditions are significantly
changing among different places. In our experiments, the image
sequences from the frontal camera (the image resolution is
320 × 240) are used for tests. To evaluate the result, we align
the resultant trajectory with the extend ground truth [30] by
setting the starting point to the ground truth one and rotating the
trajectory toward the ground truth by minimizing the distance
between them. Existing visual SLAM methods that use only
points (MonoSLAM) [14] and lines (LineSLAM) [3] are com-
pared with the proposed method. Wheel odometry is adopted
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Fig. 7. Results of different methods (blue trajectories) aligned with the ground truth (red trajectories) of Biccoca_2009-02-25b, where the traveling distance is
about 774 m. (a) Structure SLAM versus GT. (b) CI-graph versus GT. (c) MonoSLAM versus GT. (d) LineSLAM versus GT.

TABLE I
ABSOLUTE ERROR COMPARISON

Fig. 8. Results of different methods (blue trajectories) and the ground truth (red trajectories) of Biccoca_2009-02-27a. The traveling distance is 967 m.
(a) StructSLAM. (b) MonoSLAM. (c) LineSLAM.

for motion predictions (see Section IV-C) for all methods,
which has also been adopted in the benchmark solution [31].

1) Biccoca_2009-02-25b: This data set consists of 52 671
image frames captured in 30 min at 15 FPS. The whole path
is as long as 774 m with several loops and revisited regions.
The sequence is quite challenging for the lack of textures in
some areas and several sharp turns in very narrow passageways.
Apart from comparing with the MonoSLAM and LineSLAM
methods, we also compare with the published results of the
benchmark solution [31] in this case. The benchmark solution,
which is named as CI-Graph SLAM, uses two other cameras on
the robot for estimation. It is the state-of-the-art visual SLAM
method that performs well in large-scale scenes by frequently
applying loop-closure detection and loop-closing algorithms.

The results are shown in Fig. 7. Notice that for MonoSLAM
and LineSLAM, the orientation errors increase at every turn
around the textureless corners. The errors are accumulated and
finally lead to a large position error. Since the CI-graph SLAM
method adopts loop-closing algorithms to correct the accumu-

lated errors when a loop is detected, it yields a much better
result than MonoSLAM and LineSLAM. However, there is still
a clear orientation drift after the narrow corner in the second
building because of lacking features as shown in Fig. 7(b).

Our StructSLAM method exploits the orientation informa-
tion of the structure lines as a global constraint on the estimates,
which means that the error at each time step will be globally
rectified. Therefore, the errors are not accumulated but bounded
(within 2 m) during the whole trajectory. For better illustration,
we show the absolute position error and absolute yaw error
of all the approaches in Fig. 9. As shown in Table I, our
method presents precise estimates with a mean absolute error
of 0.79 m and 0.01 rad, outperforming the results of 2.24 m and
0.06 rad by CI-graph SLAM and far better than the results by
MonoSLAM and LineSLAM. It is also worth noting that our
StructSLAM achieves this performance with only one camera
and no loop-closing algorithm.

2) Biccoca_2009-02-27a: This sequence (including 68 063
frames) is captured in the same scene as in Biccoca_2009-02-25b
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Fig. 9. Comparison of the absolute position error and the absolute angular
error over time of different methods for the Biccoca_2009-02-25b and the
Biccoca_2009-02-27a data sets. The errors of our method are bounded in
small values. Better viewed on the screen. Red circle: MonoSLAM; Green
star: LineSLAM; Blue square: CI-Graph SLAM; Cyan triangle: StructSLAM.
(a) 25b: Absolute position error. (b) 25b: Absolute angular error. (c) 27a:
Absolute position error. (d) 27a: Absolute angular error.

along a different path with a longer distance (967 m). We
present the results aligned with the ground truth in Fig. 8. The
proposed method still performs well in this case. The mean
position error is 0.793 m, and the mean orientation error is
0.017 rad. As the result of the CI-graph method is not available
for this data set, we only compared with the MonoSLAM and
LineSLAM methods. As we can see in the figure, they yield
a very large position error due to the accumulated orientation
errors. We showed the absolute errors of all methods performed
on both data sets in Fig. 9 and listed the statistical results in
Table I. Notice that our method yields almost the same errors
for two data sets despite their different lengths. That indicates
that our method produces bounded error without growing with
the traveling distance.

C. Running Time Efficiency

The proposed method is implemented in both MATLAB and
C++. The MATLAB version is slow; it takes about 0.5 ∼ 1 s
to handle about 40 features including both points and structure
lines. The C++ version is much faster; we also record the time
for processing each image and the corresponding number of
features in the state for the Biccoca_2009-02-27a data set. As
shown in Fig. 10, the maximum number of points is limited to
40, and the number of structure lines is limited to 8 for each
direction (24 in total). The running time increases when more
features are present. The average running time for each image
is about 25.8 ms, and the maximum time is 62.9 ms. This is fast
enough for real-time applications.

