
Fachhochschule Augsburg
Fachbereich Informatik
Studiengang Multimedia (Informatik)

Diplomarbeit

Image Retrieval in the Compressed
Domain Using JPEG2000

Verfasser: Alexandra S. Teynor
Erstpr̈ufer: Prof. Dr. Wolfgang Kowarschick, FH Augsburg
Zweitprüfer: Dr. Wolfgang M̈uller, Univ. Bayreuth
Semester: SS2003
Abgabedatum: 7. Mai 2003

Augsburg University of Applied Sciences
Department of Computer Science
Course of Study: Multimedia (Computer Science)

Diploma Thesis

Image Retrieval in the Compressed
Domain Using JPEG2000

Author: Alexandra S. Teynor
1st Supervisor: Prof. Dr. Wolfgang Kowarschick, FH Augsburg
2nd Supervisor: Dr. Wolfgang M̈uller, Univ. Bayreuth
Term: SS2003
Passed in: May 7, 2003

“Eine Diplomarbeit zu schreiben
ist wie eine T̈ur zuöffnen - erst dann

sieht man wie viele T̈uren hinter der T̈ur sind.”
Christina Voigt

Image Retrieval in the Compressed Domain Using JPEG2000

by
Alexandra S. Teynor

Submitted to the Department of Computer Science,
Augsburg University of Applied Sciences

Abstract

This thesis shows the development process of JPEG2000 content based image
retrieval (CBIR) methods. First, foundations of CBIR as well as JPEG2000 are
explained and existing solutions are examined. On this basis, own approaches are
developed.

Wavelet coefficients that are extracted from JPEG2000 are used to create different
feature sets. To facilitate the development process, the Java program ”JP2Feature-
Finder” is developed. The distribution of wavelet subband coefficients is modelled
as histogram, Generalized Gaussian Density (GGD) and Gaussian Mixture Model
(GMM). In order to decide which images are similar to each other, these distri-
butions are compared using Histogram Intersection (HI) and the Kullback-Leibler
Divergence (KLD). Color and texture are treated separately. When merging the
individual results, they can be weighted independently.

A plug-in for the GNU Image Finding Tool (GIFT) is implemented. Using the
GIFT framework, the retrieval methods developed are tested with the TSR2500
image collection consisting of images from the Swiss TV channel Télévision Su-
isse Romande and ground truth data from the Viper group of the University of
Geneva.

1

Contents

Acknowledgments 5

1 Introduction 7
1.1 Goal of this thesis. 8
1.2 Outline of this thesis . 8

2 Image retrieval 10
2.1 General setting. 10

2.1.1 Definition. 10
2.1.2 Levels of image retrieval. 10
2.1.3 Semantic gap. 11

2.2 CBIR systems. 12
2.2.1 Common procedures. 12
2.2.2 Query submission. 14

2.3 Retrieval techniques. 15
2.3.1 Image retrieval in pixel domain. 15
2.3.2 Image retrieval in the compressed domain. 16
2.3.3 Feature representation. 18
2.3.4 Similarity measures. 19

3 JPEG2000 23
3.1 Properties. 24
3.2 JPEG2000 codec. 25

3.2.1 Preprocessing. 25
3.2.2 Color transform. 26
3.2.3 Wavelet transform. 27
3.2.4 Quantization and ranging. 34
3.2.5 Tier-1 coding. 35
3.2.6 Tier-2 coding. 35
3.2.7 File format . 36

3.3 Codec software. 37

2

CONTENTS

3.3.1 JJ2000 . 37
3.3.2 Kakadu . 38
3.3.3 JasPer. 38

3.4 Wavelet coefficient extraction. 39
3.4.1 JasPer software package. 39
3.4.2 libjasper library. 40
3.4.3 wcextract. 40

4 Creating a JPEG2000 feature set 47
4.1 Current approaches. 47
4.2 JP2FeatureFinder. 48

4.2.1 Core system. 48
4.2.2 Graphical user interface. 50
4.2.3 Query process and evaluation. 52

4.3 Feature set experiments. 53
4.3.1 General setting. 53
4.3.2 Texture approach. 54
4.3.3 Color approach. 55
4.3.4 Compound approach. 58

4.4 Complexity problem . 61
4.4.1 Generalized Gaussian Density. 61
4.4.2 KLD for GGD . 63
4.4.3 Parameter distribution. 64
4.4.4 Fitting inaccuracies. 65
4.4.5 Gaussian Mixture Models. 70
4.4.6 KLD for GMM . 74

4.5 Image quality . 80
4.6 Summary . 80

5 Integration in GIFT 83
5.1 GIFT .83
5.2 Configuration and startup. 84
5.3 JP2 plug-in . 87

5.3.1 libGIFTQuJP2 . 88
5.3.2 libGIFTAcJP2 . 91

6 Performance evaluation 92
6.1 Image databases. 92
6.2 Relevance information. 93
6.3 Performance measures. 94
6.4 Evaluation. 95

3

CONTENTS

6.4.1 Evaluation of texture retrieval. 97
6.4.2 Evaluation of color retrieval.100
6.4.3 Evaluation of the compound approach. 101

7 Conclusion 104
7.1 Summary .104
7.2 Remaining issues and future work.105

Declaration 107

Abbreviations 108

Bibliography 110

Index 114

A Mathematical Glossary 117

B JP2FeatureFinder 123

4

Acknowledgments

In the first place I would like to thank my thesis supervisor Dr. Wolfgang Müller
for introducing me to the really challenging subject of CBIR. Although I have not
met him in person until the day of my thesis defense, I never felt left alone. He
answered all my questions via e-mail in sometimes only minutes. The phone calls
we had were packed with information and good discussions. This work would not
have been possible without his support.

I also want to thank my thesis supervisor Professor Dr. Wolfgang Kowarschick
for supporting me with valuable advice. He helped me focussing on the topic and
not getting lost in minor matters.

I would like to thank the University of Geneva and theViper group for being
allowed to use the TSR2500 image collection as well as the relevance information
for benchmarking. Without this material, chapter6 would not have been possible
in this form.

English not being my mother tongue, Richard Teynor improved this thesis by
proofreading parts of it. He familiarized me with the fine details of the English
language and especially where the comma belongs.

Many thanks go to Ulrich Heisserer who helped me getting started with LATEX
and who also pointed me to the GNU scientific library. Oliver Möller gave me
helpful hints on various matters, beginning with “elements of style” and not end-
ing with tips on how to test numerical functions. Thanks.

Fortunately life is not all about work, so many thanks go to my friends and my
family. They helped me not getting lost in my work room, and offered me wel-
comed reasons to make a break.

5

I would like to thank my friend Thomas Lippert for his silent but demanding way
that made me give my best. He cooked delicious meals for me while I was working
on this thesis, and supported me with the infrastructure of his company Neuland
Multimedia GmbH.

Although I do not hope having forgotten someone worth being mentioned, I apol-
ogize if I did. Special thanks are devoted to those people.

Alexandra Teynor
Friedberg, May 2003

6

Chapter 1

Introduction

“Wer suchet, der findet.”

This German proverb states that if someone is looking for something, he will find
it. Unfortunately this is not always true. Take the internet, where the huge amount
of information is simply too large to be searched manually. We have to rely on
search engines like, for example, Google, Altavista or Yahoo, who help us with
this task, and to hope that they will deliver the desired information. Information
retrieval based on text is already quite sophisticated. But things get worse if we
are not looking for a document containing a special word or phrase - if we are
looking for a special image instead. Who can help us there? The search engines
mentioned above usually only retrieve images with a similar name - but it is not
clear what you will get when you query for an image called “game”, for example.
Consider digital cameras: they produce a huge amount of pictures that can only be
identified by a meaningless number. Indexing by name won’t help us there either.
There is the strong need for some means to retrieve images from a collection by
their content, without requiring the user to browse the entire archive.

Image retrieval has been a vivid area of research in the last few years. A lot
of different solutions have been developed, and a great variety of academic and
commercial systems exist at present time. But we are still at the beginning of the
development.

Since image retrieval is merely coming out of its infancy, most techniques used
to determine image similarity still work on primitive features derived from pixel
information. But images are likely to be stored in compressed form, especially

7

1.1. GOAL OF THIS THESIS

in large databases. To obtain pixel domain features the images have to be de-
compressed first. Of course it would be nice to avoid this overhead. Moreover,
compression aims to reduce the amount of data while still containing all vital in-
formation. From this point of view it should be more efficient to use compressed
data directly. Among the variety of different image formats, the emerging stan-
dard JPEG2000 seems to be well suited for that task. It uses wavelet transform
among other things to reduce the amount of data. This transform contains useful
properties for image retrieval. A lot of effort has been spent on developing image
retrieval methods using wavelet transform, but few scientists have focussed on the
special properties of JPEG2000.

1.1 Goal of this thesis

The main goal of all image retrieval efforts is to help users find what they are
looking for ([44] p.21). This thesis tries to contribute knowledge to that task by
developing an image retrieval method for JPEG2000 images, without decompress-
ing them entirely.

This job consists of several tasks. First, reasonable information has to be obtained
from JPEG2000 files. Then the data can be used to develop feature sets for index-
ing. Of course these features must be justified and tested. Complexity and storage
issues have to be considered. To determine the efficiency of the retrieval method
developed, the performance has to be evaluated.

1.2 Outline of this thesis

This thesis is organized in the following way:

The second chapter gives a brief overview about image retrieval. Definitions of
vital concepts are given and the general setting is explained. This chapter provides
the basis for later chapters.

Chapter3deals with JPEG2000 basics. Necessary information about the JPEG2000
codec and wavelet transform is given. Various JPEG2000 decoders are evaluated.
The process of obtaining wavelet coefficients from JPEG2000 files is explained.

8

1.2. OUTLINE OF THIS THESIS

A file format for storing wavelet coefficients while developing the feature sets is
described.

The fourth chapter builds on the two previous chapters and combines them. The
development of a JPEG2000 retrieval method is shown. In the beginning previ-
ous approaches are stated, then they are adapted to the current problem and own
solutions are explored. For this purpose a Java framework (JP2FeatureFinder)
especially suited for that task is implemented.

Chapter5 describes the incorporation of the resulting system into GIFT, the GNU
Image Finding Tool.

In chapter6, the performance of the retrieval methods developed is evaluated and
compared to the default GIFT algorithm.

Chapter7 concludes this thesis and shows possibilities for extending this work.

In appendixA, mathematical terms and concepts that are not directly defined in
the text are described.

AppendixB shows a class diagram of the JP2FeatureFinder.

9

Chapter 2

Image retrieval

2.1 General setting

2.1.1 Definition

Content based image retrieval (CBIR) is widely described as:

“A technique for retrieving images from a large database on the basis of automat-
ically derived features such as color, texture or shape.” [35, 56]

It is important to focus on the aspect of “automatically derived features” in order
to distinguish CBIR from older techniques for image retrieval using keywords or
classification codes, that are usually attached manually. An example for a classifi-
cation code is the Art and Architecture Thesaurus (AAT) of the Getty Information
Institute [1].

2.1.2 Levels of image retrieval

Image retrieval itself can be classified into three levels of increasing complexity
following [35] p.7 et seq.:

10

2.1. GENERAL SETTING

• Level 1: retrieval by primitive features:Primitive features are features like
color, texture, shape or the spatial location of objects. To generate them no
additional information is needed except the image itself.

• Level 2: retrieval by logical features(also called “derived features”): Those
features focus on the identity of objects. The user either wants to find an
object of a particular type (“show me pictures of an elk”) or an individual
object with a given name (“show me a picture of Big Ben”). Here, some
additional knowledge is necessary, for example, that a particular structure
has been named “Big Ben”.

• Level 3: retrieval of abstract attributes:This type of query considers the
meaning, purpose, and content of an image. Examples are retrieval of im-
ages about named events (“pictures of Woodstock”), types of activity (“pic-
tures of a football game”) or of images with a “meaning”, eg. hate, love or
friendship. Of course this is a most difficult task, even human beings would
often not agree about the particular meaning of an image.

Alternative expressions to describe these three different levels can also be found.
For example, Schouten [49] names them “perceptual features”, “semantic fea-
tures” and “psychological features”. This naming might be slightly more intu-
itive, since it points out that only retrieval at level 1 is based on pure perceptual
properties, where as for level 2 or 3 semantic information is needed. We will use
these terms interchangeably.

2.1.3 Semantic gap

To denote the gain in difficulty from level 1 to level 2 or 3 image retrieval, the
term “semantic gap” is used. It describes the fact that retrieval by primitive fea-
tures lacks any semantic meaning, although the user always assigns a meaning to
images. So a gap between what the user wants to submit to the system and the
features that he really submits exists.

Most people who are searching for a special image formulate their query by asking
for logical or abstract features, for example, designers, journalists or multimedia
students who need to visualize something. Currently, most systems are only ca-
pable of solving a request at level 1, aiding the user only to find visual similar
pictures, but leaving him/her the task of assigning a meaning to them.

11

2.2. CBIR SYSTEMS

This thesis deals with low level features only and does not consider semantic
meaning. Although considerable research is done to achieve semantic retrieval,
we are just at the beginning of developing sophisticated image retrieval systems.
Still much can be improved concerning image retrieval by primitive features. Even
semantic image retrieval will always rely on primitive features to some extent, so
having a good foundation in this area is crucial.

2.2 CBIR systems

Image retrieval is a complex process that comprises many jobs. Content Based
Image Retrieval Systems (CBIRS) are entities that try to solve all those tasks.
They should basically “help a user find the image(s) he wants from a collection of
images” [44] p.21. A more formal goal is given by [54] p.22: “theminimization
of probability of retrieval error.” This view leads to efforts to model all aspects of
CBIR in terms of Bayesian decision theory.

2.2.1 Common procedures

Currently there exist quite a variety of experimental and commercial systems from
several universities, research groups and companies. Some of them demonstrate
their systems on the internet. A good overview about existing systems is given in
[19]. An older but more detailed overview can be found in [57]. Although they all
differ significantly, for example, in the retrieval techniques used, the way the user
submits a query or how user feedback is evaluated, some common procedures can
be described:

• The first task is to automatically extract characteristics or “features” from
each image in a collection (see2.3.1and2.3.2). The individual features are
combined to feature sets. Those feature sets are usually computed once and
then stored in a database.

• If a user wants to query, he has to provide some input. This might happen
in a lot of different ways (see2.2.2). Most commonly the user has to supply
an example image. The system tries to evaluate the input, for example, by
applying the same algorithms for feature extraction to the input image as

12

2.2. CBIR SYSTEMS

Figure 2.1: An abstract CBIRS

to the collection. If the input image is already in the database, the features
might be obtained from storage.

• The features derived from the input are compared to all feature sets in the
database. Special techniques like inverted files [44] can reduce complexity
considerably. Usually, some similarity function is used to compare the in-
dividual features. The goal is to find the images that are most similar, or -
in terms of statistics - the probability of retrieval error should be as small as
possible.

• The n most similar results (according to the system) are presented to the
user. Usually, the user can then refine his search by giving”relevance feed-
back”. This means he tells the system somehow how good the retrieval
process was, for example, by marking relevant or irrelevant images. The
modified query is sent again to the CBIRS. The user eventually has to re-
peat this process some times, until the desired image is found.

Real world systems differ from this high level view on CBIRS in some or many
respects. For example, not only one input image could be possible, but several
images [9]. Learning from user interaction would be desirable to further improve
retrieval performance, and some systems already do so [54].

13

2.2. CBIR SYSTEMS

2.2.2 Query submission

Before answers can be given, the right questions have to be asked. This is espe-
cially true for CBIRS. Since high level semantic queries of the form “Show me
the picture with the red car next to the house” are usually not possible yet, one has
to find other means of formulating a query. Possible solutions among others are:

1. The most common solution is to provide an image and ask the system to find
similar ones. This technique is called”Query by example”. Features are ex-
tracted from the query image (if not already stored) and then compared with
characteristics of the images in the database using some similarity measure.

There still remains the problem of how to get the first image. A possible
solution is to present a set of randomly drawn images from the collection
to the user, and let him specify similar or dissimilar ones. The query is
improved incrementally by giving relevance feedback. A different way to
get the first images is to let the user specify preference colors using sliders
or palettes (QBIC [35] p.28). The system then returns images with the same
relative amounts of these colors.

2. Another, more ambitious approach is”Query by sketch”. Here the user
is asked to draw a sketch of the particular image he is looking for. This
solution has several disadvantages. First of all, most users are not too skilled
in drawing something. Furthermore the same sketch can mean different
things, as explained in [44] p.24 et seq.. And maybe most important: unless
a sketch is almost photo-realistic, the features computed from it will differ
significantly from the features derived from a natural image. Some way has
to be found to make them comparable. Query by sketch is not feasible for
image retrieval using JPEG2000, since it is hardly possible to describe the
fine texture details that influence wavelet subband coefficients by a sketch.

3. Often it is desirable not to search for the whole image, but for a certain
object or region instead. This approach is called”Query by region” and
requires some kind of segmentation of the image. It is interesting to note
that sophisticated segmentation usually has no advantage over partitioning
the image in a fixed number of blocks, since automatic segmentation tends
to be very crude [54] p.91.

14

2.3. RETRIEVAL TECHNIQUES

2.3 Retrieval techniques

This is a brief overview about different techniques used in level 1 image retrieval.
Feature types, feature representation and similarity measures are explained. Pixel
domain indexing is described first, since knowledge gained from there can be
transferred to compressed domain.

The following techniques can be applied either to aglobal or a local context.
Global context means here that data from the whole image is used; local means
that data is only taken from a certain region. To isolate different regions, some
sort of segmentation has to be applied to the image. This distinction is especially
important when using histograms to represent features, since then all spatial in-
formation is lost (see2.3.3). Using a local context restores the spatial information
at least to a certain extent.

2.3.1 Image retrieval in pixel domain

The first image retrieval systems directly used pixel information of images, for
example, RGB values or gray level information. The most important features are
color and texture since they have a great influence on the overall appearance of an
image.

Color
Since color characteristics are most important to judge image similarity, they are
used in almost every image retrieval system [57, 55].

When working with color, it is important to consider color representation and
human color perception. Many color spaces have been developed to represent
colors, where the RGB color space is the one most widely known. A color in this
color space consists of three values: red, green and blue (RGB). However, this
color space is not perceptually uniform. This means that equal distances in the
3D RGB color space do not yield in equal changes of color perception. For image
retrieval purposes, the RGB color data is usually transformed to another color
scheme that is more adapted to the human visual system, like the HSV (Hue-
Saturation-Value) system. More details on color image retrieval can be found in
[50].

15

2.3. RETRIEVAL TECHNIQUES

Texture
A texture consists of frequent repetition of similar elements called texemes ([48]
p.184). Texture is extremely important if one wants to distinguish images with
similar color, for example, sea and sky or grass and leaves ([35] p.24). To better
analyze texture properties, pixel information is sometimes filtered. Using texture,
the boundary to transform domain CBIR techniques can not be drawn clearly.
They are explained in the next section. Example means for texture analysis are
co-occurrence matrices ([39] p.318), Gabor filters ([44] p.60 seq.), fractals [49],
Quadrature Mirror Filters as used in wavelet transform or techniques comparing
the relative brightness of selected pairs of pixels (second order statistics [35] p.24).
A good overview about different aspects of texture features is given by [39].

Other features
There exist a great variety of other techniques to judge image similarity. For ex-
ample, it is possible to compute theshapeof objects within an image. For this
purpose the images usually have to be segmented first, for example, by threshold-
ing. Then individual shapes can be retrieved. Techniques used are edge distribu-
tion (histograms of the directions of the edges along shape borders, [48] p.240),
fourier descriptors [48] or moments ([48] p.242).

A related but not identical concept aresketchfeatures. A sketch is an abstract
image that contains the outline of objects ([38] p.1).

