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1 Introduction

Today, a huge amount of digital images exists on private caenp, the web, in digital galleries or professional
media archives, and the mass will continue to grow. Curreage databases of publishing companies already
reach many thousands of terrabytes.

Retrieving images again from these databases is difficiiinkrabout your own holiday picture collection:
manual search through archives is hardly feasible on horskta® computers (if at all), not to speak of
professional archives with terrabytes of image data. Miangotation of images and then using text retrieval
techniques on the key words is no general solution eitherst Bf all, it is very labor and with that cost
intensive, and so only feasible for companies. It is subjecsince visual content tends to be interpreted in
different ways by humans. Other drawbacks are the languaegendlency of the key words, the possibility
of spelling mistakes or simply the use of wrong key words. fégsional image classification schemes as
used for physical image archives like the ICONCLASS schamtotovercome some of these difficulties by
formalizing the image description, however, they are diffito handle by non experts.

We need automatic techniques to cope with the sheer amouddtaf Of course, there are different tasks
to be solved. One of the first challenges met in this conte tha search for “similar images”, where the
notion of “similar” was mainly defined from a color, texturachasometimes shape point of view. The images
were treated more or less globally, later also local comattns came into play. This problem was heavily
researched in the field of “Content Based Image RetrievaBIR} in the 1990s and early 2000s, and work
still continues on this topic. In a CBIR system, typicallyeoor more example images are used as input, for
which then images are retrieved sorted according to thidvaace. This search method is known as “query-
by-example” paradigm, but there exist also others, likeetgtby-sketch” or “query-by-color” to just name a
few.

However, a more common problem is the search for specificctshjdJsers are more interested in finding
semantic entities in images like people, cars or animalse Me can distinguish between two main cases:
on one hand the detection of the very same physical objeat image, on the other hand the recognition of
members of object classes. Of course, object classes caondm dr narrow, and in order to be recognized by
their appearance, they have to share some visual chasticieriSo the common notion for this query type is
to search for “visual object classes”.



Eakins [17] proposed a classification scheme of query typesisting of three levels of increasing complexity.
In this scheme, the search for visual object classes falislavel 2. The partition of the query types were

made as follows:

1. Level 1: Search by primitive features
Images are retrieved by basic features like color, texghape, spatial layout or combination of these.
Most traditional image retrieval systems, as e.g. QBIC,[S1MBA [60], VIPER/GIFT [48], or FIRE
[11] work on this level. All information necessary can be iagd from the images themselves.

2. Level 2: Search by derived/logical features
Additional knowledge is necessary for the retrieval of eotrimages, e.g. that a certain structure has
been given a specific name or that a visual object class htrcproperties. The subtasks falling into

this category are:

a) Retrieval of objects of a given type
In this category, visual object classes are searched forcutrent research, the object classes
are rather narrow, however also more general classes lie,“Bowers” or “animals” could be

considered.

b) Retrieval of individual objects or persons
Here, exactly the same instance of an object or person sheulgtrieved. Even if this task sounds
more difficult, since, e.g., not only any car, but a specialisgearched for, this is an easier task
for an computer, since less variety in appearance has tkée tato account.

3. Level 3: Search by abstract features
Here, the meaning and purpose of images should be judgedglsdelrel reasoning is necessary. To
our knowledge, currently no systems are really working & lvel, besides maybe interpreting the
meaning of the prevalent color in an image [9]. Again, twotgpbs can be distinguished:

a) Retrieval of named events or types of activity
The visual variety of images associated to a football mat@naevent like, e.g., the “Oktoberfest”

is enormous, so learning is difficult in this area.

b) Retrieval of pictures with emotional or religious signifiez
Here, the mood and/or meaning of images should be considevetkthing that even humans do
not easily agree on. This stage of image retrieval is nolfitebe solved by machines in the near
future, if at all, since it requires some higher degree dliigtence.

2 Terminology

First of all, we have to clarify the meaning of certain ternsed throughout this work, since they are often
used differently in literature. It is important to state auterpretation of these terms:

Object: “something material that may be perceived by the senses” [1]

In our work, we only deal with physical objects that can berded. E.g., we would not consider
“snow” an object, but a “snow crystal”. The objects shoukbahave limited extents or they have to be
sufficiently far away, so that they can be captured by images.