D. Real World Using Handheld Camera

We use a handheld camera (90◦ FOV) to obtain image
sequences with a resolution of 640 × 320 pixels. Three scenes

Fig. 10. Running time of StructSLAM for processing one image. (Top row)
Number of points and the number of structure lines in the state. (Bottom row)
Running time in milliseconds.

Fig. 11. Textureless walls pose a great challenge for visual SLAM using
points. (Left column) Feature points detected in MonoSLAM [14]. Thick
red circles—low innovation inliers; Thin red circles—high innovation inliers;
Magenta—outliers. (Right column) Features detected by our method. Red,
green, and blue lines represented the structure lines in three dominant direc-
tions. Thick ones stand for associated segments. Yellow crosses are the feature
points used in our method.

were tested. The first scene is a sequence of indoor corridors
with closed loop. In this test, we demonstrate the robustness
of our method in textureless scenes, where the conventional
visual SLAM method fails. The second test is conducted in a
large hall surrounded by corridors at nighttime, experiencing
great illumination changes, performing in a relatively random
route. The third test is performed in an outdoor courtyard with
disturbing line features that are not aligned with the dominant
directions. See the video result published online.1

1) Closed-Loop Indoor Corridor: In this test, the image
sequence is collected following a rectangular closed-loop path
(12 × 33 m) along the corridor. The sequence is challenging
for visual SLAM because it contains mainly textureless walls
(see Fig. 11). We compared our method with the standard
point-based SLAM codes (MonoSLAM) from Javier Civera’s
implementation [15]. The 3-D camera trajectories produced by
different methods are shown in Fig. 12(a), where we align the

1The video clip is at http://youtu.be/7HNdJEb21DQ.
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Fig. 12. (a) Comparison between the camera trajectories of our method (cyan,
marked by a circle) and that of MonoSLAM (black, marked by a square) in 3-D
space. (b) Result of MonoSLAM in 2-D. Notice that a large drift error occurs
after the third turn.

camera trajectories in the coordinate system for a clearer com-
parison. The proposed method using both points and structure
lines yields better results than MonoSLAM does. Notice that
MonoSLAM produces a remarkable drift error, as shown in
Fig. 12(b). This is caused by the lack of feature points in the
scene, particularly around the corners as shown in Fig. 11. Our
method, in contrast, works smoothly at the textureless corners
and produces much less drift error. The result is shown in
Fig. 13. The proposed method generates a drift error of 1% of
the whole travel distance when returning to the starting point.
This is promising for this challenging case, and this level of drift
error can be easily eliminated by a loop-closing algorithm. It is
also worth noticing that the 3-D map represented by structure
lines is better at describing the structures of the scene than that
represented by points. This could be useful for indoor-modeling
or scene-understanding applications.

2) Hall at Night: In this test, the camera moves in a figure-
eight path and returns to the starting point in an indoor en-
vironment with a large hall in the center. The images are
captured at night when the illumination significantly changes.
Fig. 14 shows that our method handles these situations suc-
cessfully. The 3-D map and the camera trajectory are shown
in Fig. 15. See the demonstration video online.

3) Corridor and Courtyard: Having evaluated our proposed
method with indoor environments, it would be very interesting
to validate it in an outdoor scenario. We capture the scene
starting from a corridor and then move into a courtyard and
walk around. The final result is shown in Fig. 16. It is worth
noting that the outdoor scene contains a rich set of features,
which include lines that are not aligned with the dominant
directions as shown in Fig. 17. Our method can discard them
by robust data association.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a visual 6-DoF SLAM
method using structure building lines as novel features com-
plemented with the point features. Our method is validated
in both synthetic scenes and real-world scenes. The results
show that for indoor environment that lacks point features, the
conventional point-based SLAM could produce a large drift
error or even fail to work, whereas our method works well with
structure lines and obtains much less drift error due to the global
constraint on camera orientations. The results also show that

Fig. 13. Result of our method. The red lines represent the vertical lines; the
green and blue lines represent the horizonal lines in Y and X directions, re-
spectively. The camera trajectory is marked as cyan. Notice that there is an ob-
vious close-loop error. This is largely due to the little number of features when
turning at the corners. However, this can be remedied by loop closing easily.

when there are line segments that are not aligned with three
dominant directions in the scene, our method still works well
by rejecting them using the robust data association approach,
indicating the robustness of our method.

The line–point hybrid strategy also makes our method flexi-
ble to different kinds of scenes. For indoor scenes that contain
mainly textureless walls, line segments can be extracted and
used for localization and mapping. In contrast, for outdoor
scenes that contain less man-made structures, point features
become dominant in our method.