Features based on thespatial locationof objects have also been developed. “Spa-
tial layout is the absolute or relative position of color, texture, or shape informa-
tion” ([56] p.99). For example, geographical information systems make use of
this type of features.

2.3.2 Image retrieval in the compressed domain

Image retrieval in the pixel domain requires pixel information. For color pho-
tographs, this means we have to process data consisting of at least 3 channels:
red, green and blue. The bit depth of a pixel component is usually 8 bit. For ex-
ample, a color image of size 512x512 with a sample bit depth of 8 bit needs nearly
one megabyte of storage, as opposed to maybe 100-200kB when stored in com-
pressed form. For this reason images are seldom stored in pixel format. To avoid
the need to decompress images to apply pixel domain techniques, compressed
domain indexing (CDI) techniques have been developed.

16

2.3. RETRIEVAL TECHNIQUES

Figure 2.2: Feature transformation from one space to the other (following [54]
p.45)

Ideally, CDI not only saves time, but also improves indexing performance. By
definition, compression aims to avoid redundant information while still having
vital characteristics of the data at hand. In this respect, compression techniques
form the perfect setup for feature extraction. Vasconcelos [54] states that feature
transformation only makes sense (in respect to minimizing retrieval error) if the
different classes contained in the database can be distinguished more easily after
transformation, as illustrated in figure2.2.

JPEG2000 uses wavelet transform, which possesses this property. Information
about frequency and space at multiple resolution levels are revealed (see3.2.3). A
variety of wavelet based retrieval techniques have been developed, for example,
by Do et al. [34].

Following [38] p.3, CDI techniques can be broadly classified into two categories:
transform domain techniques and spatial domain techniques.

Examples for transform domain techniques are methods based on discrete fourier
transform (DFT), discrete cosine transform (DCT) and techniques based on wavelets.
Since JPEG2000 uses wavelet transform, JPEG2000 indexing falls into this cate-
gory.

Spatial domain techniques are mainly based on vector quantization (VQ) and frac-
tals [38] p.8.

17

2.3. RETRIEVAL TECHNIQUES

2.3.3 Feature representation

An important question is how to represent features obtained after analyzing. Since
features are not likely to be exactly the same for two different images in the
database (at least if they are not the same pictures), direct comparison can not
be the goal. Imagine two images where one is a copy of the other, only slightly
translated. The color information at many pixel locations will not match, although
the images are of course visually very similar. Feature sets should be invariant to
translation and rotation as far as possible.

For this reason, usually the distribution or probability of features is considered.
For example, histograms provide an estimate for the probability density of fea-
tures. Citing [54] p.34, a histogram and the corresponding feature probability
density is defined as:

“The histogramof a collection of feature vectorsX is a vector f={ f1, . . . , fR}
associated with a partition of the feature spaceX into R regions{X1, . . . ,XR}
where fr is the number of vectors inX landing on cellXr . Assuming a feature
space of dimensionn and rectangular cells of sizeh1× . . .× hn, the histogram
provides an estimate of the feature probability density of the form

P(X) = ∑
k

fk
F

K (x−ck) (2.1)

whereck is the central point of thekth cell, F the total number of feature vectors
andK (x) is a pdf such that

K (x) > 0, if |x1|< h1
2 , . . . , |xn|< hn

2
K (x) = 0, otherwise,∫

K (x)dx = 1.”

Although histograms have been proven very useful in representing low level image
features, they are far from ideal. They can be seen as non invertible transforms
that discard information. In this special case, spatial information is lost. For
example, figure2.3 shows two visually dissimilar pictures that have exactly the
same histogram.

Another problem of histograms is their high dimensionality. To capture the prob-
ability density accurately, a sufficient number of bins has to be used. If multiple

18

2.3. RETRIEVAL TECHNIQUES

Figure 2.3: Two images with the same histogram

histograms are used to represent image features (for example, to model different
subbands of JPEG2000 data) a quite large amount of information has to be stored
and compared. It is desirable to model feature distribution in a less expensive way.

To solve this problem, several methods have been proposed in literature. Moments
of a probability density function (pdf) can be computed to reduce complexity [37].
Gaussian Mixture Models (GMM) [54] are also a means to model a pdf with less
coefficients. If the data is assumed to be Gaussian, as it is the case with wavelet
subband data, Generalized Gaussian Densities (GGD) [34] can be used.

2.3.4 Similarity measures

In order to find out which images in a database are similar to a query image, the
characteristics have to be compared. For this task similarity functions are used.
According to Vasconcelos [54] p.18, a similarity function is a function that maps
the space of image classes that compose the database into the space of possible
orderings for those classes.

In other literature, these functions are very often called “distance functions”, al-
though few suffice the definition of a distance in a metric sense.

Following [7], a distance d in the spaceY is defined as:

d : Y×Y→ R+
0 (2.2)

19

2.3. RETRIEVAL TECHNIQUES

Often a distance is a metric, then it possesses the following properties:

1. d is defined positive:

d(x,y) = 0⇔ x = y ∀x,y∈Y

d(x,y) > 0⇔ x 6= y ∀x,y∈Y
(2.3)

2. d is symmetric:

d(x,y) = d(y,x) ∀x,y∈Y (2.4)

3. d suffices thetriangle inequality :

d(x1 +x2,y)≤ d(x1,y)+d(x2,y) ∀x1,x2,y∈Y (2.5)

The smaller a metric distance is, the more similar two images are.

Several books and papers try to give an overview about different similarity mea-
sures, for example: [47, 48, 54]. Many of the similarity functions mentioned are
no distances, but belong to the group of “non parametric test statistics” or “in-
formation theoretic divergences” [47]. The distance measures used in this thesis
are:

Minkowski form distance
An example for a distance in the metric sense is the Minkowski form distance,
also known asLp-norm. It has been used widely in literature and image retrieval
systems.

Lp(P2,P1) = (
∫

F
|P2(x)−P1(x)|pdx)

1
p (2.6)

whereP1 andP2 are probability density functions. TheL1 norm is given by:

L1(P2,P1) =
∫

F
|P2(x)−P1(x)|dx (2.7)

For discrete pdfs (here histogramsH andR with k bins) it is:

L1(H ,R) = ∑
k

|hk− rk| (2.8)

20

2.3. RETRIEVAL TECHNIQUES

Figure 2.4: Histogram comparison where HI fails (following [48] p.199)

As proven in [48] p.196, it is the same as histogram intersection (HI) on normal-
ized histograms (∑k hk = ∑k rk = 1):

L∩(H ,R) = 1−∑
k

min(hk, rk) (2.9)

Although HI has disadvantages, it is used widely due to its simplicity. Consider
histograms where all values are slightly shifted, like histograms (1) and (2) in fig-
ure2.4. Using HI, histogram (3) will be judged more similar to (1) than histogram
(2), despite image (2) being visually more similar ([48] p.197).

Kullback-Leibler divergence
From a probabilistic point of view, the Kullback-Leibler divergence (KLD) is
much more accurate, as shown in [54]. Assuming the feature vector x is drawn
from the statistical population with densityPi(x), theKullback-Leibler divergence
or relative entropyis defined as ([54] p.28):

KL[P1(x)||P2(x)] =
∫

P1(x)log
P1(x)
P2(x)

dx (2.10)

This is not a metric distance, since the Kullback-Leibler divergence is not sym-
metrical nor the triangle inequality holds.

21

2.3. RETRIEVAL TECHNIQUES

When using the KLD on multiple data sets, for example, the histograms of differ-
ent subbands, the overall similarity measure can be obtained using the chain rule
as stated in [34]: It states that between two joint pdfsP1(X,Y) andP2(X,Y) the
KLD is:

KL[P1(X,Y)||P2(X,Y)] = KL[P1(X)||P2(X)]+KL[P1(Y|X)||P2(Y|X)] (2.11)

This means if the data sets are assumed to be independent, the resulting KLD is
simply the sum of the individual KLDs [34].

22

Chapter 3

JPEG2000

JPEG2000 is the new image compression standard being developed by the Joint
Photographic Experts Group (JPEG) [16], a committee consisting of members
of the International Organization for Standardization (ISO) and the International
Telecommunication Union Terminal Sector (ITU-T). It is a successor to the initial
JPEG standard and addresses some weaknesses of the old standard. It also makes
new features available.

The development process of the JPEG2000 standard is still under way. Only the
core system, JPEG2000 Part1 (i.e. ISO/IEC 15444-1), has become an interna-
tional standard in January 2001 [36]. It can be obtained from the ISO [17]. It
describes minimal decoder properties and a code stream syntax. A minimal file
format has also been specified. The committee is still working on 10 additional
parts to the standard. Parts 2-6 will be standardized soon and deal with exten-
sions to the core system (part 2), motion JPEG2000 (part 3), compliance testing
(part 4) and reference implementations (part 5). A compound image file format
is described in part 6. Work on the remaining parts (7-11) has just begun, so
few results have been published. The topics of these parts are security aspects,
interactive protocols and APIs, volumetric imaging and wireless applications.

The following sections describe the JPEG2000 standard only to the extent that is
necessary for image retrieval. For more details the reader is referred to [53] or the
official standard [17].

23

3.1. PROPERTIES

3.1 Properties

JPEG2000 is an image compression standard that supports both lossy and lossless
compression on single and multi component images. Sophisticated compression
is achieved not only for continuous tone images, but also for bi-level images (1 bit
per sample). Besides superior compression performance, the goal of JPEG2000
was to provide additional features over JPEG:

1. Random code-stream access and processing:The code stream can be ac-
cessed at varying degrees of granularity. Compressed domain processing is
possible, for example, flipping, scaling or translating the image.

2. Good error resilience:JPEG2000 is robust to bit errors by the inclusion of
resynchronization markers, small independent code blocks and error con-
cealing mechanisms.

3. ROI: Special “Regions of Interest” can be coded with higher precision.

4. Limited memory implementation

5. Progressive transmission:When an image is transmitted via a slow com-
munication link, it can take quite a while until all data has arrived. So it is
desirable to be able to display partial data obtained. The JPEG2000 format
allows the code stream to be packed using several “progressions”. The data
can be ordered following 4 different models:

• progression by “pixel accuracy”: here the overall quality of the image
is improved over time

• progression by “resolution”: first a thumbnail version of the image is
displayed, increasing its size when more data arrives

• progression by “spatial location”: image data is obtained in raster scan
order, i.e. information from the top of the image is transmitted before
the bottom

• progression by “image component”: first the data of a component is
transmitted entirely before the data of the next component arrives.

24

3.2. JPEG2000 CODEC

Figure 3.1: Basic structure of the JPEG2000 coding process.

3.2 JPEG2000 codec

This section gives an overview about the JPEG2000 compression/decompression
process. Section3.1 shows the main steps of JPEG2000 coding, with the de-
compressor basically being a mirror of the compressor structure. The baseline
standard provides specific rules for the decompressor, whereas some parts for the
compressor are only informative. Despite this fact, the compression process is
described here, since after obtaining data from the JPEG2000 file it is still in the
form of the particular compression stage.

If an image is too large to be processed at a time, tiling can be used. To achieve
tiling, a tiling grid is laid over the image. Single tiles are compressed individually,
the results are then combined in the code stream.

The codec has two main paths, one for irreversible compression and one for re-
versible compression, as can be seen in figure3.1.

3.2.1 Preprocessing

The preprocessing stage mainly ensures that the data is in a specific format. Imag-
ine an image withn bits per sample. The sample values get centered around zero if
the data is not already in this format. To achieve this, an offset of−2n−1 is added.
The data then has a signed representation in the range:−2n−1≤ x[n] < 2n−1. The
reason for this representation is that it facilitates efficient compressor implemen-
tation. Different image components are processed individually, since they might
have different bit depths. If an offset was necessary, it is marked in the code stream

25

3.2. JPEG2000 CODEC

in order to be undone by the postprocessing stage of the decompressor.

When using irreversible processing, then-bit sample values are mapped to real
numbers in the range from−1

2 ≤ x[x] ≤ 1
2, called the “unit range”. Values for

reversible processing are not mapped.

3.2.2 Color transform

When presenting an image to the encoder containing at least 3 components with
identical bit depths and sizes, the “inter-component” or “color transform” can be
applied. The first 3 components are then assumed to represent the red, green and
blue color information each. The RGB color information is transformed into one
luminance component and two color difference components (chromatic informa-
tion). The luminance component consists of all color components with the green
component weighed more heavily.

Depending on the compression mode the reversible color transform (RCT) or the
irreversible color transform (ICT) is applied. These transformations are described
in [53] p.421 and [25] p.4.

The ICT is the same as the conventionalYCbCr transform for image and video
signals and transforms real values to real values:

Y = 0.299(R)+0.587(G)+0.114(B)
Cb = 0.564(B−Y)
Cr = 0.713(R−Y)

The RCT is used for reversible processing an maps integers to integers. It is a
reversible approximation of the ICT. It is given by:

Y = b1
4(R+2G+B)c

Db = B−G
Dr = R−G

wherebxc is the floor function, which returns the largest integer not exceeding
x. It is important to note that the representationsDb andDr need one more bit
of precision than the original image samples, whereasY can still be represented
usingn bit.

26

3.2. JPEG2000 CODEC

The YCbCr color space was developed as part of the recommendation ITU-R
BT.601 for worldwide digital component video standard [46]. It is a shifted and
offset version of the YUV color model [6]. The reasons for the development of
this color space were storage/transmission considerations for image data. Since
the human visual system is more sensitive to changes in the brightness than in
color, more bits are used to model luminance information than chrominance data
(for example, in the ratio of 4:2:2 in television signals).

For image retrieval purposes, theHSV color space might be setter suited, since
it was designed to be perceptually uniform ([50] p.289). ButYCbCr is still better
than the RGB color model, since at least luminance information is separated from
chrominance.

3.2.3 Wavelet transform

The wavelet transform is one of the core parts of JPEG2000. Using it, multi-
resolution decomposition of an image is possible. After transformation, the im-
age is described by a coarse overall shape plus additional information that holds
the “details”. The wavelet transform not only analyzes frequency information as,
for example, the Fourier transform does, but also retains information on time (i.e.
spatial location here). This is very valuable for image retrieval. After transforming
the image, it can be coded more efficiently. Since every image component is pro-
cessed individually, this step in the coding process is also called “intra-component
transform”.

Wavelets have become extremely popular in the last few years. There exist a great
variety of wavelet classes with different properties. Much literature is available on
wavelet theory and applications [32, 51, 52, 53]. A brief introduction on wavelets
shall be given here:

Wavelet fundamentals

The definition follows [53] p.248 et seqq.:

Let L2(R) be a Hilbert space of square-integrable functions on the real line. A
wavelet basis forL2(R) is a family of functions,ψ j,k(x), all derived by translation

27

3.2. JPEG2000 CODEC

and dilation (expansion) of a single “mother wavelet”,ψ(x), according to

ψ j,k(x) =
√

2 jψ(2 jx−k) (3.1)

such that theψ j,k are linearly independent and spanL2(R). The value ofj denotes
the scale of the wavelet function,k determines the translation. The factor

√
2 j in

equation3.1 is used to normalize the basis. This is especially important if an
orthonormal basis is to be constructed, although in a general setting wavelets do
not need to follow this constraint.

An important property of wavelet functions is their local support [32]. Either
they have compact support, or they fall off exponentially at infinity. This means
only values nearx contribute much to the transform valuef of the pointx. This
makes the wavelet transform more useful than the Fourier transform. There the
functions used (sine and cosine) have global support, so all terms of the Fourier
decomposition contribute to the valuef . This fact is important for image retrieval,
since loss of spatial information can spoil retrieval performance (see2.3.3).

Multi-resolution analysis

How are wavelet functions related to multi-resolution analysis? The relationship is
explained using material from [29] p.9 et seq. and [51] p.2: For a multi-resolution
analysis a set of nested spacesV j , j ∈ Z which approximateL2(R) is needed:

· · · ⊂V−1⊂V0⊂V1⊂V2 · · ·

As j increases, the resolution of the functions inV j increases. For a spaceV j

a set of orthonormal basis functions{φ(x− k), k ∈ Z} called “scaling functions
φ” is defined. The scaling functions must follow certain constraints explained
in [29] p.9. An important property of the spacesV j andV j+1 is that they are
“similar”, this means if the spaceV j is spanned byφ j,k(x), k ∈ Z then the space
V j+1 is spanned byφ j+1,k(x), k∈Z. The spaceV j+1 is generated by the functions
φ j+1,k(x) =

√
2φ j,k(2x).

SinceV j is nested, any function inV0 can be written as a linear combination of
the basis functions

√
2φ(2x−k) from V1. In particular:

φ(x) = ∑
k

h(k)
√

2φ(2x−k) (3.2)

28

3.2. JPEG2000 CODEC

where the coefficientsh(k) are defined as the inner product〈φ(x),
√

2φ(2x− k)〉.
A new vector spaceW j can be defined that is theorthogonal complementof V j in
V j+1. This new vector spaceW j can be used to represent the parts of a function
in V j+1 that can not be represented inV j . It is defined:

ψ(x) = ∑
k

(−1)kh(1−k)
√

2φ(2x−k) (3.3)

The basis functions used forW j are wavelet functions and are constructed follow-
ing equation3.1.

In terms of signal processing,ψ(x) can be expressed:

ψ(x) = ∑
k

g(k)
√

2φ(2x−k) (3.4)

The sequences{h(k),k ∈ Z} in equation3.2 and{g(k),k ∈ Z} in equation3.4
are called “Quadrature Mirror Filters” in the terminology of signal analysis ([29]
p.10). The relationship betweenh andg is given by:

g(k) = (−1)kh(1−k) (3.5)

Again in signal processing language, the sequenceh(k) is known as thelow pass
or low bandfilter, while g(k) is calledhigh passor high bandfilter ([29] p.10).

Filter banks

Block transform of data has the disadvantage that data is processed in individual
blocks ([53] p.160 et seqq.). So correlation between neighboring blocks cannot be
exploited (which would make sense for natural images). Filter banks do not have
this restriction, being a convolutional transform. A filter bank has a structure as
shown in figure3.2.

The source sequence of the image is filtered by usingm distinct analysis filters
and then down sampled by the factorm. The down sampling operation discards

29

3.2. JPEG2000 CODEC

Figure 3.2: Filter bank realization of a convolutional transform and its inverse
(following [53] p.164)

everymth value. If m = 2 we obtain a low-pass version of the input data and a
high-pass portion. Quadrature Mirror Filters as described above can be used to
filter the signal.

Discrete Wavelet Transform

The goal of the Discrete Wavelet Transform (DWT) is to obtain a multi-resolution
analysis of the original data. Wavelet functions and filter banks can be used for
that task.

The DWT can be described as a “dyadic tree-structured subband transform” ([53]
p.247), where dyadic meansm= 2. The tree structure is obtained by recursively
applying filter banks to the low-pass portion of the data, which is a minimized
(down-sampled) version of the original data. The high-pass portion contains the
information to reconstruct the original data. Figure3.3 illustrates the resulting
tree structure.

2D Discrete Wavelet Transform

So far the DWT was applied only to one-dimensional data. Images are more likely
to be seen as two dimensional functions. To construct a 2D wavelet transform, the
1D wavelet transform is applied to the rows and the columns of the image, so

30

3.2. JPEG2000 CODEC

Figure 3.3: Analysis filter bank of a one dimensional tree structured subband
transform (following [53] p.179)

four subbands are obtained at each decomposition level. Only the subband that
is low-pass filtered twice is processed further. The process is illustrated in figure
3.4.

The resulting subbands are named according to the filter operation that was per-
formed on them:

• LLD : Horizontal and vertical low-pass filtering is performed. The resulting
image is a reduced size version of the original image. The other subbands
hold the data to reconstruct the original image.

• HLD : Horizontal high-pass, vertical low-pass filtering. This operation most
strongly reacts to vertical structures of the image.