(Visual) Object class: “a collection of objects that share some visual charactics

Examples for a visual class would be “cars”, “faces” or “nrbtkes”, since they all have certain visual

properties in common, despite their sometimes large vegiam appearance. The object class “tools”
would not fall into this category, since tools might look caletely different, and the grouping is made
form a function point of view.

Classification: “systematic arrangement in groups or categories accordimgstablished criteria”[1]

In our case, images are assigned to a predefined number sésla3here might be as little as two
classes, e.g. in a simple object present/absent task, or thausands, e.g. for automatic image an-
notation, where key words from a large pool have to be asdigméhe images. In order to cope with

previously unseen classes, an additional class holdinguhienown” entities might be established.

One image might be assigned to different classes, in caeeafif objects can be found, or different key
words apply. For most experiments however, only one objesisds to be recognized per image. An
alternative term used in literature is “categorizatiod’]3

Identification: “idetification is recognition of an individual object withian class”[69]
Identification means not only to recognize any member of ssgle.g. a face, but a specific instance of
that class, say my face. The object class involved is deteranimplicitly with that.

Recognition: “the act to perceive to be something or someone previoushykii [1]

The term “recognition” is used in two contexts: on one handsfiecific objects, then this term is equal
to “identification”. On the other hand for generic object8][br object classes, then “classification” is
meant. We will explicitly state which notion of recognitieve are using if not immediately clear form
the context.

Localization: “the discovery of the exact position of a given object in aade’

Typically, the location and the extent, sometimes also tientation of the object has to be detected.
In a simple case, it is previously known (or assumed) thahatance of the object class is present, and
the most probable position is calculated. In other casesgration and localization are coupled: the

presence of a certain object class is determined by decidiregher an object at a certain location, scale
and or orientation can be found. In the simplest case, aigliindow is applied to the image and the

subwindows are classified. As a result, a bounding box camdwerdaround probable object locations,

other approaches even deliver segmented objects [31]etDen” is sometimes used interchangeably
for localization (e.g. [69]).

Detection: This term is used in a lot of context and thus the most ambigurothis list. It is used in the
same was as “recognition”, both for visual classes [10] dbagespecific objects. On the other hand, it
is sometimes synonymous for “localization” [69].

Appearance based methods:“features used for classification should be extracted frdma visual
appearance of the image/object in question”

Keysers [28] states that appearance based methods onlyixeteénpensities themselves, which can
possibly be preprocessed (e.g. brightness corrected). ettaywmost researchers [60] consider any
features calculated from the original image as “appearaased”, even if more complex functions are
involved and we also hold this opinion. Even Keysers empeasihat the term “appearance based”
should mainly establish a border to segmentation basedagpes, not to general feature extraction
techniques.



Figure 1: A specific object (here a VW beetle) from differeigws (from [5])

3 Problem Statement

In this work, we deal with classification and localizationvigual object class members. In most cases, the
task to be solved is to determine whether an instance of atbbiass is present in an image or not. This
guestion sounds easy, since for humans this is a very edsyatas children at the age of 2 years are already
able to recognize many object categories. However, for apoten, this is a very hard problem. Let us
illustrate where the difficulties in this very general qu@stie.

3.1 Difficulty

Why is the recognition of visual object class members in iesagp difficult for a computer?

e 3D objects in 2D images
In the real world, we deal with 3D objects. When they are fmtejeé onto a 2D image, information is
lost necessarily, since not all views of the object can béutag at the same time. A car looks very
different seen from the front, rear, the side or from abogezam be seen in Figure 1. We humans have
no difficulty in recognizing these objects even so, since m@kall views and how they are related. We
have a 3D model of the object class in mind. A general objemigrition system would also require
this information. One could either supply it with a full 3D ohe (e.g. [54]), or with a sufficient number
of training samples showing different views. To our knovged3D models have only be constructed for
the recognition of specific objects, not for object classefas A more restrictive but widely adopted
approach is to limit the search to a specific view, e.g. exalysside views of cars or frontal views of
faces [18].

e Projections and geometric transformations
When we photograph an object, we project the 3D item onto an2&ye. Different images from the
same object are related by a homography [25]. To make thirg® mtnacktable, one often assumes
planar objects, or at least planar object parts. If we onlysiter small patches on the surface of



Figure 2: Object variability for the rear of a car

an object, this is approximately true. For planar objects, have to cope with translations as well
as similarity, Euclidean, affine or projective transforioas. To simplify things, we usually assume
infinite cameras and with that transformations only up taaffj since they are more easy to handle
mathematically.

