

Contribution

o view geometry problem

the camera motion and scene structure from two images is a amental problem in Structure from Motion (SfM).

MoN is a ConvNet architecture solving this problem

- A computer algorithm for reconstructing a scene from two projections
- A network architecture exploiting motion parallax for depth prediction
- An iterative network part for refinement
- A scale invariant gradient loss for improved depth predictions
- Artificial datasets complementing shortcomings of real data

Depth & Motion Parameterization

Inverse depth

Depth uncertainty grows with increasing distance. Thus, we directly estimate the inverse depth (reciprocal of the depth values) to account for

• inverse depth $\xi = -$

- can represent points at infinity
- close objects are more important

We present the camera motion from the first to the second frame as:

- 3D translation vector ${f t}$
- 3D angle axis vector $\mathbf{r}= heta\mathbf{v}$

Angle axis representation

- Minimum parameterization
- Network cannot generate invalid values

Scale ambiguit

Scene scale cannot be obtained from images in the **general case**. We re solve the ambiguity by normalizing translations such that

$\|\mathbf{t}\| = 1$

values need to correspond to the normalized translation. To facilitate adjusting the depth values we predict a scale factor along with the motion estimate and obtain $s \xi$.

Project Page

- Paper
- Videos
- Code (Tensorflow)

Network Architecture

The bootstrap and iterative net use an encoder-decoder pair:

- 1st encoder-decoder:
- estimates optical flow and its confidence
- 2nd encoder-decoder:
- predicts depth and surface normals
- a fully connected network appended to the 2nd encoder: computes camera motion and a depth scale factor, which relates the sca of the depth values to the camera motion

Iterative Refinement

The iterative net can improve and correct estimates from the bootstrap net or from previous iterations. Wrong scale

GT depth

iter 0

first image

first image

Iterative refinement on SUN3D

While we use 4 iterations during training, we find that 3 iterations average gives the best results with respect to depth and motion

Performance slightly decays with many more iterations (>10) but remains

angle axis **J**

DeMoN: Depth and Motion Network for Learning Monocular Stereo

Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy Ilg, Alexey Dosovitskiy, Thomas Brox {ummenhof, zhouh, uhrigj, mayern, ilge, dosovits, brox}@cs.uni-freiburg.de

Two images are better than one?!

A single encoder-decoder network does not make use of the second image and prefers to directly infer depth from a single image.

JeMoN explicitly solves the more difficult correspondence problem by computing optical flow in the first encoder-decoder.

Method	L1-inv	sc-inv	L1-rel						
Single image	0.080	0.159	0.696						
Naïve image pair	0.079	0.165	0.722						
DeMoN	0.012	0.131	0.097						
A naive architecture does not use the 2 nd image									

iter 1

iter 3

			Motion		Flow				
	L1-inv	sc-inv	L1-rel	$\delta {<} 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	rot	tran	EPE
0	0.029	0.145	0.244	0.587	0.844	0.940	2.18	20.27	0.030
1	0.024	0.130	0.207	0.679	0.891	0.961	1.94	17.25	0.020
2	0.022	0.131	0.187	0.688	0.900	0.982	1.87	18.31	0.019
3	0.021	0.132	0.179	0.698	0.912	0.981	1.80	18.81	0.019
4	0.021	0.133	0.184	0.690	0.908	0.975	1.79	18.94	0.019
5	0.021	0.133	0.185	0.692	0.910	0.970	1.79	19.65	0.019

Scale Invariant Gradient

Operator Definition

We define a finite differences operator invariant to scale changes:

$\mathbf{g}_{h}[f](i,j) = \left(\frac{f(i+h,j) - f(i,j)}{|f(i+h,j)| + |f(i,j)|}, \frac{f(i,j+h) - f(i,j)}{|f(i,j+h)| + |f(i,j)|}\right)^{\top}$

ground truth

depth

scale invariant gradient images

Loss Design is Crucial!

In addition to L1 loss on the depth we compute a loss on the scale invariant gradient images (sig).

The loss on the sig images

- emphasizes importance of depth discontinuities
- stimulates spatial comparisons

+ L1 loss on scale invariant gradient images $\mathcal{L}_{depth} = \sum_{i,j} |\xi(i,j) - \hat{\xi}(i,j)| \quad \mathcal{L}_{sig\,\xi} = \sum_{i,j} \sum_{j=1}^{n} \left\| \mathbf{g}_h[\xi](i,j) - \mathbf{g}_h[\hat{\xi}](i,j) \right\|_2$ $h \in \{1, 2, 4, 8, 16\}$ i,j

Point Cloud Comparison

Our method produces fewer depth artifacts, which can be seen if we visualize the depth as point clouds.

