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Abstract

Many current object class models build on visual
parts that constitute an object. However, visually differ-
ent entities may actually refer to the same object part.
This may be harmful for part based object class mod-
els. We present a method how visually distinct parts
with the same semantic role can be associated by cre-
ating groupings based on the similarity of their occur-
rence distributions. Experimental results verify that
more compact class representations can be built based
on these groupings, which lead to improved classifica-
tion performance and/or reduced classification time.

1. Introduction

A common technique for the recognition of object
classes is the use of part dictionaries or “visual code-
books”. These codebooks contain a variety of possi-
ble image structures. Whenever visual codebooks are
created, e.g., by clustering appearance features from lo-
cal image patches, we only have a visual, not a seman-
tic grouping of object parts. The variety in the visual
appearance of semantically equal object parts are due
to several reasons. First, there are natural intra class
variabilities. Then, we also have to deal with differ-
ent poses, e.g., a mouth might be open, shut, or smil-
ing showing the teeth. But also other reasons exist:
current feature extraction methods often rely on inter-
est point detections which are not always on the same
locations on different object instances. This might re-
sult in shifted local windows for the same object part.
So an eye might not always occur at the center of a lo-
cal window, but also slightly shifted to the left or right.
The features extracted from such shifted windows can
be quite different. Invariance towards such shifts might
be incorporated into the local features, but some very
successful features like the SIFT features by Lowe [5]
deliberately do not only consider the frequency of cer-
tain structures, but also their location. These types of

features are affected by shifts in the detected structure.
Depending on the classification strategy, a separate

treatment of semantically similar parts might be harm-
ful. Especially when using “bag-of-feature” type ap-
proaches, parts with the same role are assigned to dif-
ferent dictionary entries. Distance calculation between
part histograms is typically performed in a bin-by-bin
fashion, so performance can be degraded by not relat-
ing semantically similar parts.

In this work, we present a novel way on how to per-
form a semantic grouping of object parts. Parts with a
different visual appearance but with the same semantic
role are associated by the similarity of their occurrence
distributions given the object class.

2. Related work

Previous work concerning the semantic grouping of
visual structures has been performed by Leibe [4] or
Epshtein and Ullman [1]. Leibe combines visual parts
by co-location and co-activation clustering. His ap-
proach is similar to ours as he also tries to associate
parts that occur at the same location in an image, but
he uses a weighted variation of the Hausdorff distance
to combine visual parts. He does not apply his proce-
dure to part frequency based object class models, as
he advocates a Hough transform like voting method.
Epshtein and Ullman use the context of parts in a prob-
abilistic framework. They identify the geometric rela-
tion of parts co-occurring with a basic “root fragment”,
and search for similar constellations in test images. Our
approach does not need a root fragment, but creates a
number of groupings based on the desired similarity of
the occurrence distributions.

3. Method

The basic idea is that object parts with the same se-
mantic meaning occur at the same location(s) on an
object. For example, the mouth is always located in
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Figure 1. Creation of a part occurrence
distribution.

the lower middle of a front view of a face, no mat-
ter whether it is surrounded by a mustache or laugh
lines. So in order to learn semantic groupings, we need
aligned training data, i.e. object parts with the same role
should occur at the same location in an image.

We start from an initial codebook containing a vari-
ety of visual structures. The codebook can be acquired
e.g. by clustering local appearance features from a train-
ing set. A general codebook C consists of a set of N
vectors distributed in some feature space X , which rep-
resent the individual clusters

C = {ci|ci ∈ X , i = 1, . . . , N}. (1)

Such a codebook now constitutes the possible visual
appearances of object parts. In order to determine the
semantic distance of object parts, we rely on the dis-
tribution of the occurrence of a certain structure given
the object class ω. That is, for each of the clusters ci,
a part occurrence distribution pi = p(x, y, s|ci, ω) is
built. x and y refer to the position of the occurrence
of the structure, s to the scale. These density functions
can be estimated for each cluster by matching the local
features extracted from the aligned training data to the
cluster centers. For each matching feature, the position
and scale where it was extracted from is recorded in a
histogram. The process is visualized in figure 1. On the
left in this figure, enlarged sample members belonging
to a cluster are displayed. In the middle, a sample im-
age from the aligned training data is shown and on the
right the resulting occurrence distribution at a particular
scale.