Letx = (z4,2y), 2, , € R be the coordinates of a pixel in an image, then the new coaietir’ of
the transformed point are:
X =Ax+t (1)

where the type of the transformation depends on the pregearfiA :

A =1 translation
ATA = kI  similarity transformation
ATA =1 and
A-1 = AT Euclidean transformation

det(A) # 0 affine transformation

These geometric distortions make a direct comparison ofj@maf even the same object difficult, as
can again be seen from image pairs in Figure 1.

Occlusions
In many real world photographs, the object is only partialible, since it is occluded to some extent,
or some parts of the object stretch beyond the image border.

Intra class variability

The objects typically have a great variability in appeaeaand layout of the parts. Even if we have
a very narrow object category, e.g. “car”, and they are awad from the same perspective, e.g., the
rear, they can look rather different in detail (see Figure 2)

Non rigid transformations of the object itself

Some objects are composed of articulated parts, e.g., leymdmch makes recognition according to
the shape difficult. Other objects have a “soft” structuréhwio specific outline, e.g., clouds or toy
animals.

Recording procedure
The recording process also introduces errors. These ganpe.noise, quantization errors, discretiza-
tion errors, image blur, but also compression artefacts.

lllumination changes

Objects captured in the real world might be illuminated \differently. We have to deal with additive
(the basic brightness is higher), multiplicative (highenttast) and non-linear (light source at a different
direction) illumination changes.
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Figure 3: Images form the semantic class VW beetle (from [5])

e Ratio image area/object area
The object might only cover a small part of the image, whilekggound clutter or other objects dom-
inate the scene. This makes the recognition of these smjalttsbvery difficult, especially if we have
no a priori information about the scale of the object.

¢ Inadequacies of the mathematical model
When modelling is an issue, we usually have to make simplifassumptions about some conditions,
in order to keep the problem manageable. In reality howewvemight have different conditions, e.g.,
non linearities, non planarities or statisical dependsneihere we assumed none.

e Semantic notion
Even if we only want to consider objects that share some alpticaracteristics, the amount of visual
resemblance can still vary. As human beings, we always haeenantic interpretation of what we see.
This fact is known form CBIR and called the “semantic gap”[38], (p. 1353) it is defined as:

“The semantic gap is the lack of coincidence between therrdtion that one can extract from the
visual data and the interpretation that the same data have fgser in a given situation”

How different images with the same semantic interpretafimre VW beetle) might look can be seen
in Figure 3. Not only the views and display details are défer but also the styles in which the pictures
are made. Here we rather deal with a semantic than with alebject class.

As can be seen from the collection above, a variety of thirggsth be considered when the recognition of
visual object class members should be successful. In digystems, typically only certain aspects are worked
on, and the databases currently used make some simplifgswgraptions, e.g., about the location, size and/or
orientation of the object. This is necessary in order todpatontrol the effects of certain algorithms, but it
also restricts the portability of the results. However, enand more reference databases at greater levels of
difficulty exist. Some current databases are introduceckeiti@n 3.2.



3.2 Databases

This Section briefly introduces some databases at diffdesets of difficulty, which are widely used. For
these, a lot of reference results are available.

3.2.1 Caltech Datasets

The Californian Institute of Technology (Caltech) offerset of image collections for object class recogni-
tion. They are available on the institutes websifEhe most commonly used collections are “airplaske”

(800 images), “faces” (450 images) and “motorbilgide” (800 images), others are the “cars rear” as well as
the “leaves” database, where the latter is comprised offérdifit leave types. For these database, an object
present/absent task has to be solved, specific trainingeshdéts are available for better comparability of the
results. As a counter class, a set of mixed “background” gsag used, except for the casar task, where
street backgrounds are provided. The individual objedterdin appearance and location, but are about the
same size and orientation. The background is cluttered.

faces

motorbikes

airplanes

leaves

background

For multi class object recognition, two other datasets eveiged, the Caltech 101 and the Caltech 256 object
class database. There, images for 101/256 object classesowided, with 40-800 images per category. The
images are all about the size of 300 x 200 pixels.