• LHD : Horizontal low-pass, vertical high-pass filtering. Here the horizontal
lines and edges are most strongly responded to.

• HHD : Horizontal and vertical high-pass filtering. Diagonal elements of the
image have strongest influence.

Only theLL subbands are further decomposed forD levels. JPEG2000 allows D
to be in the range of 0≤ D≤ 32, but D is usually in the range of 5-6.

A more graphical representation of the tree structure is shown in figure3.5.

31

3.2. JPEG2000 CODEC

Figure 3.4: Filter bank structure for a 2D tree structured subband transform (fol-
lowing [53] p.180)

Figure 3.5: Three level, two dimensional DWT (following [53] p.330)

32

3.2. JPEG2000 CODEC

Figure 3.6: Different decomposition schemes (from [51])

It is not important in which order those transformations are performed, as long as
all steps are fully executed, as shown in figure3.6.

Wavelet coefficient distribution

As described above, the wavelet coefficients obtained after transforming an image
hold the detail information that was lost in low-pass filtering. When the input
signal is rather flat, i.e. the gradient is small, the wavelet coefficients are small
too, since the filtered signal differs only slightly from the input signal. Since
natural images usually contain many smooth regions, most coefficients are close
to zero or even zero. The more textured an image is, the more wavelet coefficients
will have a high absolute value. It turns out that the coefficients are gaussian-like
distributed. The exact shape depends on the input signal.

Wavelets in JPEG2000

In the JPEG2000 standard only two different wavelet analysis kernels are de-
scribed. However, in Part 2 of the standard it should be possible to use different
wavelet kernels.

33

3.2. JPEG2000 CODEC

For irreversible processing the CDF 9/7 kernels are used. They belong to the first
member of the Cohen-Daubechies-Feauveau family of odd-length linear phase
wavelets with maximal regularity ([53] p.434).

The DWT transform used for reversible processing is derived from the 5/3 spline
transform ([53] p.435). Here integer values are mapped to integers and can be
used for lossless and lossy coding.

3.2.4 Quantization and ranging

Quantization is one of the main steps to reduce image data by ensuring that only
minimal precision is used to represent wavelet coefficients according to the de-
sired compression rate. Quantization is only applied to the irreversible path, since
it discards information. After the DWT is applied, some data samples might ex-
ceed the nominal range of−1

2 to 1
2. The parameterG (“guard”) accounts to that

fact and defines larger bounds: all data samples might now be in the range of
−2G−1 < yb[x] < 2G−1∀b. The value ofG is usually 1 ([53]p.437) and is recorded
in the code stream marker segment. After the new data range is determined, the
quantization process can start. The coefficients are quantized per subband using
deadzone scalar quantization. This is described in detail in [53] p.111 et seqq.
Compression rate depends on the the quantizer step size. A different quantizer
step size may be used for every subband. The step sizes are chosen in conjunction
with rate control and are again recorded in a marker segment.

If the reversible path is used, no quantization is performed. Instead, quantizer
step sizes are fixed to 1. Since in the reversible path transform data may also
exceed the original precision of 2B bit, ranging has to be performed though. The
transform data range depends on the type of the subband. The nominal gainsXb

of the analysis kernels are ([53]p.441):

XLLd = 0,XLHd = XHLd = 1,XHHd = 2

We see that every time high-pass filtering is done, the maximal range of the trans-
form data is enlarged by a bit. Extra guard bits might be added to deal with out
of range data.G is again stored in the code stream marker segment. The resulting
maximal data range is then:

−2B−1+Xb+G < yb[n] < 2B−1+Xb+G

34

3.2. JPEG2000 CODEC

3.2.5 Tier-1 coding

In order to perform tier-1 coding, the subband data has to be partitioned into code
blocks as described in [53] p.458 et seqq. The EBCOT (Embedded Block Coding
with Optimal Truncation) paradigm used in JPEG2000 relies upon relatively small
code blocks that can be coded independently. The height and width of a code
block must be a power of 2 and the product of the sides may not exceed 4096.
The partition in code blocks depends on another, superimposed partition called
“precincts”. Precincts must consist of an integer of code blocks, so code blocks
have to be arranged to meet this requirement. The precinct partition does not
affect coding, but is important for the packet organization in tier-2 coding.

Once the data is partitioned, coding can start. Each code block is independently
coded by a bit plane coding technique similar to SPIHT (set partitioning in hier-
archical trees, [53] p.313 et seqq.). In contrast to SPIHT, were two coding passes
are applied, JPEG2000 uses three coding passes: a) significance pass b) refine-
ment pass and c) cleanup pass. The purpose of these different coding passes is
explained in detail in [26].

At each coding pass, the generated symbols can be entropy coded, using arith-
metic coding, more specifically the MQ coder of the JBIG2 standard. This process
is described in [53] p.473.

3.2.6 Tier-2 coding

The main purpose of tier-2 coding is to organize the data into packets. These
packets are then combined and form the final code stream. A packet consists
basically of a header and a body. In the header, information is stored to recover
the data correctly. The body part contains - if not empty - coding pass data. Which
data is contained exactly in the packet is determined by the various partitions of
the image in tiles, components, resolution levels, subbands, precincts and quality
layers. All these partitions have different purposes, for example, they ensure the
EBCOT-paradigm works (quality layers). The packets can be arranged by using
one of the progression types described.

All packets of an individual tile (if no tiling is applied the packets of the whole
image) are grouped together to an entity. A tile header is added and contains
additional coding information. All those “tile-data-groups” are added to the code

35

3.2. JPEG2000 CODEC

Figure 3.7: Code stream structure (following [25] p.13)

stream. If more tiles exist, it is also possible to interleave tile data, then a tile part
header is added to each sub-group to denote the tile they are belonging to. The
code stream itself also has a header, containing information about the size and the
coding defaults of the following data, for example.

The header consist of several marker segments signaling either coding information
or the begin of data. E.g the SOC marker segment indicates “start of code stream”.
The SIZ marker segment contains image and tile sizes. Figure3.7shows the basic
structure of the code stream.

For a detailed description on code stream organization, the reader is referred to
[53] p.525 et seqq. or the final standard [17].

3.2.7 File format

The code stream described in the last section is sufficient to store and decode
image information. However the JPEG2000 standard specifies a minimal file for-
mat being able to provide additional information some applications may require,
for example, specification of the color space or ownership information. The file

36

3.3. CODEC SOFTWARE

Figure 3.8: File format structure (following [25] p.14)

format wraps the code stream. The file format header consists of a number of
boxes having a specific format, and containing different information. The first
box supplied is the JPEG2000 signature box indicating that the following file is
a JPEG2000 file. The exact purpose of the different boxes and their possible or-
dering is explained in [53] p.573 et seqq. In figure3.8, an example file format is
displayed.

3.3 Codec software

In order to be able to use JPEG2000 files for image retrieval, a way had to be
found to extract the wavelet coefficients from those files. This means essentially
that packetization, coding and quantization had to be undone. To improve de-
velopment speed, existing software should be modified to obtain the data. The
following implementations were tested concerning their suitability:

3.3.1 JJ2000

JJ2000 is a JPEG2000 coder/decoder that was developed by the Canon Research
Centre France (CRF), the Swiss Federal Institute of Technology (EPFL) and ER-
ICSSON Research. It is implemented in Java and is an official reference imple-

37

3.3. CODEC SOFTWARE

mentation for Part 5 (reference software) of the JPEG2000 standard. It conforms
to the JPEG2000 final committee draft. The software is well documented using
javadoc. It only supports the following file formats: PGM(raw), PPM(raw) and
PGX. To immediately display decoded data an embedded viewer can be used.

However, the project was officially stopped in September 2001, the last official
release being 4.1. A non official version 5.1 was developed by Eastman Kodak to
fix some file format incompatibilities.

Since this codec is not developed further, it is not a suitable choice concerning the
future development process of JPEG2000. More information on JJ2000 can be
obtained from [15].

3.3.2 Kakadu

Kakadu is a C++ implementation of the JPEG2000 standard. It was written by
David Taubmann, who is also one of the authors of [53]. In fact the Kakadu soft-
ware tested was on a CD added to the book. According to the author, it fully
conforms to the ISO/IEC 15444-1 standard. It also provides an image viewer
(kdu show). Several other features are included in this software package, for ex-
ample, a Java native interface for Kakadu or a JPEG2000 internet protocol. Many
useful comments were added to the source code.

This was by far the most “commercial” system to be found. High license costs
must be payed in order to be allowed to use and redistribute the code.

More information on Kakadu can be obtained from [18].

3.3.3 JasPer

This coder/decoder software is written in the C language by Michael Adams. On
his home page [14] not only the software is available, but there are also some
other useful documents about JPEG2000 [25, 26]. The development of JasPer
was supported by Image Power, Inc. and the National Sciences and Engineering
Research Council of Canada. In addition to the coder/decoder software an image
comparison program and a viewer is provided. JasPer supports a large range of
image formats, for example, ppm, bmp, jpeg, ras or pgx. Like JJ2000, JasPer

38

3.4. WAVELET COEFFICIENT EXTRACTION

is an official reference implementation for the JPEG2000 standard part 5. The
developer documentation is restricted to very few comments in the source code,
but the structure of the code is well organized. The software is distributed freely
when the provided copyright notice is added. JasPer was chosen to be the right
framework to develop the wavelet coefficient extraction program.

More information on JasPer can be obtained from [14].

3.4 Wavelet coefficient extraction

Once JasPer was found to be the right codec, the JasPer framework was analyzed
in more detail, examining the code and having [26] as only reference.

3.4.1 JasPer software package

The software consists of a library (libjasper) providing most functions and 4 ap-
plication programs using the library. For full functionality, the JasPer package
depends on some additional software. The free IJG JPEG Library [12] is needed
to convert jpeg images, and the viewer provided by JasPer depends on the OpenGL
and GLUT libraries [22]. These packages have to be obtained and installed first if
the specific functionality is desired.

The main application program isjasper: it can transcode images from any sup-
ported format to another. It is not restricted to de-/encode JPEG2000 images.
Various input/output options allow the user to control the coding/decoding pro-
cess. For example, the compression rate, code block size, tiling properties or the
number of resolution layers can be specified when encoding a JPEG2000 image.
Jasper was used to generate the test files for experimenting and testing.

A 5th application program was added to the package: thewcextract utility. It
takes a JPEG2000 file as an input and generates a file with the wavelet coefficients
of the image as an output. Of course the data produced bywcextract can also be
fed directly into another program generating features for the specific file.

39

3.4. WAVELET COEFFICIENT EXTRACTION

3.4.2 libjasper library

The libjasper library consists of two main parts: first, the base/core code that
provides a framework for coding/decoding. Second, it provides a number of
codec drivers that handle coding/decoding for a specific format. JasPer being
that modular, it was sufficient to look at the base code and the files concerned
with JPEG2000 decoding.

3.4.3 wcextract

For building thewcextract program, thejasper program was taken as an ex-
ample. When transcoding an image from JPEG2000 to any other format, the
JPEG2000 data is decoded first. The image is then represented in an internal
format: the structjas_image_t defined injas_image.h. This struct contains,
for example, information about the image size, components, color model and of
course the component data. After the image is obtained in this intermediate for-
mat, it can be coded into another representation.

The path of decoding the image was followed until quantization was undone and
the reversible DWT should be applied. This is where the data is in the right for-
mat. A way had to be found to stop the decoding process there and return the
data. In the following, the original decoding process is described up to that point.
Afterwards the changes made to obtain the data are explained.

As already known from the introductory section about JPEG2000 all data is con-
tained in the JPEG2000 code stream. The jp2 file format is just a wrapper around
it. So first the file format encoding has do be undone. The main function for
decoding the file format is:

jas_image_t *jp2_decode(jas_stream_t *in, char *optstr)

It can easily be seen that this function gets a data stream and input options (for ex-
ample, user specified decoding information) and returns a pointer to thejas_image_t
struct needed for further processing. All information provided by various file for-
mat boxes are stored in a jp2-decoder struct (jp2_dec_t). Necessary information
and the ordering of the boxes is checked.

40

3.4. WAVELET COEFFICIENT EXTRACTION

The most important box concerning decompression is the box that marks the be-
ginning of the code stream (”contiguous code-stream box”). When that box is
found, JPEG2000 code stream decompression starts. Again there exists a main
entry point for JPEG2000 code stream decoding:

jas_image_t *jpc_decode(jas_stream_t *in, char *optstr)

A decoder struct is created (jpc_dec_t) in order to store intermediate data and to
keep track of the decompression state. The decoder object contains a reference to
the input data stream and the options. Using the function

int jpc_dec_decode(jpc_dec_t *dec)

the code stream decompression process starts. Essentially this is a loop that
searches for the next marker segment, checks if it is valid at that point and then
performs an associated action. For example, coding parameters are retrieved and
then stored in the decoder object.

/* Process the marker segment. */
if (mstabent->action) {

ret = (*mstabent->action)(dec, ms);
} else {

/* No explicit action is required. */
ret = 0;

}

As already mentioned, the data is encoded on a tile by tile basis. Every tile header
or tile part header ends with a SOD (start of data) marker segment, which indicates
that individual data packets follow. When the SOD marker segment is retrieved,
the following function is called:

int jpc_dec_process_sod(jpc_dec_t *dec, jpc_ms_t *ms)

If the code stream consists of whole tiles, the decoding process for the current tile
can start. Otherwise tile parts exist and the code stream is processed further until

41

3.4. WAVELET COEFFICIENT EXTRACTION

all parts of a particular tile are retrieved. The tile data is collected/stored in the
structjpc_dec_tile_t. It contains data from all components and all subbands
of a tile. The decoding of a tile is done by the function:

int jpc_dec_tiledecode(jpc_dec_t *dec, jpc_dec_tile_t *tile)

Here all steps of the coding process can be nicely seen:

First tier-1 coding is undone:
jpc_dec_decodecblks(dec,tile);

Then for every subband of a tile dequantization is performed:
jpc_dequantize(band->data, band->absstepsize);

Now we have reached the point were the data is exactly in the right format: it
contains wavelet coefficients. The next step of the functionjpc_dec_tiledecode
would be to perform the inverse wavelet transform and the inverse color transform
if necessary.

To be able to stop at that point, the existing functions were modified. Usually,
right after decoding image information, the decoder object and all associated in-
formation is destroyed. Only the data injas_image_t is returned. My approach
was not to return the decoded image, but the decoder object itself. All coding pa-
rameters (for example, data precision, number of guard bits etc.) are stored there
including the intermediate data (the wavelet coefficients).

In the following, the modified functions are explained. To distinguish them from
the original version, the suffix_wc (for wavelet coefficients) was added to the
name of the corresponding libjasper functions.

jpc_dec_t *jp2_decode_wc(jas_stream_t *in, char *optstr);

Similar to the original functions, the following functions perform necessary de-
coding tasks plus returning a pointer to the decoder objectjpc_dec_t:

jpc_dec_t *jpc_decode_wc(jas_stream_t *in, char *optstr)

int jpc_dec_decode_wc(jpc_dec_t *dec)

42

3.4. WAVELET COEFFICIENT EXTRACTION

While decoding the code stream injpc_dec_decode_wc, some marker segments
have to be processed differently:

/* Process the marker segment. */
if (mstabent->action) {

if(ms->id == JPC_MS_SOD) {
//-----> process start of data in a different way
ret = jpc_dec_process_sod_wc(tile_mem,dec,ms);

} else if(ms->id == JPC_MS_EOC) {
//-----> process end of code stream in a different way
ret = jpc_dec_process_eoc_wc(dec,ms);

} else {
//in all other cases process as usual
ret = (*mstabent->action)(dec, ms);

}
} else {

/* No explicit action is required. */
ret = 0;

}

SOD: As it was the case in the original SOD processing, now tile or tile part data
is available. The functionjpc_dec_process_sod_wc(dec, ms) calls

jpc_dec_tiledecode_wc(dec, tile)

if all data of a tile is available. Otherwise it returns until all tile part data is
obtained. The functionjpc_dec_tiledecode_wc(dec, tile) stops after de-
quantization and returns to the calling function, leaving the transform coefficients
untouched.

EOC: The end of code stream marker signals the end of the data. There usually
cleanup operations like the destruction of the decoder structure are performed.
Since this object is needed to retrieve the wavelet data, it is not destroyed in

jpc_dec_process_eoc_wc(dec,ms)

but returned to the calling functions. Once the decoder structure is obtained, the
wavelet coefficients can be processed. Three options are available at the moment:

43

3.4. WAVELET COEFFICIENT EXTRACTION

1. Generate a wavelet coefficient file:The wavelet coefficients can be written
to a file in order to be used by other applications. A specific file format
provides additional information like the number of bits used to represent
the wavelet coefficients. They can be specified in the program.

For this thesis only reversible processing was used, excluding the distortion
introduced by irreversible processing. As already described in the intro-
ductory part about JPEG2000 (more specifically in3.2.2 and 3.2.4), the
precision of the wavelet coefficients in the reversible path is bigger than the
original sample bit depth. The maximum precision used can be computed
using information obtained from the decoder object.

Due to the transformations performed by the JPEG2000 encoding process
different subbands have different value ranges (see3.2.4). In order to facil-
itate later processing, they were made equal to another. The first try was to
map the individual values to a specific range. But it turned out that this is
not satisfactory. The maximum values possible might be as big as the de-
coder states, but this is only true for very rare values. The great majority of
values is very close to 0. So mapping the values to a range of, for example,
the original sample bit depth (which is sufficient to represent most values)
squeezes most values even more around zero. So a different approach was
taken: the values exceeding the specified range were clipped to the near-
est representable value. This produced much better data having maximum
precision in the area around zero. Only few values in very textured images
have to be clipped.

The file format used for thewc files looks like this: it has a header part and
a body where subband data packets follow. Every header box is 32 bit.

where

v is the format version number of the file. It is divided into a
major version numberv1 and a minor version numberv2.
The version number used at the time of this writing is 1.0.

p denotes the precision used to represent the wavelet coefficients.
The default value is 8, but larger precisions are also possible.

t is the number of tiles used in the image. Currently only files with
no tiling can be processed reasonably by the software developed.
When files with more tiles are used, only the first tile is considered.

44

3.4. WAVELET COEFFICIENT EXTRACTION

c tells how many components are in the image. For RGB color images
the value is 3.

r is the number of resolution levels of the wavelet transform.

After the header the data follows. The subbands are written one after the
other, starting with subbandLL0 of the first component of the first tile. At
larger resolutions the ordering of the bands is as follows:HLd, LHd, HHd.
All data from one component is written consecutively, starting with compo-
nent 0.

The subband entities have their own header denoting the height (h) and the
width (w) of the specific subband.

The precision of the data is denoted by thep box of the file header. At the
momentp is set to 8 bit, since most images use a precision of 8 bit per color
component sample. This bit depth is sufficient to represent most values and
little enough to avoid to create too large wc files.

2. Generate a portable gray map: A graphical representation of the hier-
archical decomposition of an image is produced. The wavelet coefficients
of the different subbands are displayed as an image. Figure3.9 shows an
example.

3. Generate a RGB image from subband LL0: The data from subbandLL0

of all three components represents a minimized version of the original im-
age. The data can be put together again and then transformed to the RGB
space. An example for an original and a minimized image can be seen in
figure4.5.

After processing, cleanup operations have to be performed, since the destruction
of the decoder information was delayed to obtain the data:

// necessary clean up:
wcCleanUp(dec_jpc);

45

3.4. WAVELET COEFFICIENT EXTRACTION

Figure 3.9: Graphical representation of the wavelet coefficients of the first 4 reso-
lution levels of component Y. The original image is displayed in figure4.5.

46

Chapter 4

Creating a JPEG2000 feature set

Having subband data available, the next task was to create a feature set using
wavelet coefficients.