The assumption that there are three perpendicular directions
in the scene holds for most man-made buildings, but sometimes,
there are also exceptions where more than three dominant
directions exist or the dominant directions are not perpendicular
to each other. Our method simply treats the line features that are
not aligned with three perpendicular directions as outliers. This
may cause problem when the number of such outliers is not
negligible. This is the first issue that we leave to be addressed
in the future. Another issue is that we simply use the image
patch around the midpoint of the line segment for data asso-
ciation. Since line features are less distinguishable than point
features in the image (there are usually many lines with similar
appearances in the image), using this simple descriptor usu-
ally cause false matchings. In our implementation, we set the
ZNCC threshold for matching as high as 0.8 to decrease false
matchings. However, the high threshold value also reduces the
number of correct associations as the viewpoint changes, which
causes duplicated lines initialized from line segments that
should be associated to one structure line. Hence, we will inves-
tigate a better descriptor for matching line features in the future.

APPENDIX A
INITIALIZE A STRUCTURE LINE

Suppose m̃ is the 3 × 1 homogenous coordinates of the
midpoint of the line segment that is used for initialization. Its
3-D coordinates in the word frame are computed as

m = RwcK−1m̃+ pw. (17)

The structure line in the world frame can be described by
the Plucker matrix L = mηT − ηmT , where η ∈ R

3×1 is the
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Fig. 14. Result of a complex indoor scene at night. Notice that the illumination significantly changes between dark and bright. (Top row) Features detected in
the image. (Bottom row) Structure lines and the camera trajectory in 3-D space.

Fig. 15. Result of an indoor scene with a large hall at night.

Fig. 16. Result of an outdoor scene with disturbing line features.

related dominant direction. The intersection of the structure
line and the parameter plane π, represented by A as shown in
Fig. 2, is computed as

l̃w = Lπ. (18)

The 2-D coordinates of the intersection point in the parameter
plane are given by

lp = Plw. (19)

Here, lw is the 3-D coordinates computed from the homoge-
neous representation l̃w, and P ∈ R

2×3 is a projection matrix
that transforms the 3-D vector into a 2-D parameter vector.

Fig. 17. Disturbing line features are rejected. Thin blue lines are the segments
detected by the LSD line detector [24]. Structure lines and their associated
segments are represented by thin and thick color lines. The magenta segments
are wrongly matched to structure line with the similar appearance, which are
successfully rejected by the robust strategy. Some segments that are not aligned
with any existing dominant directions are discarded (e.g., the shadow in the left
image and the arc-shaped steps in the right image).

In the same manner, the line through the camera center
along the dominant direction intersects the parameter plane
with the point (O′ in Fig. 2)

õw = (cηT − ηcT )π. (20)

Hence, we get the projection of the camera center in 2-D
coordinates

op = Pow. (21)

After that, we can derive the parameters of the initialized
structure line from (19) and (21) as

l = [ca, cb, θ, h]
T

=

[
op(1),op(2), atan

(
lp(2)− op(2)
lp(1)− op(1)

)
, h0

]T
(22)

where h0 is a preset inverse-depth value.
To augment the covariance matrix after initializing a new

structure line, we need to compute the covariance of the newly
initialized structure line, i.e., l(i), as

Σ
(i)
ll =

∂l(i)

∂xc
Σcc

∂l(i)

∂xc

T

+
∂l(i)

∂s
n4×4

∂l(i)

∂s

T

+
∂l(i)

∂h
σ2
h

∂l(i)

∂h

T

. (23)

It involves computing the Jacobian matrices of the structure line
with respect to the camera variable xc, the line segment s, and
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the inverse-depth value h. Here, ∂l(i)/∂h = [0, 0, 0, 1]T . The
other Jacobian matrices are computed in a numerical approach
using the central difference in our implementation. The noise
covariance n4×4 is a diagonal matrix whose diagonal elements
are σ2, which is the same as defined in (13).

The cross-variance between the newly initialized structure
line and other variables in the state is computed as

Σ
(i)
lx =

∂l(i)

∂xc
Σ1:13,.... (24)

Here, Σ1:13,... represents the first 13 rows of the covariance
matrix Σ. The state is augmented after a new structure line l(i)

is initialized, i.e.,

x ←
[
xT , l(i)T

]T
. (25)

The covariance of the whole state is then augmented as

Σ ←
[
Σ Σ

(i)T

lx

Σ
(i)
lx Σ

(i)
ll

]
. (26)

APPENDIX B
PROJECT A STRUCTURE LINE ONTO THE IMAGE

We get the image vanishing point associated with the struc-
ture line using (6), which is denoted by v. The point in the
parameter plane, which is denoted as l = [ca, cb, θ, h]

T , is first
transformed into the world frame by

lwh = PT
(
[ca, cb]

Th+ [cos(θ), sin(θ)]T
)
. (27)

Here, P ∈ R
2×3 is a projection matrix that transforms the

3-D vector into a 2-D parameter vector, and we multiply both
sides of the equation by the inverse depth h so that it can be
safely used for infinity cases, i.e., h = 0.

After obtaining the point in world frame, we transform it into
the camera frame, i.e.,

lc = Rcwlwh−Rcwpwh. (28)

The point in the image is then obtained as

li = Klc. (29)

Hence, the projected structure line is computed as the cross
product of the vanishing point and the projected point

l̄ = v × li. (30)
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