We define the semantic distance of two clusters to be
the distance of their distribution maps

dsem(ci, cj) = d(pi, pj). (2)

For d, several functions can be used. In this work,
we use normalized cross correlation, but other measures
could be chosen as well. Since correlation is a similar-
ity measure, not a distance measure (the value becomes
bigger when the vectors are more similar), we subtract
the value from the maximal possible value for normal-
ized correlation, which is 1. We use a non parametric

representation for the location distributions in the form
of a three dimensional histogram (x-location, y-location
and scale). LetH andR be normalized histograms with
N bins, so that

∑N
i=1 hi =

∑N
i=1 ri = 1. hi and ri rep-

resent the individual bin values. Then, the normalized
cross correlation distance is

dcorr(H,R) = 1−
∑N

i=1 hiri√∑N
i=1 h2

i

√∑N
i=1 r2

i

. (3)

We can now determine whether two clusters ci and
cj are semantically related by an indicating function
fω,ϑ(ci, cj), given the class ω and a threshold ϑ in the
following way:

fω,ϑ(ci, cj) =
{

1 dsem(ci, cj) < ϑ
0 otherwise . (4)

It is important to note that we do not deal with equiv-
alence classes here, since the transitivity condition is
not met. It can easily be seen that if fω,ϑ(ci, ck) = 1
and fω,ϑ(ck, cj) = 1, it does not necessarily follow
that fω,ϑ(ci, cj) = 1, since the similarity between their
occurrence distributions does not need to be below the
given threshold. This problem is also present in nat-
ural languages: pairs of words that can be used syn-
onymously also do not have to follow transitivity condi-
tions, e.g. the words sick↔bad as well as bad↔evil can
be used interchangeably, however the words sick↔evil
are not directly related any more.

In the following, we want to investigate the effect of
grouping semantically similar parts together in a bag-
of-feature classification approach. Initially, we have
a part histogram H of local structures in dimension
N , i.e. the number of clusters in the codebook. The
bin counts hi are determined by membership functions
wi(x),

∑N
i=1 wi(x) = 1 for bin i

hi =
L∑

l=1

wi(xl), (5)

where xl ∈ X , l = 1, . . . , L are local feature vec-
tors extracted from an image. The membership function
might be binary, only assigning the feature vector to the
nearest codebook entry, or more complex, distributing
the count between several entries. The contributions of
the individual local feature vectors are accumulated in
the histogram and the histogram renormalized to add up
to one. It is important to note that wi deals with the vi-
sual similarity here.

We then have to decide which visually distinct, but
semantically similar parts should be treated together.
We do not directly use the semantic indicating function
fω,ϑ(ci, cj) due to the transitivity problem mentioned



above. Instead, we cluster the elements of our visual
part dictionary, using the semantic similarity measure as
defined in equation (2) and (3). In our experiments, we
use agglomerative clustering [2] with an average link
paradigm, since it produces compact clusters and only
relies on pairwise similarities of feature vectors. The
final groupings can be determined by cutting the hierar-
chical tree at an appropriate value. For each visual part
i, we then obtain an index si ∈ {1, . . . ,M} describing
the semantic cluster membership.

We now want to combine the part frequencies of an
original histogram H that belong to the same semantic
cluster in order to obtain a more general part histogram
Mwith reduced dimensionality M . The new histogram
entries are given by

mk =
N∑

i=1

hiδ(si, k), k ∈ 1, . . . ,M (6)

where δ is the Kronecker delta function. In effect,
all entries of the original histogram that are in the same
semantic cluster are added together.

4. Experiments

In order to show the benefits of semantic grouping of
visual distinct structures, we performed various experi-
ments for different object categories, in particular, nat-
ural as well as mechanical objects. As we need aligned
training data for building the location maps, we chose
the categories “Faces easy” and “Motorbikes” from the
Caltech101 dataset1 for our experiments, as they ful-
fill this condition very well. In the faces dataset, there
are 435 images of 31 different people, the motorbikes
dataset consists of 789 images from different motor-
bikes. We used half of the images for training, the
other half for testing. As negative examples for training
and testing, the respective same number of images was
drawn randomly from the remaining object categories.

Only gray scale information was used for feature ex-
traction. We calculated GLOH features around Hesse-
Laplace interest points, as they have proven to be suc-
cessful in a comparative study [6] as well as in our own
experience. We used the original detector and descrip-
tor code from the authors.