4.1 Current approaches

Mandal et al. [38] give a short overview of indexing techniques using wavelets.
Other methods are described by [58] or [34]. In most cases, the pictures are trans-
formed from pixel to wavelet domain right for indexing purposes. Most methods
focus on retrieval performance, not storage issues. Usually general wavelet based
techniques are considered, only Xiong [58] mentions JPEG2000 files explicitly.

A disadvantage of some of those techniques is that they need special wavelet trans-
forms (e.g. [38] p.7), making them unsuitable for JPEG2000 since in the current
standard two types of wavelet transforms are fixed. Others use algorithms that
have to be trained (e.g. [38] p.6). This is feasible for specialized image collec-
tions, but not ideal for arbitrary image collections.

A striking fact was that almost all techniques surveyed focused exclusively on
texture discrimination. Of course subbands are very well suited for that task, but
general purpose image retrieval was not considered.

47

4.2. JP2FEATUREFINDER

The approach most suitable for JPEG2000 image retrieval was given by Mandal,
Aboulnasr and Panchanathan [37] and later by Do and Vetterli [34]. They propose
to compare histograms of directional subbands. To reduce complexity, both sug-
gest to model the histograms as Generalized Gaussian Densities (GGD). Mandal
et al. additionally propose to create histograms of the uncompressed image by
using Legendre moments.

4.2 JP2FeatureFinder

In order to develop a JPEG2000 image retrieval method, a way had to be found
to quickly create, view and evaluate subband feature sets. A test framework espe-
cially tailored for that purpose was designed.

The JP2FeatureFinder was written in Java with a Swing interface to be platform
independent and to have language support for graphical user interface (GUI) de-
velopment. For a detailed description on how to use the JP2FeatureFinder the
reader is referred to the README file provided with the software.

4.2.1 Core system

The architecture follows the example of GIFT [44], omitting certain aspects like
feature access, client server communication or queries with multiple images. How-
ever, the system is modular enough that those components could be added with
reasonable effort. The main reasons for creating the system was that it provides
useful tools for developing JPEG2000 feature sets and that it is quickly to modify.

In the following, the main classes and their functions are described. A more de-
tailed description can be found in the javadoc documentation provided with the
software. The class diagram of the JP2FeatureFinder can be found in appendixB.

• Feature/FeatureSet: Each JPEG2000 image is represented by a feature
set, containing several features. Those features have a unique ID, a type
(histogram feature, GGD feature, etc.) and one or more values, depending
on the type.

48

4.2. JP2FEATUREFINDER

• FeatureMaker: Feature makers are entities that generate feature sets for
JPEG2000 images using wavelet coefficient files. These files are generated
bywcextract and then stored to save processing time. Of course in a work-
ing CBIRS they do not have to be stored, since good feature sets should be
sufficient to represent an image. A feature maker factory returns a specific
feature maker that can be used for the whole image collection.

• WeightingFunction: A weighting function is essentially the implementa-
tion of a similarity measure. Usually every feature in the search image gets
associated with a weighting function depending on the feature type. The
corresponding features of the images in the collection are compared using
this similarity measure. The contribution of every weighter to the final rank-
ing of each image is collected in a score board.

• ScoreBoard: In a so called “score board” the current score for each image
is collected.

• Normalizer: When the scores for every document in the score board are
fixed, they are normalized following a convention used in GIFT. There the
query image has the score of 1 and all other images have smaller values,
with the most relevant ones being close to one. If HI is used, the normalizing
function looks like:

snorm =
s

ssearch

wheressearchis the score of the search image, i.e. the sum of all bin values,
ands is the score of the image to be normalized.

For the KLD the following normalizing function is used:

snorm =
1

1+ |s|

• QueryEngine: The term query engine is taken from GIFT, where it denotes
an entity that is capable of processing queries ([44] p33). In a basic query
engine, a list of weighting functions is built according to the features of the
query image. The images are compared on a feature by feature basis using
the weighting functions. The results are stored in the score board and then
normalized. An image collection sorted by relevance is thus returned to the
caller.

A compound query engine is also available, consisting of a list of different
query engines each processing a specialized query. The results are then
merged following a scheme given in the normalizer.

49

4.2. JP2FEATUREFINDER

Figure 4.1: The user interface of the JP2FeatureFinder

4.2.2 Graphical user interface

The GUI consists basically of two parts: a control section in the upper part, and a
query/result section at the bottom. The query section contains a scroll pane with
image panels of all pictures in the current collection. For testing purposes it is
useful to be able to browse the whole collection. Of course this is only feasible
for relatively small image collections up to 1500 images.

The controls at the top have various purposes. For a better overview they are
grouped in functional units.

• Collection: First, it is necessary to load an image collection by choosing
from a drop down list. File names stored in a collection file are used for
loading, considering a root location specified by a config file. The scroll
pane is filled with image panels representing the individual images.

• Query Eengine: Different query engines with various weighting functions
and normalizers can be chosen.

• Make features: The feature makers available can be chosen from a drop
down list. By pressing the Button “make” features are generated for all
images in the current collection. Since feature generation can take quite a
long time, they can be saved by pressing the button “save”. The path given

50

4.2. JP2FEATUREFINDER

Figure 4.2: Image panel with information and controls

by the section“Load Features” is used for that purpose. The file format
used for storing the features is the same as the GIFT feature file format
(.fts).

• Load features: Previously generated and stored features can be loaded again.
The path to the directory the feature sets are in must be given. After pressing
the button “load” the system sets the features for each image in the current
collection.

• Precision/recall: It is possible to add relevance information to an image by
providing a list of images that are similar by human judgement. If such in-
formation is available (in the current test collection only few images posses
such information) precision/recall values for the first 5, 10 and 20 images
retrieved are displayed. This can be a measure for the quality of the query.
See section6.3for details on precision and recall.

• Shuffle: By pressing the button “random” the images are shuffled randomly.
In this way a start image can be chosen to begin with the query.

Image panels
The image panels display the name, a thumbnail version of the JPEG2000 image
and the current score of the image. Three buttons on every image panel provide
useful functions for developing a JPEG2000 feature set:

1. Subband plotter : By clicking this button, a new window opens and
the distribution of the wavelet coefficients of each subband is shown in a

51

4.2. JP2FEATUREFINDER

Figure 4.3: Subband histograms displayed in the JP2FeatureFinder

diagram. Opening several windows, the distribution of different images can
be compared. The data of all three components can be watched at the same
time or individually by checking the corresponding boxes. If the user wants
to compare distributions more precisely, it is possible to enter the name
of another wavelet coefficient file. The histograms are then displayed in a
single window. By pressing the button “flip” the order of the histograms
displayed is changed. This is important if the distribution in the front hides
large parts of the histogram in the back.

2. Enlarge : This button opens a new window that displays the image in
its original size, allowing the user to view more details.

3. View feature set : If features are already set or computed for this im-
age, they can be displayed in a text window. The Feature ID is followed by
the feature type and the feature value.

4.2.3 Query process and evaluation

By clicking anywhere on an image panel except for the three buttons, the search
process for that image starts using the query engine currently selected. So far,
only queries for a single image are possible. The image panels are reordered with

52

4.3. FEATURE SET EXPERIMENTS

the search image at the first position (score 1.0) and the other images following in
descending order according to the score.

Two ways were used to evaluate the accuracy of the query process: first, relevance
information for selected images was entered, so that precision/recall information
could be computed. These values were recorded to compare different feature sets
and different query methods. The second way of rating retrieval quality was by
the general visual impression of the images retrieved. Image similarity was sim-
ply judged by personal impression, using the symbols⊕,� and	. An overview
about the precision/recall rates achieved for three of the test images with selected
algorithms is given in table4.1. The values stated there were used to judge the
retrieval performance only roughly, a detailed test of the resulting methods is per-
formed in chapter6.

4.3 Feature set experiments

4.3.1 General setting

As stated above, the (in our opinion) most promising articles about wavelet based
image retrieval are [37] and [34]. There the distribution of wavelet coefficients of
corresponding subbands is compared. In this thesis, this approach is also taken
and different modifications are tested. In the following experiments the data used
was derived from JPEG2000 images encoded reversibly with 5 resolution layers
and no tiling applied. The JPEG2000 images were generated from jpeg pictures
of the benchathlon project [2]. A subset of 1406 images from this collection was
used.

The first try was to interpret corresponding transform coefficients in the compo-
nentsY, Db andDr of a subband as a “subband color”. These subband colors were
then used to create a histogram for each subband. The color space was partitioned
into 162 different colors by dividingY into 18,Db andDr into 3 bins each. This is
similar to theHSV color space partition used in GIFT and could be tested within
the existing GIFT framework with only minor changes. But it showed quickly
that this approach was not efficient. Neither HI nor the KLD performed well on
the data. The precision/recall values and the visual appearance were quite bad.

53

4.3. FEATURE SET EXPERIMENTS

A better approach had to be found, treating all data together in this manner was
obviously not good enough. To be able to better understand the performance of
certain features, the role of the individual components and subbands had to be
evaluated. GIFT uses a set of relatively simple features (color and texture) which
are then combined. Picard et al. [40] previously stated that it is better to model
similarity using different feature groups (which can even be highly specialized)
instead of looking for the ultimate feature type and one similarity measure. So it
was tried to model color and texture independently and then combine the results.

4.3.2 Texture approach

To distinguish the texture discrimination ability of different components, sub-
bands from componentY, Db andDr were analyzed independently. For this pur-
pose, histograms of individual subbands of all three components were created,
using bin sizes in the range of 20-80. The subband histograms were compared
using theL1-distance (HI) as well as the KLD.

The subbands ofY (component 0) have much more discriminating power from a
structural point of view than subbands ofDb or Dr . The reason for this is that the
luminance componentY contains information consisting of all RGB-color com-
ponents, representing a black/white version of the original image, discarding color
information and putting emphasis on the texture. The other components describe
the difference of the color values, or more precisely the transform coefficients of
those values. To judge structure similarity it is sufficient to use only subbands
from componentY, which leads to reduced complexity and better results.

Several tests showed that considering only subbands from componentY works
well if one is only interested in structurally similar images. Some of the test
results are stated in table4.1. Figure4.4 shows an example query result. Since
emphasis is put on texture retrieval, black/white images with similar structure
were also found in the database.

It is possible to further reduce the number of subbands to be compared. Subband
LL0 differs from all other subbands in meaning and coefficient distribution, being
only low-pass filtered. Coefficients are usually not gaussian distributed as is the
case with all other subbands. To have only subbands with equal properties, for
example, for further processing the data as shown in4.4, it is possible to omit
subbandLL0 without spoiling texture retrieval results.

54

4.3. FEATURE SET EXPERIMENTS

Figure 4.4: Query for texture

4.3.3 Color approach

Using only subbands from componentY discards all color information. Since
for humans color is very important to judge the overall similarity of a picture,
color information had to be brought back into consideration again. Color data
is still contained in the subbandsLL0 of each color component. The values of
those bands were only transformed low pass, so they still representYDbDr color
information.

To see this, the data from all three components can be put together again. An
inverse color transform reveals the reduced size version of the original image. In
figure 4.5, the original image is shown on the left, where as the subbandLL0 is
shown on the right. The example subband image is only 38x32 pixels wide, but
is enlarged to the original size to better view the reduction of pixels. Of course a
smaller image usually contains a smaller number of colors. Color reduction was
already nicely performed by the wavelet transform.

The application of an inverse color transform was only performed to show the
property of the subbandLL0. The colors are equally represented in theYDbDr

color space. TheYDbDr colors were again used to create a histogram. The color

55

4.3. FEATURE SET EXPERIMENTS

Figure 4.5: original image and enlarged subbandLL0

space was partitioned into 320 partitions, by dividing the individual components
into 5:8:8 parts. Since emphasis is put on the colors, the chrominance components
were divided finer. Other partitions were tested, but this one was a good tradeoff
between accuracy and complexity. Selected test results can be seen in table4.1.

Additional tests with color information transformed to theHSV space brought
slightly better results. As already described in3.2.2, the HSV color space is
adapted better to the human visual system. But since compressed domain tech-
niques are evaluated in this thesis, the transform to theHSV space had to be
avoided.

Figures4.6and4.7show image queries based on color, ignoring texture informa-
tion. 4.6uses theYDbDr color space, where as4.7uses theHSVcolor space. The
HSV based query (4.7) produces slightly better results. Of course all problems of
color histograms as described in2.3.3like the loss of spatial context have to be
faced when using this method.

56

4.3. FEATURE SET EXPERIMENTS

Figure 4.6:YDbYr color query

Figure 4.7: HSV color query

57

4.3. FEATURE SET EXPERIMENTS

4.3.4 Compound approach

Having found a way to model color and texture independently, the results had to
be combined to obtain a retrieval system that works well on arbitrary images.

The idea was to perform two queries and then to merge the results. Three different
methods were tested:

1. Combination depending on rank: The first try was to simply consider the
ranking of the pictures in the individual result sets. The new score of an
image is the mean of the positions in the result sets of different queries. A
new result list was built depending on the new scores. Theoretically, any
number of result lists can be merged in this way.

A drawback of this method is that considering only the relative position of
an image discards information. The distance between following images are
all made equal. It is not possible any longer to determine if two subsequent
images are both very close to the search image in having a very high score,
or if only one has a high score and the other one is quite dissimilar.

2. Combination depending on KLD values:As already described in section
2.3.4, it is possible to combine different KLDs from multiple data sets using
the chain rule. So when using the KLD for computing color and texture
similarity, the values can be added to obtain a compound measure.

3. Combination depending on the score:The third possibility tries to im-
prove the first method: compound scores of the images are computed by
calculating the mean of the scores obtained. This produces better results
since the relative distances between the images are considered.

In either method it is useful to be able to emphasize color or texture properties
by providing a weight factor. This weight factor changes the influence of one
approach. It makes sense to allow the user to specify this weight factor freely in
order to express his preference. By setting the weight factor for a component to
zero, it is even possible to consider only texture or color similarity.

58

4.3. FEATURE SET EXPERIMENTS

Figure 4.8: combined query on score with texture weight 4:1

Many tests showed that there is no universally valid weighting scheme for ob-
taining good results. For example, the best result for the previous example was
obtained by weighting texture information 4 times more than color, in other exam-
ples no weighting (1:1) already gave good results. In a general setting, weighting
of 1(color):2(texture) is a good value to start with, allowing the user to refine the
values later.

59

4.3.
FE

A
T

U
R

E
SE

T
E

X
PE

R
IM

E
N

T
S
woman/child musicans woman/bath visual

33282014-0043-0076 01753301-3787-0006 33282013-0519-0013
P/R 5 P/R 10 P/R 20 P/R 5 P/R 10 P/R 20 P/R 5 P/R 10 P/R 20

YCC13-3-3 (HI) 0.6/0.38 0.3/0.38 0.25/0.62 0.2/0.33 0.1/0.33 0.1/0.66 0.4/0.4 0.2/0.4 0.1/0.4 		
YCC40-10-10 (HI) 1.0/0.63 0.5/0.63 0.25/0.63 0.2/0.33 0.2/0.66 0.1/0.66 0.8/0.8 0.4/0.8 0.2/0.8 �
bands c0 (HI) 80 bins 12
subbands

1.0/0.63 0.5/0.63 0.25/0.63 0.4/0.66 0.3/1.0 0.15/1.0 0.4/0.4 0.2/0.4 0.1/0.4 ⊕

bands c0 (KLD) 80 bins
12 subbands

0.6/0.38 0.3/0.38 0.25/0.63 0.2/0.33 0.1/0.33 0.1/0.66 0.4/0.4 0.2/0.4 0.2/0.8 ⊕

bands c1 (HI) 80 bins 12
subbands

0.4/0.25 0.3/0.38 0.15/0.38 0.4/0.66 0.2/0.66 0.1/0.66 0.4/0.4 0.2/0.4 0.15/0.6 	

bands c0 (HI) 40 bins 12
subbands

0.6/0.38 0.3/0.38 0.15/0.38 0.4/0.66 0.2/0.66 0.1/0.66 0.4/0.4 0.3/0.6 0.2/0.8 �

bands c0 (HI) 20 bins 12
subbands

0.6/0.38 0.3/0.38 0.15/0.38 0.2/0.33 0.2/0.66 0.15/1.0 0.6/0.6 0.3/0.6 0.2/0.8 �

bands c0 (HI) 80 bins 13
subbands

0.6/0.38 0.3/0.38 0.15/0.38 0.6/1.0 0.3/1.0 0.15/1.0 0.4/0.4 0.2/0.4 0.15/0.6 ⊕

bandsLL0 (HI) 18x3x3 0.2/0.13 0.1/0.13 0.1/0.25 0.6/1.0 0.3/1.0 0.15/1.0 0.4/0.4 0.5/1.0 0.25/1.0 	
bandsLL0 (KLD) 18x3x3 0.2/0.13 0.2/0.25 0.1/0.25 0.0/0.0 0.0/0.0 0.05/0.33 0.8/0.8 0.5/1.0 0.25/1.0 	
bandsLL0 (KLD) 5x8x8 0.4/0.25 0.2/0.25 0.1/0.25 0.4/0.66 0.3/1.0 0.15/1.0 0.8/0.8 0.5/0.8 0.25/0.8 ⊕⊕
bandsLL0 (KLD) 5x5x5 0.4/0.25 0.2/0.25 0.1/0.25 0.4/0.66 0.3/1.0 0.15/1.0 0.8/0.8 0.4/0.8 0.25/0.8 ⊕
bands c0 (KLD) 80 bins
12 bands +LL0 (KLD)
5x8x8 + score norm

0.4/0.25 0.3/0.25 0.15/0.38 0.6/1.0 0.3/1.0 0.15/1.0 0.8/0.8 0.4/0.8 0.2/0.8 ⊕⊕

bands c0 (KLD) 80 bins
12 bands +LL0 (KLD)
5x8x8 + list norm

0.4/0.25 0.2/0.25 0.1/0.25 0.6/1.0 0.3/1.0 0.15/1.0 0.8/0.8 0.4/0.8 0.4/0.8 ⊕

bands c0 (KLD) 80 bins
12 bands +LL0 (KLD)
5x8x8

0.4/0.25 0.2/0.25 0.1/0.25 0.6/1.0 0.3/1.0 0.15/1.0 0.8/0.8 0.4/0.8 0.2/0.8 �

Table 4.1: P/R results for selected feature sets and algorithms. P/R rates are stated after the first 5,10 and 20 images were
retrieved. In the last column the quality of the retrieval performance by visual impression is given.

60

4.4. COMPLEXITY PROBLEM

4.4 Complexity problem

Although the retrieval method developed above performed well from a quality
point of view, the processing time was not good, even for relatively small image
collections with about 1000 pictures. The time for processing a query on the
test image collection (1406 images) using the JP2FeatureFinder was 25 seconds1.
Comparing subband histograms, especially with KLD, is expensive, since a lot of
values have to be processed.

4.4.1 Generalized Gaussian Density

Following [34], a solution to this problem can be to model the pdf of the wavelet
coefficients as a Generalized Gaussian Density (GGD). It is defined as:

P(x;α,β) =
β

2αΓ(1
β)

e
(|x|/α)β

(4.1)

whereΓ(.) is the Gamma function:Γ(z) =
∫ ∞

0 e−ttz−1dt, z> 0

The distribution can be modelled by using only two parameters,α andβ. α is
sometimes called the “scale” parameter, since it denotes the width of the pdf peak.
β is referred to as the “shape” parameter, since it is inversely proportional to the
decreasing rate of the peak ([34] p.149).