3.2.2 Graz Datasets

A clearly more difficult categorization task is present i Braz02 databa$éntroduced by Opelt et al.
[51, 50]. This database has three object categories: “¢d0), “persons” (311 images), “bikes” (365 im-
ages) and a so-called “none” category (380 images) whiclsdsdl as a counter class. In all the categories,
objects suffer from severe occlusions and have a highlalbbeiappearance and pose, reflecting real world

http://mww.robots.ox.ac.uk/vgg/data3.html
2http://www.emt.tugraz.at/"pinz/data/GRAR



scenes more accurately. Here also, an object presentfdbskias to be solved.

bike

car

person

background

3.2.3 Eth80 Dataset

The ETH80 databasavas introduced by Leibe et al. in [30]. Here, 10 differentsait$ from 8 different object
classes are photographed in front of a uniform backgroumd.ekch object, 41 views are taken at different
angles. In the following graphic, all individual objectseashown in a refernce position. Tests are usually
performed in a leave-one-object-out approach.
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3.2.4 UIUC Cars

The UIUC cars databasevas first introduced by Agarwal et al. in [3]. It contains 1Gfdining images (550
car and 500 non-car images) and 170 single-scale test inzage®ll as 108 multi-scale test images. The

training images are quite small (100x40) and quite roughlygized, the test images are a bit bigger and may
contain several cars. All images are in gray scale.

training cars

training background g = !

test (single scale)

3.2.5 PASCAL Visual Object Class Challenge (2005/2006)

These benchmarks were proposed in 2085 2006 by the PASCAL (Pattern Analysis, Statistical modelling
and ComputationAl Learning) network. In both challengesy different kinds of tasks had to be solved: one
was to predict the presence/absence of a class member igstiiemage, the second was to additionally draw
a bounding box around the recognized objects (localizatidhere are no extra background images, but all
other images from the database not containing the object fioe counter class. In 2005, 4 object categories
had to be distinguished (motorbikes,bicycles,peopls)can 2006 there were 10 object classes (bicycle, bus,
car, motorbike, cat, cow, dog, horse, sheep, person). Fordhallenges, many reference results are available.
The images in the individual categories of VOC2005 wereiglyrttaken from other databases (Caltech,

TuGraz, UIUC etc.), the VOC2006 data includes some imagediged by Microsoft Research Cambridge
and "flickr”.

“http://12r.cs.uiuc.edu/ cogcomp/Data/Car/
Shttp://www.pascal-network.org/challenges/VOC/vocal@dex. html
Shttp://www.pascal-network.org/challenges/VOC/vod@@@dex. html
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3.2.6 ImageCLEF2006 Object Annotation Task

This dataset is not as widely known as the previously desdridmes, and only two reference results exist. It
is a quite hard database with 21 classes (ashtrays, backgd=zalks, banknotes, benches, books, bottles, cal-
culators, cans, chairs, clocks, coins, compgguipment, cupsnugs, hifiequipment, knivegorks spoons,
mobilephones, plates, sofas, tables, wallets). The imagesented should be automatically labelled with the
right key word, i.e. classified correctly. The database amihér information is available hete

3.2.7 MUSCLE Animal Images

Within the MUSCLE (Multimedia Understanding trough SeniesitComputation and Learning) campaign,
a dataset consisting of different animal categories waduymed. The initial version proved too difficult, so

"http:/iwww-i6.informatik.rwth-aachen.de/ deselaersgeclef06/nonmedaat.html
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a new database containing 262 images in 9 classes was telghsetah, cougar, coyote, dear, goat, horse,
leopard, lion, tiger). Results with this database are tatawa

4 Object Class Recognition Using Patches

A recently popular method to deal with object class recagmiis to use local information extracted at various
points or areas in the image. Local patch based approackeshawn to have benefits over global methods:
they are capable of modelling the variability in object ampmce as well as the shape and can cope with
occlusions. Both the kind of local information extractedafures) and the exact positions at which these are
acquired can differ tremendously in different methods.

Methods based on locally acquired features are named afifgrin literature. The most common notion
is “patch based” [63], however also the term “fragment ba$éd], and sometimes “part based” is used.
However, the term “part based” is mainly related to more sgim&ntities, e.g. arms, legs, body and head for
a human being, where the first two are rather related to pvenéixtracts acquired from an image.

