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Network Architecture

DeMoN consists of three subnets:

• bootstrap net:
computes the initial depth and motion estimates

• iterative net:
successively refines the previous estimates

• refinement net:
increases the resolution of the final depth map

The bootstrap and iterative net use an encoder­decoder pair:

• 1st encoder­decoder:
estimates optical flow and its confidence

• 2nd encoder­decoder:
predicts depth and surface normals

• a fully connected network appended to the 2nd encoder:
computes camera motion and a depth scale factor, which relates the scale
of the depth values to the camera motion A naive architecture does not

use the 2nd image

Two images are better than one?!
A single encoder­decoder network does not make use of the
second image and prefers to directly infer depth from a single
image.

DeMoN explicitly solves the more
difficult correspondence problem by
computing optical flow in the first
encoder­decoder.
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The network training is based on the caffe[17] framework. I t is trained from
scratch on all the datasets jointly with Adam[18] using a momentum of 0.9
and a weight decay of 0.0004. We train sequential ly the three subnets for
3200k iterations in total. A multistep learning rate policy is applied during
training.

Flow Confidence

flow conf x conf y

We train the flow confidence in a supervised manner. The ground truth
confidence for the x component is given by the flow ground truth
and the flow prediction :

Flow confidence helps the motion estimation since egomotion only re­
quires sparse but high­quality correspondences.

I terative Refinement

The iterative net can improve and correct estimates from the bootstrap net or from previous iterations.

Wrong scale

Wrong depth

first image iter 0GT depth iter 1 iter 2 iter 3

first image iter 0GT depth iter 1 iter 2 iter 3

Iterative refinement on SUN3D
While we use 4 iterations during training, we find that 3 iterations on
average gives the best results with respect to depth and motion.

Performance slightly decays with many more iterations (>10) but remains
stable.

Datasets

Networks can easily overfit to training data, i .e. training on one dataset is
not enough for a method trying to be as general as possible. We train on
synthetic and real datasets with complementary properties to improve
generalization.

SUN3D [19] RGBD [14] Scenes11 MVS Blendswap

SUN3D & RGBD

• Depth from structured light sensor

• Camera pose from SfM (SUN3D) or external tracking (RGBD)

Scenes11
• Randomly generated scenes and objects from ShapeNet[2]

MVS

• Collection of Multi VIew Stereo datasets

• Depth and camera poses from SfM pipelines[4,10,11,16]

Blendswap

• About 150 distinct scenes from blendswap. com

• Annotated to enable automatic generation of image pairs

generated imagesscene with annotations

Scale Invariant Gradient

Operator Definition
We define a finite differences operator invariant to scale changes:

depth scale invariant gradient images

ground truth

prediction

+ L1 loss on scale
invariant gradient images

L1 loss on depth

Loss Design is Crucial!
In addition to L1 loss on the depth we compute a loss on the scale
invariant gradient images (sig).

The loss on the sig images

• emphasizes importance of depth discontinuities

• stimulates spatial comparisons
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Motion

homogeneous region
DeMoN: tran 4.804, rot 1.237
Base-FF: tran 56.948, rot 2.087

small camera motion
DeMoN: tran 24.096, rot 0.878
Base-FF: tran 71.871, rot 2.564

homogeneous region
DeMoN: tran 11.725, rot 1.628
Base-FF: tran 110.516, rot 15.197

Failure cases for Base­FF

Our method can estimate the camera motion in scenarios difficult for
traditional approaches like low texture or small motions.

Concatenated pairwise motions
The local pairwise camera poses are consistent with the ground truth.
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Image1 GT DeMoNEigen[3] Liu[7]

Our method produces fewer depth artifacts, which can be seen if we visu­
alize the depth as point clouds.

Image2 Base­O

Generalization to new data
DeMoN exploits the geometric relations between a pair of images and therefore generalizes better to
unknown scenes for example close­ups of people and objects, images rotated by 90 degrees .

Image GT Eigen[3] Liu[7] DeMoN

We compare against several traditional methods as well as CNN single
image methods.

• DeMoN outperforms all baseline methods on most datasets.

• Besides visual quality, we quantitatively perform as good or better than
the single image methods.

classic methods single image methods

The depth maps produced by DeMoN are more detailed and more regular than the ones produced by other methods.
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Contribution

Two view geometry problem
Retrieving the camera motion and scene structure from two images is a
fundamental problem in Structure from Motion (SfM).

DeMoN is a ConvNet architecture solving this problem.

image pair

depth

camera motion

Contributions

•

• A network architecture exploiting motion parallax for depth prediction

• An iterative network part for refinement

• A scale invariant gradient loss for improved depth predictions

• Artificial datasets complementing shortcomings of real data

Depth & Motion Parameterization

Inverse depth
Depth uncertainty grows with increasing distance. Thus, we directly
estimate the inverse depth (reciprocal of the depth values) to account for
this.

• inverse depth

• can represent points at infinity

• close objects are more important

angle
axis

Motion
We present the camera motion from the first to the second frame as:

• 3D translation vector

• 3D angle axis vector

Angle axis representation

• Minimum parameterization

→ Network cannot generate invalid values

Scale ambiguity
Scene scale cannot be obtained from images in the general case. We re­
solve the ambiguity by normalizing translations such that

Estimated depth values need to correspond to the normalized translation.
To facil itate adjusting the depth values we predict a scale factor along with
the motion estimate and obtain .

Project Page
• Paper

• Videos

• Code (Tensorflow)

https: //goo.gl/cXf4ct