As shown in [34] p.150, the parametersα andβ can be approximated using the
maximum likelihood estimator2. β̂ can then be computed by solving the equation

1+
Ψ(1/β̂)

β̂
− ∑L

i=1 |xi |β̂log|xi |
∑ |xi |β̂

+
log(β̂

L ∑L
i=1 |xi |β̂)
β̂

= 0 (4.2)

numerically. Ψ(.) is the Digamma or Psi function, i.e.Ψ(z) = Γ′(z)/Γ(z). The
solution can be found using the Newton-Raphson iterative procedure. The value

1using a computer with an AMD Athlon XP 1800+ processor
2The maximum likelihood estimate for a parameterµ is denoted ˆµ.

61

4.4. COMPLEXITY PROBLEM

for β is incrementally improved until a desired accuracy is obtained. Using good
start values can speed up the process tremendously.

Appendix A of [34] shows this process in detail:

Take the left hand side of (4.2) asg(β̂). The next better value forβ, βk+1 can be
found based on the previous guess ofβk, following:

βk+1 = βk−
g(βk)
g′(βk)

(4.3)

where

g′(β) =−Ψ(1/β)
β2 −Ψ′(1/β)

β3 +
1
β2

− ∑L
i=1 |xi |β(log|xi |)2

∑L
i=1 |xi |β

+

(
∑L

i=1 |xi |βlog|xi |
)2

(
∑L

i=1 |xi |β
)2

+ ∑L
i=1 |xi |βlog|xi |
β∑L

i=1 |xi |β
−

log
(

β
L ∑L

i=1 |xi |β
)

β2

(4.4)

To solve the problem, additionally to the gamma function (Γ) and the digamma
function (Ψ), the first polygamma (or trigamma) function is needed (Ψ′). To
compute gamma, a library function of CERN colt [5] was used, for the di- and
trigamma functions C gsl (GNU scientific library [10]) functions were ported to
Java.

To find a good start value for b, a moment matching procedure can be used. [34]
states that for a GGD the ratio of the mean absolute value to standard derivation
is a steadily increasing function ofβ:

FM(β) =
Γ(2/β)√

Γ(1/β)Γ(3/β)
(4.5)

If m1 = (1/L)∑L
i=1 |xi | andm2 = (1/L)∑L

i=1x2
i are estimates for the mean absolute

value and the variance, then the initial guess forβ can be given by:

β̄ = F −1
M

(
m1√
m2

)
(4.6)

62

4.4. COMPLEXITY PROBLEM

This equation is solved by generating a lookup table with the values of the function
FM and the corresponding values ofβ.

Once a good value forβ is obtained (∆ < 10−6), α̂ can be computed by using the
equation:

α̂ =

(
β
L

L

∑
i=1
|xi |β

)1/β

(4.7)

Experiments of [34] as well as our results show that usually 3-5 iterations are
necessary to obtain a good value forβ.

4.4.2 KLD for GGD

Having now obtained only two parameters to describe the pdf of the wavelet coef-
ficients, storage space and retrieval complexity is greatly reduced. In order to find
out how similar two GGD distributions are, they can again be compared using the
KLD. The KLD for GGDs is given by [34]:

KL[P(x;α1,β1)||P(x;α2,β2)] =log

(
β1α2Γ(1/β2)
β2α1Γ(1/β1)

)
+
(

α1

α2

)β2 Γ((β2 +1)/β1)
Γ(1/β1)

− 1
β1

(4.8)

As it was the case with the KLD on histograms of different subbands, here again
a chain rule can be applied to compute the overall similarity of two imagesI1 and
I2. It is computed as the sum of the distances across all subbands:

KL[I1||I2] =
B

∑
j=1

KL[P(x;α(j)
1 ,β(j)

1)||P(x;α(j)
2 ,β(j)

2)] (4.9)

with B denoting the number of subbands.

63

4.4. COMPLEXITY PROBLEM

4.4.3 Parameter distribution

When investigating the distribution of theα andβ parameter across all subbands
of all images in the database3, we came across an interesting property of the distri-
bution of theα parameter: it follows the Zipf law. It was named after the linguist
George Zipf who surveyed the occurrence of words in long English texts. Citing
[30] p.4, the law is:

“If one counts the occurrences of each distinct word in a long enough text and
plots the number of occurrences as a function of the rank,r, i.e. the position of
the word in a table ordered with respect to the number of occurrences from the
most to the least frequent word, one finds thatf (r), the number of occurrences of
the word of rankr, and its rank are related by

f (r)≈ A1r−ζ, (4.10)

whereA1 is constant andζ≈ 1.”

Word frequency follows this rule not only in the English, but also in other lan-
guages, even artificial ones like programming languages [31]. Population densi-
ties of cities or web server access statistics have also been observed to follow this
law. Wentian Li gives an overview about documents published on that topic on
a web-page [23]. It would be interesting to evaluate if this fact can be exploited
for image retrieval, for example, by discarding very common parameters from the
search.

A graphical representation of parameter distribution is shown in figure4.9. When
plotting the frequency of individualα values of the GGD on a double logarithmic
scale, the values approximately form a line.

312 parameters per each of the 1406 images: this yields 16872 parameters

64

4.4. COMPLEXITY PROBLEM

Figure 4.9: Distribution of theα andβ parameter of GGDs.

4.4.4 Fitting inaccuracies

Using GGD parameters, the gain in speed was great, answering queries in a frac-
tion of the processing time used for histograms. The processing time for a query
on the test image collection was now only 0.2 seconds4. Although retrieval perfor-
mance was good, the results differed from those obtained on subband histograms.
For this reason, the quality of the GGD fits was analyzed.

In the following section, examples of images and the corresponding histograms
of inner (resolution level 1) and outer (resolution level 4) subband coefficients of
component 0 are displayed. Additionally fitted curves depending on theα andβ
parameters are shown. Please note that the scale of the y-axis is only the same
in blocks that appear together. Otherwise they are adapted to the specific image
group. Images containing a mixture of textured regions are usually modelled well
by GGDs. In order to find out where difficulties lie, three special cases were ana-

4using a computer with an AMD Athlon XP 1800+ processor

65

4.4. COMPLEXITY PROBLEM

lyzed: heavily textured images, smooth images and images with hard partitioned
regions containing smooth and textured regions.

Texture images
One extreme case to be found in an image database are images that contain a lot
of structure and fine details, like the picture of a cactus garden or the memorial
stone surrounded with plants shown in figure4.10. The distribution of the wavelet
parameters is widely spread and modelled sufficiently good by the GGD. The
outer subbands are more smoothly distributed than the inner subbands, since more
values contribute to the statistic.

Smooth images
The other extreme are images that contain a lot of smooth regions and hardly any
rapid changes in color or contrast. Gradient distribution of color prevails. Here
most of the wavelet coefficients have a value around 0 (or around 128 in the un-
signed case). This results in a very large peak, decreasing rapidly. A distribution
like that is not modelled accurately, the red curve shows that the real value of the
center peak is much greater in reality than the approximation by the GGD curve.

Example fits are shown in figure4.11. The picture of the eye is slightly blurred in
the region of the lid, revealing more details (values are more widely distributed)
at the lower resolution subband. The underwater image of the fish however is so
cloudy that no significant structure can be found, even in the lowest resolution
subband.

Arbitrary images
Common images are likely to contain either part - very vivid, textured areas and
smooth regions - like a sky or another gradient area. In certain cases the two
“types” of distribution can be distinguished in the histogram: Quite a number of
coefficients have a big distance to the center, building a kind of base. The other
values are very close to the center, building a large peak in the middle of the base.
This type of distribution can not be captured accurately with a single GGD model,
as can be seen in figure4.12.

To illustrate the influence of the different parts of the picture “crowd and sky” from
figure4.12, it was cut into two halves. The wavelet coefficient histogram of each
sub-image reveals the contribution of coefficients to the original histogram. It can
be seen that the smooth region (sky) contributes only values in the center, where
as the coefficients of the part showing the crowd are much more widespread.

66

4.4. COMPLEXITY PROBLEM

bandHL1

bandHL4

Figure 4.10: Histograms of wavelet coefficients and fitted GGD curves for heavily
textured images

67

4.4. COMPLEXITY PROBLEM

bandHL1

bandHL4

Figure 4.11: Histograms of wavelet coefficients and fitted GGD curves for very
smooth images

68

4.4. COMPLEXITY PROBLEM

bandHL1

bandHL4

Figure 4.12: Histograms of wavelet coefficients and fitted GGD curves for arbi-
trary images

69

4.4. COMPLEXITY PROBLEM

bandHL4

Figure 4.13: Coefficient contribution of selected parts of an image.

4.4.5 Gaussian Mixture Models

To improve fitting performance, another model to represent feature densities was
investigated: Mixture Models. Following Blimes [28] p.3, a mixture density has
the form:

P(x;Θ) =
N

∑
i=1

wiPi(x;θi) (4.11)

where the parameters areΘ = (w1, . . . ,wN;θ1, . . . ,θN), such that∑N
i=1wi = 1, and

eachPi is a density function parameterized byθi . The function used can be any
valid probability density function, i.e. any set of non-negative functions integrat-
ing to one ([54] p.70). Gaussian densities seem to be well suited for that task, so
a commonly used Mixture Model is the Gaussian Mixture Model (GMM).

According to S. Bengio [27], a Gaussian Mixture is defined as follows:

• A Gaussian Mixture Model is a distribution

70

4.4. COMPLEXITY PROBLEM

• The likelihood given a Gaussian distribution is

N (x;µ,Σ) =
1

(2π)
|x|
2
√
|Σ|

e(− 1
2(x−µ)TΣ−1(x−µ)) (4.12)

whereµ is the mean andΣ is the covariance matrix of the Gaussian.Σ is
often diagonal.

• The likelihood given a GMM is

P(x) =
N

∑
i=1

wiN (x;µi ,Σi) (4.13)

whereN is the number of Gaussians andwi is the weight of Gaussiani, with

∑
i

wi = 1 and∀i : wi ≥ 0 (4.14)

The difficulty is to determine the parameters that model a given distribution accu-
rately. The method commonly used is the Expectation-Maximization (EM) algo-
rithm that was developed by Dempster et al. 1977. The algorithm is explained by
[48] p.229 et seq.:

Given a data setD = {x1, . . . ,xM} of feature points, the probability that pointxu is
generated by the distribution equation4.13is

P(xu;Θ) =
N

∑
i=1

wiN (xu;θi) (4.15)

whereθi consists ofµi andΣi The probability that the whole data set is generated
by the distribution equation4.13is

M

∏
u=1

N

∑
i=1

wiN (xu;θi) (4.16)

This also describes the likelihoodH(Θ;x) that the vectorΘ describes the dis-
tribution of points inD. If we could maximize the value ofH, then we would

71

4.4. COMPLEXITY PROBLEM

obtain the optimal parameter vectorΘ. Usually the logarithm ofH is taken. The
log-likelihood is:

L(Θ;x) =
M

∑
u=1

log P(xu;Θ) (4.17)

Using the EM algorithm,Θ can be determined. The basic idea of the EM algo-
rithm is to try to find out which of the data pointsxu was generated by which of
the N Gaussian distributions. Then it would be easy to estimate the parameters
Gaussian by Gaussian. The ideal number of GaussiansN to capture the distribu-
tion properly can be estimated by applying the principle ofminimum description
length([48] p.321).

To determine which pointxu was generated by which Gaussian, a set of hidden
variablesyu

r is introduced, such thatyu
r = 1 if xu was generated by therth Gaussian,

and zero otherwise.

Now µr andΣr for the rth Gaussian could be determined using the formulas for
the single Gaussian, that is:

µr =
1

∑uyu
r
∑
u

yu
r xu (4.18)

and

Σr =
1

∑uyu
r −1∑

u
yu

r (x
u−µr)(xu−µr)T (4.19)

The weightwr is then given by

wr = ∑
u

yu
r

|D|
(4.20)

The value of the variablesyu
r are not known, so they have to be estimated, too. But

if we have the values foryu
r then the computation forΘ is easy. On the other hand,

72

4.4. COMPLEXITY PROBLEM

if Θ was known one could estimateyu
r by:

yu
r =

1

∑N
i=1wiN (xu;θi)

wrN (xu;θr) (4.21)

This problem can be solved iteratively: On the basis of initial parameters for
Θ better values forΘ can be obtained. Of course good start values are needed
to get good end results. Several methods exist for initialization, for example,
(hierarchical) K-Means or Gaussian splitting [28]. Once start values are available,
the algorithm given in [48] p.230 can be used:

Assume that the number N of Gaussians in the model is known. Also, letΘ be an
initial estimate for the parameter vector. Initialize stop = false.

1. while¬ stop
2. for each point xu

3. Sxu← ∑N
i=1wiN (xu;θi)

4. for r = 1, . . . ,N
5. yu

r ← 1
Sxu

wrN (xu;θr)
6. for r = 1, . . . ,N
7. wr ← 1

|D|∑uyu
r

8. µr ← 1
∑uyu

r
∑uyu

r xu

9. Σr ← 1
∑uyu

r−1 ∑uyu
r (x

u−µr)(xu−µr)T

10. L(Θ) = ∑u log ∑N
r=1wrN (xu;θr)

11. if |L(Θ)−Lold

Lold |< ε
12. stop = true
13. else
14. Lold← L(Θ)

See [27] and [28] for proof of convergence and exact derivation of the formulas.

In order not to have too much values to store and compare, we did without exact
estimation of the numberN of Gaussian mixtures, but fixed the number to 4 in-
stead. Experiments showed that this is sufficient to model the shape of the wavelet
coefficient distribution.

73

4.4. COMPLEXITY PROBLEM

Figure 4.14: Fitting quality of GMM(red) and GGD(green) curves on subband
histograms of images with different textures.

For initialization purposes, the data space (0-255) was partitioned into 4 regions,
creating a histogram with 4 bins. The initial values forµstart

r were fixed to the
bin centers, and the start values forΣstart

r were determined using the variance of
the data. The Java implementation for the JP2FeatureFinder was based on Matlab
code from [24].

Comparisons of the GMM data fits and the GGD estimate showed that the GMM
method is superior in the cases where the GGD had troubles: images with hard
partitioned smooth and textured regions as shown in figure4.12. Figure4.14uses
data from subbandHL1 of the image “crowd and sky”.

In the other cases where the GGD performed well, especially with very textured
images, the difference is not significant. Figures4.15and4.16show that the fitting
quality is comparable. For those plots the data was taken from the fish image of
figure4.11and the memorial stone image from figure4.10.

4.4.6 KLD for GMM

In order to use GMMs for image retrieval, the similarity between two GMMs has
to be determined. This can be done using the KLD. Unfortunately determining the
KLD between mixture models is no simple task. Following Do [33], the Monte

74

4.4. COMPLEXITY PROBLEM

Figure 4.15: Fitting quality of GMM(red) and GGD(green) curves on subband
histograms of textured images.

Figure 4.16: Fitting quality of GMM(red) and GGD(green) curves on subband
histograms of smooth images.

75

4.4. COMPLEXITY PROBLEM

Carlo method can be used to approximate the integral in equation2.10, so the
equation can be rewritten as:

KL[P1||P2] = EP1[logP1(X)logP2(X)] (4.22)

If now a set of data samples{x1,x2, . . . ,xN} is generated randomly and indepen-
dently based on the model densityP1, then the KLD can be approximated by:

KL[P1||P2]≈
1
N

N

∑
n=1

[logP1(xn)− logP2(xn)] (4.23)

A drawback of this method is that the number ofN must be large to get a good
approximation. So this method is only used here to evaluate the quality of image
retrieval based on GMMs and KLD. In order to be used in a working CBIRS,
other, faster methods have to be found. A query on the test image collection
needed an average time of 6 seconds5. This is still better than direct comparison
of subband histograms, but worse than the GGD method. An other disadvantage
of calculating the KLD with this method is that the similarity between two im-
ages can change from query to query since the random data samples and thus the
estimated value of the KLD can change.

However, using this method it could be shown that retrieval performance for the
“trouble” images can be improved. For the other images few difference could be
observed. This can be explained by looking at the quality of the data fits: the
textured and smooth images were approximated equally well, the improvement
was mainly made with images containing different types of textures. Example
queries were performed with three types of images: smooth images (the fish image
from figure 4.11), textured images (the memorial stone of figure4.10) and an
image with clearly divided smooth and textured areas (image with crowd and sky
from figure4.12). For all those images queries were performed using GGD and
GMM fits and the results were compared. The similarity was determined using
the KLD, and the first 10 images retrieved were compared. See figure4.17, 4.18
and4.19for the results of the queries.

5using a computer with an AMD Athlon XP 1800+ processor

76

4.4. COMPLEXITY PROBLEM

Figure 4.17: Texture query for an image with smooth and textured regions using
GGD and GMM data fits.

77

4.4. COMPLEXITY PROBLEM

Figure 4.18: Texture query for a heavily textured image using GGD and GMM
data fits.

78

4.4. COMPLEXITY PROBLEM

Figure 4.19: Texture query for a smoothly textured image using GGD and GMM
data fits.

79

4.5. IMAGE QUALITY

4.5 Image quality

A drawback of the wavelet coefficient method is that it is quite vulnerable to dif-
ferent image qualities. In figure4.20, two visually similar images having different
quality are compared. The bad image is very blurred and some regions are missing
because of a reflection. It can easily be seen that the wavelet coefficient distribu-
tions are quite different. The blurred image produces values very near to the center
forming a large peak, whereas the other image produces coefficients that have a
greater distance from the center.

This is an inherent problem of the subband coefficient method. Images are only
likely to be found if they are about the same quality. A solution to this problem
might be to preprocess (filter) the images before indexing, but superior perfor-
mance will not be obtained for different images qualities.

4.6 Summary

To summarize the knowledge gained in the development process described in this
chapter, the results are concluded here:

1. Image similarity can be measured by comparing wavelet coefficient distri-
bution of corresponding subbands.

2. The wavelet coefficient method is sensible to different image qualities. Good
retrieval results can only be achieved for images with approximately the
same quality.

3. For color based retrieval, the color information contained in subbandLL0

of each component is used. The originalYDbDr color space is reduced,
where a partition of 5x8x8 performed best in experiments. The values are
quantized to this range. Histograms using these quantized values can be
created and compared using HI or KLD.

4. Structural similarity can be judged by only considering subbands from com-
ponentY, omitting subbandLL0. 80 bins per histogram performed best in
the experiments. As a distance measure, HI and KLD can be used. The pro-
cessing time was insufficient though, since direct comparison of histograms
has a high complexity.

80

4.6. SUMMARY

bandHL1

bandHL4

Figure 4.20: Subbands of similar images having different quality

81

4.6. SUMMARY

5. To reduce retrieval complexity and the amount of data stored, the subband
coefficient distributions can be modelled as GGDs. A closed form KLD for
GGDs is available, so the similarity between images can be measured accu-
rately. The fitting quality of the GGD is well except for certain distributions
where large smooth and very textured regions appear in the same image.
Retrieval speed is greatly improved by the GGD method.

6. GMMs are better suited to model all types of wavelet histogram shapes.
In this work, only a Monte Carlo approximation of the KLD for judging
the similarity between images was used, so an improvement could only be
observed from a quality point of view. Retrieval speed was worse than for
GGDs, but at least better than with direct histogram comparison (KLD and
HI).

7. Compound queries using both texture and color features perform best. For
this purpose, two specialized queries are carried out and the results are
merged. Merging the results using their scores and then normalizing again
performed superior in these tests.

82

Chapter 5

Integration in GIFT

The retrieval methods developed in the previous chapter were integrated into an-
other image retrieval system: the GNU Image Finding Tool (GIFT). The benefits
of integrating an algorithm into an existing framework are obvious: all features
offered by the GIFT can be used. For example, since GIFT is a client server based
system, now various users can access the retrieval methods over the internet. As a
communication protocol GIFT uses MRML (Multimedia Retrieval Markup Lan-
guage), which allows arbitrary applications that support MRML to communicate
with the system. So not only user interfaces can connect to the server, but also
other applications as, for example, the benchmarking program used in the next
chapter for evaluation purposes.