The use of local information has many advantages. We tryrtinsarize them in the following list:

e Reduction of the amount of data to be processed
Typically, the number of points where local information xéracted is significantly less than the number
of pixels in the image. Information is either extracted anpo“where something happens”, so called
“interest points” (see Section 4.2), a number of random1tsdBB], points from a fixed size grid [12] or
combinations of these. Also, features can be extracted &maas [53, 40].

e Avoidance of segmentation
The objects to be recognized do not have to be segmentedi@riecognition, in contrast, some patch
based approaches even deliver a segmentation of the reedgstbjects [31].

e Robustness to background clutter
This item is related to “avoidance of segmentation”. Wheingigocal information, the classification
step should ideally only consider parts that have a strodgation for the object itself, information
from the background should be ignored ideally.

e Robustness to occlusion
In many real world scenes, objects to be recognized arafaniccluded. Global methods that require,
e.g., the outline of an object, fail at this point. Patch lagpproaches have shown to cope well here,
since the local information acquired at one point is notaéd by other, occluded parts of the object.

e Robustness to variability in object shape
When dealing with visual object classes, we have to cope weitlability in the object configuration.
Since the extraction of local information at one point is a¢cted from object parts at other locations,
we gain robustness. We detach shape and appearance infornzeitd can model them separately, as
already proposed by Fischler and Elschlager [20].

On the other hand, the use of local patch information hasdissmlvantages:

e Miss of relevant parts/structures of the image
When using an interest point/covariant region detecterefalways is the danger that relevant parts of
the object are missed. Later stages, that rely on these grariikely to fail then. This is especially
problematic if the interest point detector emits only fewenest points, like the Harris/Hesse-Laplace
or the DoG detector (see Section 4.2).

12



e Loss of spatial coherence of the parts
If the location where the patches were extracted gets diedaas, e.g., in the “bag of features” ap-
proaches (see Section 4.7), we loose information. Some paght only be discriminative within a
geometric configuration.

These disadvantages have to be attenuated or cancelecint@athieve superior performance.

4.1 Basic Principles

Current patch based approaches for the recognition ofhidject classes consist of several main steps, which
are depicted in Figure 4. This is basically the common pattecognition scheme, where feature extraction
and learning is modelled in two steps.

e Determine location and area of feature extraction
Since our premise is to use local information, we first havddi@rmine where this local information
should be extracted. Section 4.2 deals with this in detail.

e Type of features to be extracted
A variety of features can be extracted from local areas.lligd¢hey are robust to illumination changes
as well as noise and capture the properties of the area thegxracted from well. In Section 4.3, we
describe some feature extraction methods.

e Learning
In order to describe the object class, we have to learn wlatdsacteristic for it. We present training
data to the system, either in a supervised, weakly superasensupervised manner. Depending on
whether a discriminative or generative method is applied,oltain an object model or a decision
function for the classification step. This step is where napgtroaches differ.

¢ Classification/Localization
New images presented to the system for classification tipicadergo the same interest point/area and
feature extraction procedure as the training images. Thendre classified using the learned functions
or object models form the database. Here again a varietyffeireint methods are available, ranging
from simple nearest neighbor techniques [12] to more ad@techniques like SVMs [72] or boosting
procedures [53].

¢ Validation/Tests
In order to judge the quality of the huge amount of procedymesented, they must be tested. A
variety of benchmarks and reference databases exist, kslmaeen in Section 3.2. Different standard
measures like ROC (Reciever Operator Statistics) curvegPecision-Recall) graphs or EER (Equal
Error Rates) values can help to make the results more cotvipara

4.2 Location of Feature Extraction

In literature, very diverse methods exist to determine wherextract features for object classification. Typi-
cally, features are extracted at so called interest pditsever, the exact meaning of “interest point” differs
from author to author. So Agarwal et al. [3] defines them t6dments that have high information content in
terms of the local change in signalCordelia Schmid et al. [56] dpoints where a signal changes two di-
mensionally”or Loupias et al. [36] just agoints where something happens in the signal at any regmiiit

13
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Figure 4: General scheme of object recognition using patche

Other authors like Reisert actually mean “specific partaets” if they mention “interest point detectors”,
since they do not detect any part where something happensnlguparts that have specific properties.