Training

based on the caffe[17] framework. It is trained fro ch on all the datasets jointly with Adam[18] using a momentum of 0 nd a weight decay of 0.0004. We train sequentially the three subnets for 3200k iterations in total. A multistep learning rate policy is applied during

Flow Confidence

We train the flow confidence in a supervised manner. The ground truth confidence for the x component is given by the flow ground truth $\mathbf{w}_x(i, j)$ and the flow prediction $\hat{\mathbf{w}}_x(i, j)$:

$$\hat{c}_x(i,j) = e^{-|\mathbf{w}_x(i,j) - \hat{\mathbf{w}}_x(i,j)|}$$

Flow confidence helps the motion estimation since egomotion only requires sparse but high-quality correspondences.

Depth Comparison

The depth maps produced by DeMoN are more detailed and more regular than the ones produced by other methods.

Base-O

enough for a method trying to be as general as possible. We train o

Datasets

generalization.									
SUN3D [19]		RGBD [14] Scen	Scenes11		s s	Blendswap		
Dataset	Perfect GT	Photorealistic	Outdoor scenes	Rot. avg	Rot. stddev	Tri. angle avg	Tri. angle stddev		
SUN3D	no	yes	no	10.6	7.5	5.2	4.6		
RGBD	no	yes	no	10.4	8.3	6.8	4.5		
Scenes11	yes	no	(yes)	3.3	2.1	5.3	4.4		
MVS	no	yes	yes	34.3	24.7	28.9	17.5		
		-		() .					

with complementary properties to improve

SUN3D & RGBD

- Depth from structured light sensor
- Camera pose from SfM (SUN3D) or external tracking (RGBD) Scenes11

- Randomly generated scenes and objects from ShapeNet[2]
- Collection of Multi VIew Stereo datasets
- Depth and camera poses from SfM pipelines[4,10,11,16]

Blendswap

- About 150 distinct scenes from blendswap.com
- Annotated to enable automatic generation of image pairs

DeMoN

scene with annotations

generated images

Generalization to new data

Motion

raditional approaches like low texture or small motions.

Failure cases for Base-FF

homogeneous region DeMoN: tran 11.725, rot 1.628 Base-FF: tran 110.516, rot 15.197

small camera motion DeMoN: tran 24.096, rot 0.878 Base-FF: tran 71.871, rot 2.564

Concatenated pairwise motions

The local pairwise camera poses are consistent with the ground truth.

DeMoN exploits the geometric relations between a pair of images and therefore generalizes better to unknown scenes for example close-ups of people and objects, images rotated by 90 degrees .

Quantitative Comparison

We compare against several traditional methods as well as CNN single image methods

- ns all baseline methods on most datasets
- visual quality, we quantitatively perform as good or better that the single image methods