5.1 GIFT

GIFT is a tool for CBIR written in C++. It was developed by theViper group at
the University of Geneva and can be obtained from [9]. It is distributed under the
GNU General Public License (GPL). A detailed description on how to install and
use the software can be found in [41, 42]. [45] describes how GIFT works and
how it can be extended:

GIFT is basically a system that administers a set of plug-ins. It creates them
when needed, supports the infrastructure used by them and destroys them when
they are superfluous. There are two major types of plug-ins: query processors

83

5.2. CONFIGURATION AND STARTUP

and query accessors. The task of query processors is to receive requests and to
process them. They can consist of several other query processors, so queries are
not restricted to one particular type. For that purpose a tree structure of query
engines is built, and the nodes either process the queries or they assemble the
results. Query accessors deal with everything that has to do with accessing image
characteristics, for example, feature data. Several query processors can share one
accessor.

The architecture of GIFT makes it possible to quickly add new components sim-
ply by providing new plug-ins. They have to be implemented as shared libraries
and stored in the library directory of the server. When they meet certain require-
ments, for example, the library names satisfy certain rules (they have to start with
“libGIFTAc” or “ libGIFTQc” and end with “.so”) and they provide certain func-
tions, then they are identified as valid plug-ins.

5.2 Configuration and startup

This is a brief overview about configuring and starting GIFT as far it is necessary
to understand the development of the plug-in in the next section. A far more
detailed description is given by the document “configuring-and-hacking-the-gift”
provided with the GIFT software package.

When starting the server, a config-file (gift-config.mrml) must be provided
to determine the configuration. The main purpose of the configuration file is to
record the image collections and the retrieval methods (algorithms) available on
the server along with the necessary parameters. Parts of the configuration file
are sent to the client to provide this information. As already hinted by the end-
ing “.mrml” the syntax used is MRML. MRML is based on XML (Extensible
Markup Language) and was especially developed for multimedia retrieval. It is
used as communication protocol between client and server as well as configura-
tion language. More information on MRML can be found in [20].

<algorithm-list >
In the configuration file, the tag<algorithm-list> marks the beginning of a list
of <algorithm> tags. Each<algorithm> tag contains information necessary for
correctly executing a retrieval algorithm on the server. An example<algorithm>
tag used for the JP2 plug-in can be seen in the following listing:

84

5.2. CONFIGURATION AND STARTUP

<algorithm cui-base-type="jp2" c-weight="1" s-weight="1"
algorithm-id="a-jp2GGDLLoKLD"
algorithm-type="a-jp2GGDLLoKLD"
algorithm-name="JPEG2000"
featureset-prefix="tsrfts_compGGDLLoHI">

<query-paradigm-list>
<query-paradigm type="jp2"/>

</query-paradigm-list>

<property-sheet property-sheet-id="jp2prop"
property-sheet-type="subset"
send-type="none" minsubsetsize="2" maxsubsetsize="2">

<property-sheet property-sheet-id="jp2prop-1-1"
caption="color-weight"
property-sheet-type="numeric" send-type="attribute"
send-name="c-weight" from="0" to="10" step="1"
send-value="1"/>

<property-sheet property-sheet-id="jp2prop-1-2"
caption="structure-weight"
property-sheet-type="numeric" send-type="attribute"
send-name="s-weight" from="0" to="10" step="1"
send-value="1"/>

</property-sheet>
</algorithm>

The attributecui-base-type is used by GIFT to determine which query proces-
sor class has to be instantiated to handle the query. In our case it is the JP2 query
processor: CQuJP2. The attributealgorithm-type determines the specific type
of the algorithm. In the development process of the JP2 indexing method dif-
ferent feature sets and weighting schemes were developed. In order to specify
a certain method, this tag is used. A query engine matching this algorithm type
gets constructed. Thealgorithm-id denotes a certain instance of an algorithm
in case there are more algorithms of the same type in a query tree. Since the
JP2 plug-in developed only consists of a single element, theid is the same as the
type. Users might not cope well with algorithm IDs and types, so the attribute
algorithm-name is used to provide a human readable name for the algorithm to
display in a user client.

In order to decide which algorithm can be used for which collection, the tag
<query-paradigm> can be used.<collection> elements also have those tags,
and an algorithm should only be applicable to a collection when the query para-
digms match. However, the implementor of a new plug-in has the responsibility
to ensure this or to take other precautions that only matching pairs can be used.

85

5.2. CONFIGURATION AND STARTUP

As explained in the previous chapter, the user should have the freedom to spec-
ify weights for color and texture. This can be done by using a property sheet.
The property sheet is used by a client to create a menu which has the selection
possibilities described by the property-sheet. When a user now selects values,
they get transmitted with the query. If no values are specified, the default values
recorded in thec-weight ands-weight attributes of thealgorithm tag in the
gift-config.mrml file are used.

Since different JPEG2000 algorithms might use different feature sets (for exam-
ple, GMMs or GGDs), the attributefeatureset-prefix was added to the stan-
dard algorithm tag. It is used by the JP2 accessor to get a feature set of a particular
type, since feature files for different types of features are stored in individual sub-
directories.featureset-prefix specifies this subdirectory.

<collection-list>
Similarly to the<algorithm-list> tag, the<collection-list> tag in the gift-
config file is followed by a list of elements, here of course<collection> ele-
ments. These elements contain all information needed by the accessor to obtain
collection data. A sample tag for a collection element looks like this:

<collection collection-id="c-11-2-63-44-11-000-6-361-5"
collection-name="TSR2500"
cui-base-dir="/home/alex/gift-indexing-data/ftsTSR"
cui-feature-description-location="FileFeatureDesc.db"
cui-feature-file-location="url2fts.xml">

<query-paradigm-list>
<query-paradigm type="jp2"/>

</query-paradigm-list>
</collection>

The collection-id attribute is used by the server to uniquely identify a col-
lection, where thecollection-name is used for display in the user client. The
attributecui-base-dir denotes the root directory for the collection. The lo-
cation of the files used for getting feature data (cui-feature-description-
location andcui-feature-file-location) are relative to that path. The file
FileFeatureDesc.db is basically a table where feature IDs and corresponding
types are stored. The type denotes, wether a feature is a histogram feature, a GGD
feature or a GMM feature. This information is necessary to determine the right
weighting function for calculating the image similarity as described in4.2. The
feature files themselves only contain the feature ID and the feature values. The file

86

5.3. JP2 PLUG-IN

specified bycui-feature-file-location is very important since it holds the
location of all image, feature, and thumbnail data used for displaying the image
in the client and calculating image similarity. The contents of anurl2fts-file for
an tiny image collection consisting of 2 images could look like this:

<image-list>
<image url-postfix="http://viper.unige.ch/images/TSR/tsr1.jp2"

thumbnail-url-postfix="http://viper.unige.ch/images/TSR/tsr1.jpg"
feature-file-name="/home/alex/gift-idata/ftsTSR/*/tsr1.fts"/>

<image url-postfix="http://viper.unige.ch/images/TSR/tsr2.jp2"
thumbnail-url-postfix="http://viper.unige.ch/images/TSR/tsr2.jpg"
feature-file-name="/home/alex/gift-idata/ftsTSR/*/tsr2.fts"/>

</image-list>

The star in the attributefeature-file-name is replaced by the JP2 accessor with
thefeatureset-prefix value in order to find the right feature file, as explained
above. To start up GIFT one has to simply specify the port on which GIFT should
listen and the directory where the configuration file is:

gift 12790 ˜/GFIT/gift-home

Now the server accepts requests and sends answers back to the client.

5.3 JP2 plug-in

To create a plug-in for GIFT, the base files can be generated by a perl script called
“gift-plugin-maker.pl”. Parameters needed are the name of the plug-in and
the location where the directory structure created by the script should go. The files
created are the header files and files with empty method bodies required by GIFT.
It also installs files to correctly configure and make the empty plug-in. When
examining the code generated, the main types of plug-ins can be found again: the
query processor and the accessor. Two new shared libraries, libGIFTQuJP2 and
libGIFTAcJP2 have now to be filled with function.

87

5.3. JP2 PLUG-IN

5.3.1 libGIFTQuJP2

The main class in this library is CQJP2, derived from the class CQuery, which
does most of the initialization needed for a query processor. CQuery is already
provided by the GIFT framework. A CQJP2 instance is created by GIFT when a
user wants to query using the JPEG2000 retrieval method. This is the case when
he selects an algorithm where the value of the attributecui-base-type is “jp2”.
The constructor gets two parameters:

CQJP2::CQJP2(CAccessorAdminCollection& inAccessorAdminCollection
CAlgortihm& inAlgorithm):
CQuery(inAccessorAdminCollection, inAlgorithm)

The parameterinAccessorAdminCollection is used by the base class to do
initialization work. For example, the member variable mAccessorAdmin is ini-
tialized. It can be used to request an appropriate accessor. The mAccessorAdmin
decides if a new accessor has to be constructed, or if an existing one can be reused.

The inAlgorithm element contains the information for the selected algorithm.
The default values from the config-file were eventually overridden by the property-
sheet values sent by the client. This information can be used to initialize the query
object.

Once the query processor and an appropriate accessor are instantiated, the main
function called when an actual query arrives is thequery-method:

CXMLElement* CQJP2:query(const CXMLElement& inQuery)

88

5.3. JP2 PLUG-IN

The input parameter inQuery is an XML element that contains aquery-step
element:

<query-step algorithm-id="a-jp2GGDLLoHI"
collection="c-55-2-6-361-11" result-cutoff="0.0" result-size="10"
session-id="d7a8f840-6a75-489b-a0f3-9999bf624469">

<user-relevance-element-list >
<user-relevance-element

image-location="http://viper.unige.ch/images/TSR/tsr0128.jpeg"
user-relevance="1" />

<user-relevance-element
image-location="http://viper.unige.ch/images/TSR/tsr2177.jpeg"
user-relevance="0" />

<user-relevance-element
image-location="http://viper.unige.ch/images/TSR/tsr0273.jpeg"
thumbnail-location="" user-relevance="-1" />

</user-relevance-element-list>

</query-step>

Thealgorithm-id andcollection attributes determine which collection should
be used and which type of algorithm should be executed. Theresult-size tells
how many images the client awaits as a response.

Within theuser-relevance-element-list tag, a list of images with relevance
information provided by the user is contained. The parameterimage-location is
important: this information is used to identify an individual image in the collection
by the accessor. The user can specify the relevance of an image via the parameter
user-relevance. A relevance value of 1 indicates that the user is looking for an
image that looks like this, where a value of -1 means that the image is not similar
to the image the user is looking for. 0 states that the image is neutral to the query.
The original query engines of GIFT can handle queries with multiple images with
different user relevance values. The query is performed after an “artificial” input
image is generated consisting of information of all relevant and irrelevant input
images. The JP2 query processer however is not capable of such queries, since
it is not obvious how to calculate a compound query image for GGD or GMM
parameters. Future work could deal with this topic. If a query with multiple
images containing relevance information arrives, all irrelevant images are ignored
by the JP2 query processor and only the first relevant image is considered.

Once the query image is determined, the feature set of the image is fetched by the
JP2 accessor, which is then used to query for images. The retrieval process itself is

89

5.3. JP2 PLUG-IN

very similar to the one used by the JP2FeatureFinder described in section4.2. All
necessary classes were ported from Java to C++. Please see the javadoc documen-
tation provided with the JP2FeatureFinder for details. The system is as flexible
as the JP2FeatureFinder concerning the possibility of combining different query
engines that deal with specific types of features. Weighting functions are used to
determine the similarity of images and the results are stored in a score board. The
scores are normalized and a list of relevant images is obtained. Only the feature
sets of the two currently compared images are held in memory, afterwards they
get destroyed.

In order to send the result back to the server, a<query-result> element must be
constructed. A result set for 3 images could look like this:

<query-result >
<query-result-element-list >

<query-result-element
calculated-similarity="1.000000"
image-location="http://viper.unige.ch/images/TSR/tsr2099.jp2"
thumbnail-location="http://viper.unige.ch/images/TSR/tsr2099.jpeg" />

<query-result-element
calculated-similarity="0.681717"
image-location="http://viper.unige.ch/images/TSR/tsr1540.jp2"
thumbnail-location="http://viper.unige.ch/images/TSR/tsr1540.jpeg" />

<query-result-element
calculated-similarity="0.640418"
image-location="http://viper.unige.ch/images/TSR/tsr0340.jp2"
thumbnail-location="http://viper.unige.ch/images/TSR/tsr0340.jpeg" />

</query-result-element-list>
</query-result>

The purpose of the attributes can be easily guessed from their names. The user
client can use the thumbnail file to display the image in a browser, where as the
image-location tells where to get the image itself. The information needed to
construct the tag is fetched from the JP2 accessor, which has access to the file that
contains this information.

90

5.3. JP2 PLUG-IN

5.3.2 libGIFTAcJP2

The accessor CAcJP2 has the purpose to fetch image data and make it available
to JP2 query engines. It is derived from the class CAcURL2FTS already ex-
istent in the GIFT software package. This base class provides functions to ac-
cess elements of anurl2fts.xml file. The elements contained in this file are
explained above. The only parameter passed to the CAcJP2 constructor is the
inCollectionElement. It contains all information of a<collection> tag.

CAcJP2::CAcJP2(const CXMLElement& inCollectionElement);

The core function provided by the AcJP2 accessor is:

JP2FeatureSet* getFeatureSet(TID tid, string fs_prefix);

ThegetFeatureSet function constructs a feature set for images identified by an
ID. The ID of an image gets determined on construction time of the accessor, when
theurl2fts.xml file is parsed. The ID of an image can be obtained by calling
the functionURLToID(const string& inURL) provided by the base class.

To create the feature set, the information contained in theFileFeatureDescrip-
tion.db and the feature files specified by theurl2fts.xml file are used. In
order to get the right feature set, the feature file names of theurl2fts.xml are
completed by the stringfs_prefix. As already mentioned, the featureset-prefix
denotes the subdirectory where specific feature files can be found. A reference to
the newly constructed feature set is sent back to the calling query processor.

Besides the creation of the feature sets, information about the image and thumbnail-
image location used to construct the result set are provided by the accessor. This
information is again taken from theurl2fts.xml file. So, the JP2 query accessor
provides all data necessary for the query processor to answer a request.

91

Chapter 6

Performance evaluation

To judge the quality of the indexing methods developed, the performance had
to be evaluated. In order to obtain unbiased results, it is not sufficient to only
view the first few images returned by the query. Even if the images retrieved are
very similar and the tester of the system seems pleased therefore, the performance
might still not be well. There could be more relevant images having a low score
and thus not appearing in the result set.

It is necessary to find a way to judge retrieval performance more objectively. Sev-
eral aspects have to be considered, for example, the test image database, the way
relevance information is obtained or how results are evaluated. In the following
section, these topics are briefly discussed, using material from [43, 50].

6.1 Image databases

It is necessary to have an image collection to work with. Usually existing compo-
sitions like the Corel image collections for arbitrary images or the VisTex database
for texture images are used. There is a huge variety of different image collections
and subsets of them in use. So it is difficult to compare the results obtained.
Another problem is that many of those databases are copyrighted and thus the ex-
periments can not be reproduced easily by other research groups [43]. It would be
desirable to have an universal, royalty free database for benchmarking CBIRS in
order to obtain comparable results. Some institutions already offer such databases,

92

6.2. RELEVANCE INFORMATION

for example, the University of Washington [13]. The benchathlon network [2] has
more ambitious goal: to set up a joint CBIR evaluation framework. One task
among others is to create an image database with the properties mentioned above.
The images used so far in this thesis are from the benchathlon collection.

For the tests in section6.4 it was possible to use the TSR2500 image database
of the Viper group of the university of Geneva [11]. This database is a subset
of the TSR10000 collection that was created from analog tapes provided by the
Télévision Suisse Romande (TSR), a Swiss TV channel, for research issues. Indi-
vidual images were generated from these tapes by using a frame grabber [4] and
scaled to the size 128x128. All images remain property of the TSR.

6.2 Relevance information

An image collection alone is not sufficient. It must be determined which images
are similar to which other images. For this purpose, “ground truth” data has to
be acquired. Various definitions of this term can be found, depending on the
area in which the term is used. For example, geologists use this term to describe
information collected in the field as opposed to data remotely obtained by satellites
[3]. In the image processing area ground truth denotes reliable information which
images are similar.

Of course it is difficult if not impossible to obtain universally valid ground truth
data. [43] p.5. describes several different methods to obtain this data. The best
way seems to be the most time consuming: Obtaining relevance information by
user judgements. A user is given a query image and then has to browse the entire
image collection to determine which images are relevant. The results can of course
differ from user to user.

Ground truth for the benchathlon collection is not available yet, but already on the
project schedule. Relevance information for some of the test images was created
for this thesis, in order to judge the first results in chapter4. Since it is always
problematic if the designer of a system and the creator of the relevance informa-
tion is the same person, this data was used only in the beginning. For extensive
tests however, it is better to have unbiased data.

93

6.3. PERFORMANCE MEASURES

For the TSR2500 collection relevance information is available. It was created by
3 different test users who each had to search for images similar to 14 test images.
The test users were members of theVipergroup. The selection of those 14 images
was random. For each query image, the whole collection was browsed and similar
images were registered.

6.3 Performance measures

Once an image collection is chosen and relevance information is available, perfor-
mance can be measured. There exist a variety of different performance evaluation
methods. [43] p.6 et seqq. gives an overview. Most of the techniques used are
derived from text retrieval evaluation. The most commonly used measure is:

Precision and recall (P/R):Precision is the fraction of the images returned that
are relevant to the query, where as recall is the fraction of the total number of
relevant images that are returned ([54] p.185):

precision=
|R∩T|
|T|

(6.1)

recall =
|R∩T|
|R|

(6.2)

whereR is the set of images that are relevant to the query,T is the set of returned
images and|A| is the cardinality of setA.

Precision and recall have to be evaluated together, since the recall of a query
depends heavily on the number of images retrieved [43]. For this purposeP/R
graphscan be used as shown in the following tests. In order to create a P/R
graph, several levels of recalll1, . . . , lm are established.T i is the smallest set of
returned images that satisfy recall levell i . Precision is measured for eachT i an
the results are used to create a P/R curve ([54] p.185). Usually this process is
repeated for different queries and then averaged. Evaluating a P/R graph, it is
possible to judge the performance of a query precisely. In general, high precision
rates indicate good performance, this means the higher a curve is, the better the
retrieval result. But more information can be obtained. For example, if the curve

94

6.4. EVALUATION

drops early, it means that few relevant images appear in the first result positions.
When the precision at high recall rates is very low, it means that a lot of images
have to be retrieved until the last relevant image is found.

Another way of relating precision and recall is to useP(10), P(20), P(NR). This is
the precision achieved after the first 10, 20 orNR images.NR denotes the number
of relevant images in the database according to this query. The testFramework
usedP(5), P(10) andP(20) to evaluate the quality of the different methods. It is
also possible to consider recall at a given precision rate.

6.4 Evaluation

The following tests were made using the TSR2500 image collection with manu-
ally generated ground truth as described above. The benchmark itself was per-
formed by a benchmarking harness (snakemeter, [44] p.115 et seqq.) which com-
municates with the GIFT server via MRML. Query requests are sent to the server
and the results are stored in a database. Using relevance information, P/R graphs
can be generated.

The various test results for the different JPEG2000 feature sets and similarity
measures were compared to the default query algorithm used in GIFT. In GIFT, the
features are created in the following way: the images are first scaled to 256x256
pixel, then 4 types of features are extracted [41]:

1. Color histogram: As a base for the global color histogram aHSV color
space using 18 hue, 3 saturation and 3 value partitions plus 3 grey values is
used. This yields 166 different colors a pixel might have.