The codebook describing the visual structures under
consideration was obtained by clustering 100000 local
features randomly selected from the training images.
The MBSAS clustering scheme [7] was used for this
purpose, as it allows clustering a large number of fea-
tures in reasonable time. Then histograms based on the

1from http://www.robots.ox.ac.uk/˜vgg/data3.html

C: 51

C: 600

C: 302

C: 397

C: 1753 

C: 4107

C: 1950

C: 2554

C: 2562

C: 2916

C: 2591

C: 2739

C: 94 

C: 3957

C: 1177

C: 1468

a) b)

c) d)

Figure 2. Examples of semantic group-
ings for the Caltech classes “faces” and
“motorbikes”. Each row shows examples
of a visual cluster.

basic codebook were calculated using a sigmoid match-
ing function.

In order to give an idea about the type of visual struc-
tures combined by our process, we show sample seman-
tic groupings in figure 2. We can visually verify that
combining these structures is sensible. For each seman-
tic grouping, 4 visual clusters are shown. A visual clus-
ter is represented by a row: the codebook number fol-
lowed by at maximum 3 sample patches from the visual
cluster. So the horizontal direction shows visual group-
ings, the vertical direction semantic groupings. We can
see for the class “faces”: a) foreheads with different hair
styles, b) mouth parts; for the class “motorbikes”: c) en-
gine parts and d) wheel parts.

As a sample task, we deal with a two class prob-
lem where the presence of a member of a specific ob-
ject class in an image should be determined. In order
to show the effect of semantic clustering on different
types of classifiers, we use a simple k-nearest neighbor
classifier with histogram intersection as a distance mea-
sure, with k = 3 in our case, as well as a SVM with an
histogram intersection kernel. We test the behavior for
the classifiers according to different cut values in the
semantic clustering step.

In figure 3, we list the results for the Motorbikes
class. The results for the faces class are very similar
and omitted due to space reasons. In the top of figure
3, the dimensionality of the combined clusters is shown
for different cut values. It depends on the number of
initial clusters, the number of clusters that were com-
bined and the number of semantic clusters currently es-
tablished. In the bottom, we can see the results of the
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Figure 3. Results for the experiments. For
a detailed explanation, see the text.

classification task for the different classifiers. We can
see that of course the SVM based results are superior
to the NN-classifiers due to the generalization capabili-
ties of the large margin classifier. Nevertheless we show
the results for the NN classifier, since an improvement
in the quality of the features can be seen more directly
there. And indeed, for the NN classifier, the classifi-
cation performance increases, e.g. from 91.5% for the
original histogram to 95.4% for the semantically com-
bined histogram for the motorbikes class.

The SVM cannot profit that much from the classi-
fication accuracy point of view. It even drops slightly
(from 97.7% to 97.5% for the same cut values). How-
ever the number of support vectors decreases which
means that we have a more “simple” decision bound-
ary in the mapped feature space. We could save up to
14.3% of the support vectors (from 209 to 179) for the
faces class with no loss in performance. Together with
the reduced dimensionality of the feature vectors, this
means less classification time.

For too low cut values, where many relevant parts
were mapped to few histogram entries, classification
performance drops for the NN classifier and the num-
ber of support vectors increases again. The specific cut
values for grouping features must be determined exper-
imentally and can be estimated using a validation set.
Generally rather low cut values are already sufficient to
improve performance.

5. Conclusion

In this work, we presented a method on how to es-
tablish a semantic grouping for object parts depending
on the similarity of their occurrence distributions. In
this way, parts that are visually distinct, but semanti-
cally similar can be associated and processed together.

We have shown that for object class representa-
tions based on part histograms (bag-of-feature type ap-
proaches) it is beneficial to associate semantically sim-
ilar parts by combining the respective visual clusters.
Simple classifiers like a nearest neighbor classifier can
directly profit from that. Also more complex classifiers
like SVMs, that were able to deal with the diversity of
semantically similar object parts in the first place, can
also benefit from the process by a reduced set of support
vectors and a smaller feature dimension which lead to a
decrease in classification time.

The semantic mapping step can be easily incor-
porated into other powerful classification approaches
where bag-of-feature representations are involved, like
e.g. the spatial pyramid matching by Lazebnik et al. [3].
The approach is easy to implement yet very effective.
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