				Correspondences				E-Matrix Method			epth Method	
	Base-Oracle			-				-			SGM NCC[6]	
	Base-SIFT			SIFT[8]			8-1	3-point algorithm[5]			SGM NCC[6]	
	Base-FF				Flowfields[1]			3-point algorithm[5]			SGM NCC[6]	
	Base-Matlab				KLT[12,15]			5-point algorithm[9]			-	
	Base-Mat-F				DeMoN 5-point algorithm[9]						-	
					Depth			Mo	tion	ן		Depth
	N	lethod	L1	-inv	sc-inv	L1-r	el	rot	trans		Method	sc-inv
	Base-Oracle		0.0	019	0.197 0.105)5	0	0			
	Base-SIFT		0.0	056	0.309	0.36	51	21.180	60.516			
/S	Base-FF		0.0	0.055 0.308		0.322		4.834	17.252		Liu indoor	0.260
\mathbf{H}	Base-Matlab					-		10.843	32.736		Liu outdoor	0.341
· ·	Bas	e-Mat-F		-	-	-		5.442	18.549		Eigen VGG	0.225
	DeMoN		0.0	047	7 0.202 0.305)5	5.156	14.447		DeMoN	0.203
	Bas	e-Oracle	0.0	023	0.618	0.34	19	0	0			
, _	Base-SIFT		0.0	051	0.900	1.027		6.179	56.650			
Scenes1	Base-FF (0.0	038	0.793	0.776		1.309	19.425		Liu indoor	0.816
	Base	ase-Matlab		-	-	-		0.917	14.639		Liu outdoor	0.814
	Base-Mat-F			-	-	-		2.324	39.055		Eigen VGG	0.763
	D	eMoN	N 0.019 0		0.315	0.24	8	0.809	8.918		DeMoN	0.303
	Bas	e-Oracle	0.0	026	0.398	0.33	86	0	0			
	Bas	Base-SIFT		050	0.577	0.70)3	12.010	56.021			
	Ba	Base-FF		045	0.548	0.61	3	4.709	46.058		Liu indoor	0.338
GE	Base-Matlab			-	-	-		12.831	49.612		Liu outdoor	0.428
R	Base-Mat-F			_	_	_		2.917	22.523		Eigen VGG	0.272
	D	eMoN	0.0	028	0.130	0.21	2	2.641	20.585		DeMoN	0.134
	Bas	e-oracle	0.0	020	0.241	0.22	20	0	0	וך		
	Base-SIFT		0.0	029	0.290	0.28	86	7.702	41.825			
3D	Ba	Base-FF		029	0.284	0.29	97	3.681	33.301		Liu indoor	0.214
un	Base	e-Matlab		-	-	_		5.920	32.298		Liu outdoor	0.401
S	Bas	e-Mat-F		-	-	-		2.230	26.338		Eigen VGG	0.175
	D	eMoN	0.	019	0.114	0.17	/2	1.801	18.811		DeMoN	0.126
	Bas	e-oracle		-	-	_		-	-			
\sim	Bas	se-SIFT		-	-	-		-	-			
Jv'	Ba	ase-FF		-	-	-		-	-		Liu indoor	0.210
K	Base	se-Matlab		-	-	-		-	-		Liu outdoor	0.421
	Base-Mat-F			-	-	-		-	-		Eigen VGG	0.148
	D	eMoN		-	-	_		-	-		DeMoN	0.180
										_		

classic methods

single image methods

References

[1] C. Bailer, B. Taetz, and D. Stricker, "Flow Fields: Dense Correspondence F Computer Vision (ICCV-15), December 13-16, Santiago, Chile, 2015. A. X. Chang et al., "ShapeNet: An Information-Rich 3D Model Repository," Eigen and R. Fergus, "Predicting Depth, Surface Normals and Semantic Labels With a Common Multi-Scale Convolutional Architecture," in The IEEE International Conference on Computer Visio

[5] R. I. Hartley, "In defense of the eight-point algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 6, pp. 580–593, Jun. 1997.

16] H. Hirschmüller, "Accurate and efficient stereo processing by semi-global matching and mutual information," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR'05), 2005, vol. 2, pp. 807–814 vol. 2. [7] F. Liu, C. Shen, G. Lin, and I. Reid, "Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields," arXiv:1502.07411 [cs], Feb. 2019

[8] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004. 9] D. Nister, "An efficient solution to the five-point relative pose problem," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 756–770, Jun. 2004.

[10] J. L. Schönberger and J. M. Frahm, "Structure-from-Motion Revisited," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4104–4113. [11] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, "Pixelwise View Selection for Unstructured Multi-View Stereo," in Computer Vision – ECCV 2016, 2016, pp. 501–518.

12] J. Shi and C. Tomasi, "Good features to track," in 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1994, pp. 593–600. [13] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, "Indoor Segmentation and Support Inference from RGBD Images," in Computer Vision – ECCV 2012, 2012, pp. 746–760. [14] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, "A benchmark for the evaluation of RGB-D SLAM systems," in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 573–580.

[15] C. Tomasi and T. Kanade, "Detection and Tracking of Point Features," International Journal of Computer Vision, 1991.

16] C. Wu, "Towards Linear-Time Incremental Structure from Motion," in 2013 International Conference on 3D Vision - 3DV 2013, 2013, pp. 127–134. 17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.Guadarrama, and T. Darrell. Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093, 2014.

18] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs], Dec. 2014. arXiv: 1412.6980. 19] J. Xiao, A. Owens, and A. Torralba. SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels. In IEEE International Conference on Computer Vision (ICCV), pages 1625–1632,

Acknowledgements

the DFG grant BR-3815/5-3 and the EU project Trim