2. Color block: To be able to represent local color properties, the images are
recursively divided into regions until the smallest blocks are 16x16 pixels
wide. In each region, the most frequent color is recorded.

3. Gabor histogram: In order to capture texture properties, GIFT uses his-
tograms of Gabor filtered data. 12 different Gabor filters are used: filters in
4 different directions and 3 different resolutions.

4. Gabor block: Gabor blocks follow the same objective as color blocks: they
restore the loss of spatial information when using histograms. Unlike the
color blocks, only the smallest blocks (16x16) are considered.

95

6.4. EVALUATION

Each feature group is evaluated separately by a specialized query engine, and the
results are then combined. Usually GIFT uses relevance feedback to improve
query results. Since the JPEG2000 retrieval method is not capable of doing so,
the default GIFT algorithm queries were also performed without feedback.

Concluding the results of chapter4, features used for JPEG2000 image retrieval
were:

1. Color histogram The lowest resolution subband (LL0) of all three compo-
nents was used to create a color histogram. TheYDbDr color space was
partitioned into 5x8x8 parts and the original colors were quantized to this
reduced color space. The color histogram was both compared using HI and
KLD.

2. Texture histogram The wavelet coefficients of each subband at all resolu-
tion levels of componentY except the lowest resolution subband (LL0) were
used to create histograms. 80 bins were used to model the distribution. Sim-
ilarly to the color histogram, the texture histograms were compared using
HI and KLD.

3. Texture GGD Generalized Gaussian Densities were used to represent the
subband coefficient distributions. Here the KLD served as a distance mea-
sure.

4. Texture GMM Gaussian Mixture Models with 4 Gaussians were also used
to capture the wavelet coefficient distribution of each subband. A Monte
Carlo approximation of the KLD was used to estimate the similarity.

Compound feature sets consisting of features belonging to one color and one tex-
ture feature type are used to retrieve images. The different types of features are
evaluated separately and the results are merged using their score.

In the tests of chapter4, JPEG2000 images with 5 resolution layers were used.
Since the TSR2500 images are rather small (only 128x128 pixels), the applica-
tion of 5 decomposition stages in the wavelet transform is too much to get good
statistics in the lower resolution subbands. The smallest subbands then consist of
only 8×8= 64 widely distributed pixels making it difficult for the GGD to model
the distribution accurately. For this reason, additional tests with 4 and 3 resolu-
tion levels were performed. In the following tests, the number of resolution layers
used is marked; when nothing is stated, the number of resolution levels is 4.

96

6.4. EVALUATION

Figure 6.1: Structure query with different types of resolution layers

6.4.1 Evaluation of texture retrieval

In this section, the performance of the different texture query methods is exam-
ined. As described above, ground truth for the TSR2500 was created for color and
texture features together. Although in our opinion it is difficult to use this ground
truth for color and texture features separately, the following tests were made to at
least estimate the influence of different methods on retrieval performance.

Figure6.1shows the effect of using different JPEG2000 resolution levels. GGDs
were chosen as an example, being most sensitive to the distribution of wavelet
coefficients. It can be seen that retrieval performance differs, with 4 resolution
levels being the best on average. 3 resolution levels only perform better up to a
recall rate of 0.4, then performance drops below the curve for 4 and 5 resolution
levels. So 4 resolution levels were chosen as default value for the tests.

Looking at figure6.2, it can be seen that the comparison of wavelet coefficient
histograms using HI performes much better at all recall rates than the compar-
ison using KLD. This is very surprising, since the KLD is more accurate from
a probabilistic point of view. However, this observation might be explained by a
property of the feature data: many histogram values are zero. Subband histograms
contain around 15% - 40% zero values depending on the amount of texture in the

97

6.4. EVALUATION

image. Very smooth images might have zero values around 90%. When the KLD
is calculated, the logarithm of the fraction of the feature probability values must
be calculated (see equation2.10). These zero values are a problem, both for the
division process and the logarithm. In the current implementation all zero values
are replaced by very small numbers (0.0000001) to be able to compute the KLD.
Of course this introduces small errors, which may accumulate. Histogram inter-
section on the other hand is not affected by zero values, because only bins being
not zero are considered.

The retrieval performance of the GGD features is good. It is similarly precise as
direct comparison of the subband histograms using HI. The latter one performs a
bit better at lower recall rates, the former at higher ones. At recall rates of 50%
and higher, GGD even performs best of all texture retrieval methods tested.

The feature set using GMMs performs slightly worse than the GGD equivalent,
remaining below the subband histogram (HI) and GGD curve at all recall rates.
This does not mean the method is worse in general, since the images from the
TSR2500 collection are all either very textured or - when showing logos or color
bars - very smooth. The type of images where the GMM approximates the coeffi-
cient distribution better (hard partitioned smooth and textured images) are seldom
found in the TSR2500 collection. So the GMM could not benefit from its advan-
tage. Since no exact computation of the KLD was available for GMMs, the Monte
Carlo approximation described in4.4.6was used.

The results obtained were also compared with the structure retrieval properties of
the default GIFT query engine. Both Gabor block and Gabor histogram features
were used. The results can be seen in figure6.3. In order not to put too many
graphs in the plot, theViperP/R graph was only compared with the two JPEG2000
methods that performed best: GGDs and subband histograms with HI. Retrieval
performance is very similar, withViper performing best up to a recall value of
0.15, subband histograms between 0.15 - 0.5 and GGDs at recall rates of 0.5 and
higher.

98

6.4. EVALUATION

Figure 6.2: Structure query with different types of features

Figure 6.3: Structure query compared toViper

99

6.4. EVALUATION

Figure 6.4: Color histogram compared with KLD and HI

6.4.2 Evaluation of color retrieval

In order to measure color similarity, color histograms were compared. As already
discovered when examining texture retrieval performance, the retrieval rate using
KLD compared to HI is worse. The explanation is the same as above: too many
zero values might spoil the accuracy of the KLD. The corresponding plots are
shown in figure6.4.

The performance of the GIFT/Viper color features are also compared in figure
6.4. It can be seen that the GIFT color features perform better than the JPEG2000
color features up to a recall of 55%. This is mainly due to the application of color
blocks. When only comparing theVipercolor histogram features to the JPEG2000
color histogram features the results do not differ that much. It might be beneficial
to also introduce color block features to the JPEG2000 feature set.

The influence of the color space is examined in figure6.5, where retrieval perfor-
mance of color histogram features based on theYDbDr color model is compared
to HSV features. The experiment confirmed the results observed with the ben-
chathlon collection earlier: similarity is judged better in theHSV space, but the
difference is not outstanding. Since the creation ofHSV features needs additional
processing time,YDbDr features are used further.

100

6.4. EVALUATION

Figure 6.5: HSV color query compared toYCbCr color query

6.4.3 Evaluation of the compound approach

Having investigated the influence of color and texture retrieval performance sep-
arately, both types were now evaluated together. The performance achieved here
is most important, since this is what the user will mainly use in order to query for
images.

An observation made by theViper team could be reproduced: retrieval perfor-
mance is improved when the different feature groups (here color and texture) are
compared and normalized separately. This means each feature group is compared
by a specialized query engine producing a result set which is then normalized to
the range of [0;1]. The final score is obtained by merging the individual results
and normalizing again. This procedure was called “separate normalization” by the
members of the group (see [44] p. 67 for further explanation). Figure6.6 shows
the effect. The structure is modelled using subband histograms, color with a color
histogram. For both types HI is taken as similarity measure. When evaluating
the features together (i.e. the scores are simply summarized for each image) the
retrieval performance at all recall rates is worse than when using separate normal-
ization.

101

6.4. EVALUATION

Figure 6.6: Features normalized together and separately

The default case for the JPEG2000 retrieval method is to process the different
types of features individually. The evaluation method just summing the scores is
only used here to show the effect.

Figure6.7shows the retrieval performance of different JPEG2000 feature sets in
comparison to the default GIFT query engine (without feedback). It shows that the
method using GGDs for texture and color histograms with HI for color performs
best, even better as the default GIFT algorithm. It is only outperformed by the
other methods at very small recall rates (up to a recall rate of 0.15). Since this
method is also the fastest one developed and also the one using the least features,
it will be the default JPEG2000 query method in the GIFT JPEG2000 plug-in.

102

6.4. EVALUATION

Figure 6.7: Color and texture features evaluated together.

103

Chapter 7

Conclusion

7.1 Summary

In this thesis, the development process of JPEG2000 retrieval methods beginning
with obtaining the data to extensively testing the results has been shown.

In order to be able to make well founded decisions, fundamentals of CBIR and
JPEG2000 were addressed in chapter2 and3.

Different JPEG2000 codec implementations were evaluated and thejasPer trans-
coder chosen to be modified to obtain wavelet coefficients. Thewcextract appli-
cation program was implemented and its functionality described in section3.4.

In chapter4 the core issue of this thesis is described: the development of retrieval
methods using JPEG2000 wavelet coefficients. Existing methods were reviewed,
and own solutions were researched. A test framework (JP2FeatureFinder) espe-
cially tailored for wavelet based data was designed to quickly develop and test
feature sets.

The wavelet coefficient distribution of corresponding subbands was compared. It
was most successful to model color and texture independently and to give the user
the freedom to emphasize either. The complexity problem of directly comparing
histograms was addressed by using Generalized Gaussian Densities. Although
retrieval speed was improved tremendously, it showed that certain wavelet coef-

104

7.2. REMAINING ISSUES AND FUTURE WORK

ficient distributions could not be modelled accurately by GGDs. An alternative
approach was searched instead and found in Gaussian Mixture Models. They are
capable of capturing the probability density better. Due to the lack of a fast method
of calculating the KLD on Mixture Models however, this was only an advantage
from a quality point of view. Retrieval speed was not sufficient.

The different retrieval methods developed were then incorporated in the GIFT
framework by creating a JP2 plug-in. The functionality and the creation of the
plug-in are described in chapter5.

Using the GIFT JP2 plug-in, the retrieval methods developed were evaluated. For
this purpose, the TSR2500 image collection consisting of images from a Swiss
TV channel (TSR) with manually created ground truth data was used. The eval-
uation process is described in detail in chapter6. It turned out that the retrieval
method performing best on this data is the compound query method using GGDs
for texture features and a color histogram of subbandsLL0 with HI.

7.2 Remaining issues and future work

Although good results have been obtained, there still exist a number of remaining
issues. They could not be addressed due to the time constraints a thesis has. Es-
pecially the following topics which emerged during this work could either not be
treated accurately or not at all. Future work is possible on any of these topics:

• A method has to be found to compare JPEG2000 images with arbitrary
coding options. At present, only images with the same number of resolution
levels and without tiling can be processed. Tests were only performed with
images that were coded reversibly.

Moreover, sophisticated image retrieval systems should be able to compare
JPEG2000 images to images in any other format found in the database. This
is especially important if one thinks about an image search engine for the
internet.

• In order to be able to give relevance feedback to a CBIRS, combining differ-
ent JPEG2000 images to a joint query would be beneficial. At the moment
a query can only consist of a single image.

105

7.2. REMAINING ISSUES AND FUTURE WORK

• A better solution for accurately modelling the wavelet coefficient distribu-
tion and achieving high retrieval speed might be found. Currently, using
GGDs seems to be the best trade-off for both requirements. When using
GMMs, a faster similarity measure than the Monte Carlo approximation of
the KLD has to be found.

• The topic of storing and accessing the JPEG2000 feature data in a database
was completely omitted. For real-world systems fast access to the data is
crucial.

• As described in section4.5, retrieval of similar images with different quality
is difficult. It seems interesting to explore whether retrieval performance can
be improved.

• In section4.4.3it was shown that theα parameter of the GGD is Zipf dis-
tributed. Exploiting this fact for improving retrieval performance and speed
seems worth a try.

106

Declaration

“I hereby declare that this thesis is my own work and that, to the best of my
knowledge and belief, it contains no material from other persons or sources except
where due acknowledgment has been made in the text. This thesis was not subject
to any other submission yet.”

Alexandra Teynor

107

Abbreviations

API Application Programming Interface
CBIR Content Based Image Retrieval
CBIRS Content Based Image Retrieval System
CDI Compressed Domain Indexing
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
CRF Canon Research Centre France
DTD Document Type Declaration
DWT Discrete Wavelet Transform
EBCOT Embedded Block Coding with Optimal Truncation
EM Expectation-Maximization
EOC End Of Code stream marker segment
GGD Generalized Gaussian Density
GIFT GNU Image Finding Tool
GMM Gaussian Mixture Model
GPL General Public License
GSL GNU Scientific Library
GUI Graphical User Interface
HMM Hidden Markow Model
HSV Hue Saturation Value
HVS Human Visual System
IJG Independent JPEG Group
IR Information Retrieval
JPEG Joint Photographic Experts Group
KLD Kullback Leibler Divergence
KLT Karhunen-Loeve Transform
MRML Multimedia Markup Language
PDF Probability Density Function

108

QMF Quadrature Mirror Filters
RGB Red Green Blue
ROI Region of Interest Coding
SPIHT Set Partitioning In Hierarchical Trees
SOD Start Of Data marker segment
SIZ Size marker segment
TSR T́elévision Suisse Romande
VQ Vector Quantization
XML Extensible Markup Language

109

Bibliography

[1] AAT - art and architecture thesaurus.http://www.getty.edu/research/
tools/vocabulary/aat/.

[2] The benchathlon network.http://www.benchathlon.org.

[3] CNES glossary of terms - ground truth.http://ceos.cnes.fr:8100/
cdrom-98/ceos1/science/glossary/glossg.htm.

[4] Collections of the viper group University of Geneva.http://viper.
unige.ch/demo/localCollections.html.

[5] COLT scientific library. http://hoschek.home.cern.ch/hoschek/
colt/.

[6] Course notes on color theory.http://www.cs.sfu.ca/CourseCentral/
365/li/material/notes/Chap3/Chap3.3/Chap3.3.html.

[7] Distance measures. http://viror.wiwi.uni-karlsruhe.de/
webmining/script/6/Distanzmasse-1.xml.

[8] Eric Weissteins world of mathematics.http://mathworld.wolfram.
com/.

[9] GIFT - GNU Image Finding Tool. http://www.gnu.org/software/
gift/gift.html.

[10] GSL - GNU Scientific Library.http://sources.redhat.com/gsl/.

[11] Home page of theViper group of the university of geneva.http://viper.
uige.ch.

[12] IJG - Independent JPEG Group.http://www.ijg.org.

110

http://www.getty.edu/research/tools/vocabulary/aat/
http://www.getty.edu/research/tools/vocabulary/aat/
http://www.benchathlon.org
http://ceos.cnes.fr:8100/cdrom-98/ceos1/science/glossary/glossg.htm
http://ceos.cnes.fr:8100/cdrom-98/ceos1/science/glossary/glossg.htm
http://viper.unige.ch/demo/localCollections.html
http://viper.unige.ch/demo/localCollections.html
http://hoschek.home.cern.ch/hoschek/colt/
http://hoschek.home.cern.ch/hoschek/colt/
http://www.cs.sfu.ca/CourseCentral/365/li/material/notes/Chap3/Chap3.3/Chap3.3.html
http://www.cs.sfu.ca/CourseCentral/365/li/material/notes/Chap3/Chap3.3/Chap3.3.html
http://viror.wiwi.uni-karlsruhe.de/webmining/script/6/Distanzmasse-1.xml
http://viror.wiwi.uni-karlsruhe.de/webmining/script/6/Distanzmasse-1.xml
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/
http://www.gnu.org/software/gift/gift.html
http://www.gnu.org/software/gift/gift.html
http://sources.redhat.com/gsl/
http://viper.uige.ch
http://viper.uige.ch
http://www.ijg.org

BIBLIOGRAPHY

[13] Image database of the Univeristy of Washington.http://www.cs.
washington.edu/research/imagedatabase/groundtruth/.

[14] The JasPer project home page.http://www.ece.uvic.ca/˜mdadams/
jasper.

[15] The JJ2000 image de/encoder.http://jj2000.epfl.ch.

[16] JPEG2000 site of the JPEG.http://www.jpeg.org/JPEG2000.html.

[17] The JPEG2000 standard. http://www.iso.ch/iso/en/
CatalogueDetailPage.CatalogueDetail?CSNUMBER=27687\&ICS1=
35\&ICS2=40\&ICS3=.

[18] The kakadu image de/encoder.http://www.kakadusoftware.com/.

[19] List of CBIRS. http://viper.unige.ch/other_systems.

[20] MRML - Multimedia Retrieval Markup Language.http://www.mrml.net.

[21] Newton method. http://math.usask.ca/maclean/110/00/
Printables/BW/Newton.pdf.

[22] OpenGL.http://www.opengl.org.

[23] Ressource page about the Zipf distribution. http://linkage.
rockefeller.edu/wli/zipf/.

[24] Smoothed histograms.http://www.ai.univie.ac.at/˜elias/sdh/.

[25] Michael D. Adams. The JPEG-2000 Still Image Compression Standard.
ISO/IEC JTC 1/SC 29/WG 1, N2412 edition, September 2001. Available:
http://www.ece.uvic.ca/˜mdadams/papers/jpeg2000.pdf.

[26] Michael D. Adams.JasPer Software Reference Manual (Version 1.600.0).
ISO/IEC JTC 1/SC 29/WG 1, N2415 edition, October 2002. Available:
http://www.ece.uvic.ca/˜mdadams/jasper/jasper.pdf.

[27] Samy Bengio. An introduction to statistical machine learning - EM for
GMMs. Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP).
Available:http://www.idiap.ch/˜bengio/lectures/tex_gmm.pdf.

[28] Jeff A. Blimes. A gentle tutorial on the EM algorithm and its application
to parameter estimation for gaussian mixture and hidden markov models.
Technical Report ICSI-TR-97-021, University of Berkeley, 1997. Available:
http://citeseer.nj.nec.com/bilmes98gentle.html.

111

http://www.cs.washington.edu/research/imagedatabase/groundtruth/
http://www.cs.washington.edu/research/imagedatabase/groundtruth/
http://www.ece.uvic.ca/~mdadams/jasper
http://www.ece.uvic.ca/~mdadams/jasper
http://jj2000.epfl.ch
http://www.jpeg.org/JPEG2000.html
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=27687&ICS1=35&ICS2=40&ICS3=
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=27687&ICS1=35&ICS2=40&ICS3=
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=27687&ICS1=35&ICS2=40&ICS3=
http://www.kakadusoftware.com/
http://viper.unige.ch/other_systems
http://www.mrml.net
http://math.usask.ca/maclean/110/00/Printables/BW/Newton.pdf
http://math.usask.ca/maclean/110/00/Printables/BW/Newton.pdf
http://www.opengl.org
http://linkage.rockefeller.edu/wli/zipf/
http://linkage.rockefeller.edu/wli/zipf/
http://www.ai.univie.ac.at/~elias/sdh/
http://www.ece.uvic.ca/~mdadams/papers/jpeg2000.pdf
http://www.ece.uvic.ca/~mdadams/jasper/jasper.pdf
http://www.idiap.ch/~bengio/lectures/tex_gmm.pdf
http://citeseer.nj.nec.com/bilmes98gentle.html

BIBLIOGRAPHY

[29] Vidacovic Brani and Peter M̈uller. Wavelets for kids - a tutorial intro-
duction. Duke University. Available:http://ftp.isds.duke.edu/
WorkingPapers/94-13-1.ps.

[30] A. Cohen, Mantegna R. N., and Havlin S. Can Zipf analyses and entropy
distinguish between artificial and natural language texts?, 1996. Available:
http://citeseer.nj.nec.com/212418.html.

[31] Lukasz Debowski. Zipf’s law: What and why? Institute of Computer
Science, Polish Academy of Sciences, December 2000. Available:http:
//www.ipipan.waw.pl/˜ldebowsk/manuskrypty/zipfwhy.pdf.

[32] Ronald A. DeVore and Bradley J. Lucier. Wavelets, 1992. Available:http:
//www.math.purdue.edu/˜lucier/692/wavelet.pdf.

[33] Minh N. Do. Fast Approximation of Kullback Leibler Distance for De-
pendence Trees and Hidden Markov Models. submitted to IEEE Sig-
nal Processing Letters. Available:http://www.ifp.uiuc.edu/˜minhdo/
publications/KLD_HMM.pdf.

[34] Minh N. Do and Martin Vetterli. Wavelet-Based Texture Retrieval Using
Generalized Gaussian Density and Kullback-Leibler Distance. InIEEE
Transactions on Image Processing, volume 11, pages 146–157, February
2002. Available:http://www.ifp.uiuc.edu/˜minhdo/publications/
WaveStat.pdf.

[35] John P. Eakins and Margaret E. Graham. Content-based image re-
trieval. Technical report, Institute for Image Data Resarch, University of
Northumbria at Newcastle, 10 1999. Available:http://www.jtap.ac.uk/
reports/htm/jtap-039.html.

[36] Michael J. Gormish. Gormish notes on JPEG2000, September 2002. Avail-
able:http://www.crc.ricoh.com/˜gormish/jpeg2000.html.

[37] M. K. Mandal, T. Aboulnasr, and S. Panchanathan. Image indexing using
moments and wavelets. InIEEE Transactions on Consumer Electronics,
volume 42, pages 557–565, August 1996. Available:http://citeseer.
nj.nec.com/mandal96image.html.

[38] M. K. Mandal, F. Idris, and S. Panchanathan. Image and video indexing in
the compressed domain: a critical review. Available:http://citeseer.
nj.nec.com/49471.html.

112

http://ftp.isds.duke.edu/WorkingPapers/94-13-1.ps
http://ftp.isds.duke.edu/WorkingPapers/94-13-1.ps
http://citeseer.nj.nec.com/212418.html
http://www.ipipan.waw.pl/~ldebowsk/manuskrypty/zipfwhy.pdf
http://www.ipipan.waw.pl/~ldebowsk/manuskrypty/zipfwhy.pdf
http://www.math.purdue.edu/~lucier/692/wavelet.pdf
http://www.math.purdue.edu/~lucier/692/wavelet.pdf
http://www.ifp.uiuc.edu/~minhdo/publications/KLD_HMM.pdf
http://www.ifp.uiuc.edu/~minhdo/publications/KLD_HMM.pdf
http://www.ifp.uiuc.edu/~minhdo/publications/WaveStat.pdf
http://www.ifp.uiuc.edu/~minhdo/publications/WaveStat.pdf
http://www.jtap.ac.uk/reports/htm/jtap-039.html
http://www.jtap.ac.uk/reports/htm/jtap-039.html
http://www.crc.ricoh.com/~gormish/jpeg2000.html
http://citeseer.nj.nec.com/mandal96image.html
http://citeseer.nj.nec.com/mandal96image.html
http://citeseer.nj.nec.com/49471.html
http://citeseer.nj.nec.com/49471.html

BIBLIOGRAPHY

[39] B.S. Manjunath and Wei-Ying Ma. Texture features for image retrieval. In
Vittorio Castelli and Lawrence D. Bergmann, editors,Image Databases -
Search and Retrieval of Digital Imagery, chapter 12, pages 313–344. John
Wiley and Sons, Inc., 2002.

[40] T. Minka and R. Picard. Interactive learning using a ‘society of mod-
els’. In Proceeding of IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR-1996), pages 447–452, 1996. Available:http:
//citeseer.nj.nec.com/minka96interactive.html.

[41] Henning M̈uller. J̈ager des verlorenen Fotos.c’t, (6):252–257, March 2002.

[42] Henning M̈uller. Suchen ohne Worte.c’t, (15):162–167, July 2002.

[43] Henning M̈uller, Wolfgang M̈uller, David McG. Squire, Marchand-Maillet
St́ephane, and Thierry Pun. Performance evaluation in content-based image
retrieval: Overview and proposals. submitted to Elsevier preprint, August
2000. Available:http://citeseer.nj.nec.com/333946.html.

[44] Wolfgang Müller. Design and implementation of a flexible Content Based
Image Retrieval framework - The GNU Image Finding Tool. PhD thesis,
University of Geneva, Geneva, 2001. Thesis No. 3287.

[45] Wolfgang Müller. Bildersuchbaukasten.c’t, (17):190–195, August 2002.

[46] Latha Pillai. Color Space Converter - Application Note: Virtex-II Fam-
ily. Xilinx Inc., June 2001. Available:http://www.xilinx.com/xapp/
xapp283.pdf.

[47] J. Puzicha, Y. Rubner, C. Tomasi, and J. Buhmann. Empirical evaluation of
dissimilarity measures for color and texture. InProceedings the IEEE In-
ternational Conference on Computer Vision(ICCV-1999), pages 1165–1173,
1999. Available:http://citeseer.nj.nec.com/puzicha99empirical.
html.

[48] Simone Santini.Exploratory Image Databases. Academic Press, 2001.

[49] Ben Schouten.Giving eyes to ICT! or How does a computer recognize a
cow? PhD thesis, University of Amsterdam, March 2001.

[50] John R. Smith. Color for image retrieval. In Vittorio Castelli and
Lawrence D. Bergmann, editors,Image Databases - Search and Retrieval
of Digital Imagery, chapter 11, pages 285–312. John Wiley and Sons, Inc.,
2002.

113

http://citeseer.nj.nec.com/minka96interactive.html
http://citeseer.nj.nec.com/minka96interactive.html
http://citeseer.nj.nec.com/333946.html
http://www.xilinx.com/xapp/xapp283.pdf
http://www.xilinx.com/xapp/xapp283.pdf
http://citeseer.nj.nec.com/puzicha99empirical.html
http://citeseer.nj.nec.com/puzicha99empirical.html

BIBLIOGRAPHY

[51] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for com-
puter graphics: A primer, part 1”.IEEE Computer Graphics and Appli-
cations, 15(3):76–84, May 1995. Available:http://citeseer.nj.nec.
com/34100.html.

[52] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for com-
puter graphics: A primer, part 2”.IEEE Computer Graphics and Applica-
tions, 15(4):75–85, July 1995. Available:http://citeseer.nj.nec.com/
stollnitz95wavelets.html.

[53] David S. Taubmann and Michael W. Marcellin.JPEG2000 - Image Com-
pression Fundamentals, Standards and Practice. Kluwer Academic Pub-
lishers, 2002.

[54] Nuno Vasconcelos.Bayesian Models for Visual Information Retrieval. PhD
thesis, Massachusetts Institue of Technology, June 2000.

[55] Remo c. Veltcamp, Mirela Tanase, and Danielle Sent. Features in contetnt-
based image retrieval systems: A survey. In Remo C. Veltkamp, Hans
Burkhardt, and Hans-Peter Kriegel, editors,State-of-the-Art in Content-
Based Image and Video Retrieval, chapter 5, pages 97–124. Kluwer Aca-
demic Publishers, Utrecht University, Department of Computer Science,
Utrecht, The Netherlands, 2002.

[56] Remo C. Veltkamp, Hans Burkhardt, and Hans-Peter Kriegel, editors.State-
of-the-Art in Content-Based Image and Video Retrieval. Kluwer Academic
Publishers, 2001.

[57] Colin C. Venters and Matthew Cooper. A review of content based image
retrieval systems. Technical report, Institute for Image Data Resarch, Uni-
versity of Northumbria at Newcastle, 10 2000. Available:http://www.
jtap.ac.uk/reports/htm/jtap-054.html.

[58] Ziyou Xiong and Thomas S. Huang. Subband-based, memory-efficient
JPEG2000 images indexing in compressed-domain.Fifth IEEE Symposium
on Image Analysis and Interpretation (SSIAI’02), 2002.

114

http://citeseer.nj.nec.com/34100.html
http://citeseer.nj.nec.com/34100.html
http://citeseer.nj.nec.com/stollnitz95wavelets.html
http://citeseer.nj.nec.com/stollnitz95wavelets.html
http://www.jtap.ac.uk/reports/htm/jtap-054.html
http://www.jtap.ac.uk/reports/htm/jtap-054.html

Index

CBIR systems,12
Color,15, 54
Complexity,61
Compressed domain,16

Distance,19

Evaluation results,96–102

Feature,12, 48
color,15
other,16
representation,18
texture,16

Feature set
default GIFT,95
experiments,53
JP2 plug-in,96

Filter bank,29

Gaussian Mixture Model,70
Generalized Gaussian Density,61

parameter distribution,63
GIFT, 83

configuration,84

Histogram,18–19
definition,18
disadvantages,18
intersection,21

Image database,92
Image quality,76
Image retrieval

definition,10
in pixel domain,15
in the compressed domain,16
levels of,10
techniques,15

JasPer,38

JJ2000,37
JP2 plug-in,87
JP2FeatureFinder,48
JPEG2000,23–37

codec,25
properties,24
wavelets in,33

Kakadu,38
Kullback-Leibler divergence

for GGDs ,63
for GMMs, 74
general definition,21

L1 norm,20

Minkowski form distance,20
Multi-resolution analysis,28

Normalizer,49

P/R graph,95
Performance measure,94
Pixel domain,15
Precision,94

Quadrature Mirror Filter,29
Query

by example,14
by region,14
by sketch,14
submission,14

Query engine,49

Recall,94
Relevance,93
Relevance feedback,13

Score board,49
Semantic gap,11
Similarity measure,19

115

INDEX

Texture,16, 54

Wavelet transform
2D, 30
discrete,30

Wavelets,27–34
coefficient distribution,33
fundamentals,27

wcextract,40–45
Weighting function,49

Zipf, 63

116

Appendix A

Mathematical Glossary

In this appendix mathematical concepts used in this thesis are briefly reviewed.
The material cites [8] if not otherwise stated. If terms in this glossary are printed
italic, more information on these topics can be found within the glossary.

Bin An interval into which a given data point does or does not fall.

Compact set The set Sis compact if, from any sequence of elementsX1 ,X2, . . . of
S, a subsequence can always be extracted which tends to some limit
elementX of S. Compact sets are therefore sets which are both closed
and bounded.

Compact support A function has compactsupportif it is zero outside of acompact set. A
function with compact support is only interesting in a bounded domain.
Alternatively, one can say that a function has compact support if its
support is a compact set.

Covariance Given n sets ofvariatesdenoted{X1}, . . . ,{Xn} the covarianceσi j ≡
cov(xi ,x j) of xi andx j is defined by

cov(xi ,x j)≡ 〈(xi−µi)(x j −µj)〉
= 〈xix j〉−〈xi〉〈x j〉

whereµi = 〈xi〉 andµj = 〈x j〉 are themeansof xi andx j , respectively.
The matrixVi j of the quantitiesVi j = cov(xi ,x j) is called covariance
matrix. [...]
The covariance of two variatesXi andXj provides a measure of how
strongly correlated these variables are [...].

117

Distribution
function

The distribution functionD(x) (also called the cumulative density func-
tion (CDF) or probability distribution function), describes the probabil-
ity that avariate X takes on a value less than or equal to a numberx.
[...]
The distribution function is therefore related to a continuousprobability
function P(x) by

D(x) = P(X ≤ x)≡
∫ x

xmin

P(x′)dx′,

soP(x) (when it exists) is simply the derivative of the distribution func-
tion.

Estimate An estimate is an educated guess for an unknown quantity or outcome
based on known information. The making of estimates is an important
part of statistics, since care is needed to provide as accurate an estimate
as possible using as little input data as possible. Often, an estimate for
the uncertainty∆E of an estimateE can also be determined statistically.
A rule that tells how to calculate an estimate based on the measurements
contained in a sample is called anestimator.

Estimator An estimator is a rule that tells how to calculate an estimate based on
the measurements contained in a sample.

Expectation value The expectation value of a functionf (x) in a variablex is denoted〈 f (x)〉
or E f(x) . For a single discrete variable, it is defined by

〈 f (x)〉= ∑
x

f (x)P(x)

For a single continuous variable it is defined by

〈 f (x)〉=
∫

f (x)P(x)dx

The expectation value satisfies

〈ax+by〉= a〈x〉+b〈y〉

〈a〉= a

〈∑x〉= ∑〈x〉

118

Hilbert space A Hilbert space is a vector spaceH with an inner product〈 f ,g〉 such
that thenormdefined by

| f |=
√
〈 f , f 〉

turnsH into a complete metric space. If the inner product does not so
define a norm, it is instead known as an inner product space.
Examples of finite-dimensional Hilbert spaces include

1. The real numbersRn with 〈v,u〉 the vector dot product ofv and
u.

2. The complex numbersCn with 〈v,u〉 the vector dot product ofv
and the complex conjugate ofu.

An example of an infinite-dimensional Hilbert space isL2, thesetof all
functions f : R→R such that the integral off 2 over the wholereal line
is finite. In this case, the inner product is

〈 f ,g〉=
∫ ∞

−∞
f (x)g(x)dx

Likelihood The hypothetical probability that an event which has already occurred
would yield a specific outcome. The concept differs from that of a prob-
ability in that a probability refers to the occurrence of future events,
while a likelihood refers to past events with known outcomes.

Linearization The following explanation cites [21].
If a function f is differentiable ata its linearizationL is the linear func-
tion

L(x) = f (a)+ f ′(a)(x−a)

The graph of the linearization is just the tangent line toy = f (x) at
(a, f (a)), and it has the propertiesL(a) = f (a) andL′(a) = f ′(a). This

tangent line crosses thex-axis ata− f (a)
f ′(a) [...].

Maximum
likelihood

The procedure of finding the value of one or more parameters for a given
statistic which makes the knownlikelihood distribution a maximum.
The maximum likelihood estimate for a parameterµ is denoted ˆµ.

119

Mean The quantity commonly referred to as “the” mean is the arithmetic
mean, also called the average. The mean (or, more specifically, the
population mean) of aprobability function P(x) is the firstraw moment
µ
′
1 , defined by

µ≡ 〈xP(x)〉

where〈 f 〉 is the expectation value. For a continuous distribution, this
can be written

µ=
∫

xP(x)dx

where the integral is taken over the domain ofP(x), and for a discrete
distribution, is is given by the sum

µ= ∑
i

xiP(xi)

[...] The sample mean is the mean of a set{x1, . . . ,xn} of n observations
from a given distribution,

m≡ 1
n

n

∑
k=1

xk

and is an unbiased estimator for the population meanµ.

Moment The nth raw momentµ′n (i.e., moment about zero) of a distributionP(x)
is defined by

µ′n = 〈xn〉,

where

〈 f (x)〉=
{

∑ f (x)P(x) discrete distribution∫
f (x)P(x)dx continuous distribution

µ′1, themean, is usually simply denotedµ= µ1. If the moment is instead
taken about a pointa,

µn(a) = 〈(x−a)n〉= ∑(x−a)nP(x)

The moments are most commonly taken about the mean. These so-
called central moments are denotedµn and are defined by

µn≡ 〈(x−µ)n〉,

=
∫

(x−µ)nP(x)dx,

with µ1 = 0. The second moment about the mean is equal to thevari-
ance

µ2 = σ2,

whereσ =
√

µ2 is called the standard deviation.

120

Newton-Raphson
method

The Newton method (also called Newton-Raphson method) is an itera-
tive root finding algorithm.
The following explanation is taken from [21]. The basic idea of the
Newton method to find the roots of a functionf is to pick a valuex0

which is suspected to be close to a root off and then to compute the
valuex1 where the tangent line toy = f (x) at (x0, f (x0)) crosses the
x-axis. For this purpose the equation oflinearizationis used:

y = f (x0)+ f ′(x0)(x−x0)

It crosses thex-axis when y=0 andx = x1:

0 = f (x0)+ f ′(x0)(x1−x0)

and can be solved forx1:

x1 = x0−
f (x0)
f ′(x0)

The value ofx1 should be closer to the root thanx0. The procedure is
repeated recursively to find ever better estimates for the root:

xn+1 = xn−
f (xn)
f ′(xn)

Following figure illustrates the procedure:

Norm The norm of a mathematical object is a quantity that in some (pos-
sibly abstract) sense describes the length, size, or extent of the ob-
ject. Norms exist for complex numbers (the complex modulus, some-
times also called the complex norm or simply ”the norm”), quater-
nions (quaternion norm), vectors (vector norms), and matrices (matrix
norms). [...]
The term “norm” is often used without additional qualification to refer
to a particular type of norm, most commonly the flavor of vector norm
technically known as the L2-norm. This norm is variously denoted‖x‖2
or |x| and gives the length of ann-Vector(x1,x2, . . . ,xn). It can be com-
puted as

‖x‖2 =
√

x2
1 +x2

2 + · · ·+x2
n

121

Probability
density
function (pdf)

The probability functionP(x) (also called the probability density func-
tion (PDF) or density function) of a continuous distribution is defined
as the derivative of the (cumulative)distribution function D(x) [...].

Real line A line with a fixed scale so that every real number corresponds to a
unique point on the line. The generalization of the real line to two
dimensions is called the complex plane.

Roots The roots (sometimes also called ”zeros”) of an equationf (x) = 0 are
the values ofx for which the equation is satisfied.

Set A set is a finite or infinite collection of objects in which order has no
significance, and multiplicity is generally also ignored (unlike a list or
multiset).

Set closure A set Sand a binary operator * are said to exhibit closure if applying
the binary operator to two elements [of]Sreturns a value which is itself
a member ofS.

Statistical
distribution

The distribution of a variable is a description of the relative numbers
of times each possible outcome will occur in a number of trials. The
function describing the distribution is called theprobability function,
and the function describing the cumulative probability that a given value
or any value smaller than it will occur is called thedistribution function.

Support The set closureof the set of arguments of a functionf for which f is
not zero.

Variate A variate is a generalization of the concept of a random variable that
is defined without reference to a particular type of probabilistic exper-
iment. It is defined as the set of all random variables that obey a given
probabilistic law.

122

Appendix B

JP2FeatureFinder

On the following two pages, the class diagram for the JP2FeatureFinder is dis-
played. The purpose of each class or class group is explained in section4.2.

123

124

125

	Acknowledgments
	Introduction
	Goal of this thesis
	Outline of this thesis

	Image retrieval
	General setting
	Definition
	Levels of image retrieval
	Semantic gap

	CBIR systems
	Common procedures
	Query submission

	Retrieval techniques
	Image retrieval in pixel domain
	Image retrieval in the compressed domain
	Feature representation
	Similarity measures

	JPEG2000
	Properties
	JPEG2000 codec
	Preprocessing
	Color transform
	Wavelet transform
	Quantization and ranging
	Tier-1 coding
	Tier-2 coding
	File format

	Codec software
	JJ2000
	Kakadu
	JasPer

	Wavelet coefficient extraction
	JasPer software package
	libjasper library
	wcextract

	Creating a JPEG2000 feature set
	Current approaches
	JP2FeatureFinder
	Core system
	Graphical user interface
	Query process and evaluation

	Feature set experiments
	General setting
	Texture approach
	Color approach
	Compound approach

	Complexity problem
	Generalized Gaussian Density
	KLD for GGD
	Parameter distribution
	Fitting inaccuracies
	Gaussian Mixture Models
	KLD for GMM

	Image quality
	Summary

	Integration in GIFT
	GIFT
	Configuration and startup
	JP2 plug-in
	libGIFTQuJP2
	libGIFTAcJP2

	Performance evaluation
	Image databases
	Relevance information
	Performance measures
	Evaluation
	Evaluation of texture retrieval
	Evaluation of color retrieval
	Evaluation of the compound approach

	Conclusion
	Summary
	Remaining issues and future work

	Declaration
	Abbreviations
	Bibliography
	Index
	Mathematical Glossary
	JP2FeatureFinder