Interest point detection has a long tradition in classic potar vision for finding point correspondences to
reconstruct 3D scenes from 2D views. There exist a lot ofuataln papers that try to judge the quality of

interest point detectors, e.g. [58, 57, 47, 45]. The evaloatriteria are mainly repeatability (i.e. robust-

ness against varying imaging conditions like viewpoinglagillumination changes) and information content.
Repeatability however, is not necessarily a suitable nreashen dealing with different objects, since direct
point correspondences can not be established. Mikolaiezyk [41] also evaluated interest point detectors
(and features) in terms of object class recognition.

Scale invariance is also an issue if we deal with arbitrargges, so not only points, but rather areas like
boxes or circles should get extracted from the images. Misttmachieve robustness to scale changes include
finding function maxima in scale space [35] or the calcutatbthe entropy in an area [26].

Even affine distortions are considered by some detectag,déliver ellipses [27, 43] or parallelograms [67].
These detectors are also referred to as “covariant regi@ctdes”, since they change in a way consistent with
the image transformation, where as an “invariant detectatild remain unchanged if we consider the strict
meaning of the word.

Many authors, e.g. Mikolajczyk et al. [41] or Oplet et al. [Suggest that different detectors should be used
complementary, as they have different properties (somextletige like, some corner like structures), so more
information can be captured. Others like Deselaers et 8l dthte that the exact choice of the interest point
detector is not important, as long as enough interest panetextracted. Even very simple means for locating
interest points might be sufficient, e.g., just taking |lomad with high local grayvalue variance or entropy.
Maree and Geuts [39] even go further: they just use a sufflgitarge number of random points.

Homogeneous regions also carry information that can befiseiefor object class recognition, and thus
some detectors search for regions with similar properfidee MSER detector (Maximally Stable Extremal

14



Regions) [40] or the IBR detector (Intensity Based Regi¢®8) are a examples for that. These regions might
have any form and are not restricted to a specific geometrouta

In the following, we give a list of interest point/covariaegion detectors, to adumbrate the varietey of them:

1. (Classic) Interest point detectors

Harris corner points [24]
Forstner point detector [22]
Wavelet based salient points [36]
Complex filters (Marco)

2. Covariant region detectors

Harris-Laplace/Harris-Affine [43]
Hesse-Laplace/Hesse-Affine [43]

MSER (Maximally Stable Extremal Regions) [40]
Laplacian of Gaussian (LoG)

citeLindeberg1998

Difference of Gaussian (DoG) [38]

Intensity Based Regions (IBR) [68]

Edge Based Regions (EBR) [68]

Kadir & Bradey salient regions (based on entropy)[27]

3. Other approaches for interest point/region detection

e Random points [39]
e Grid (sparse, dense) [12]
e Gradient magnitude [46]

It is generally noticed that some feature detectors defiwary sparse representation, so that subsequent steps
in the object recognition chain may suffer from that. Soc¢gily, many feature detectors are run, not only to
get different types of interest points, but also to get mdrhem. Some authors also start to use exhaustive
sampling of the image now, e.g. Fergus et al. [19].

4.3 Types of Features

The pixel values can not be compared directly, since theyntnigdergo the variety of transformations men-
tioned above. In order to describe image structures, seccditatures” get extracted, that should be robust to
at least some of the imaging conditions.

Their complexity can vary from pure intensities (gray valut sophisticated descriptors like SIFT (Scale
Invariant Feature Transform) [37]. As already describe&éation 3.1, an image might suffer from several
imperfections like noise and non standard illuminationatiiees should either be robust against that or must
be normalized, e.g. by color normalization, illuminatioarmalization or scale normalization techniques.
This is especially important for object class recognitiocont arbitrary images, since we have no knowledge
about the recording conditions.

In this work, we mainly deal with local features. They arecaédted from a relatively small, bounded region,
that was acquired as described above. Global features arotiieary involve the whole object or even the
entire image.

15



A huge variety of different types of features have been pseddor object recognition and image retrieval.

Some of them were evaluated in [44]. As expected, differeatures are suitable for different tasks and
objects. Opelt et al. [53] even propose to calculate marfgréifit features and then let the classifier decide
which features to choose (boosting).

We just list some of the more commonly used:

1. Texture features
tamura texture features, wavelets, gabor filters, steeifdtérs, (invariant) moments, jet features, lo-
cal binary patterns (LBP), SIFT, SURF, GLOH, gray value iiaats (monomial, relational kernels),
cooccurrence features, MSA, PCA-SIFT

2. Color/Intensity features
gray values (possibly dimensionally reduced: PCA, LDA, BDgolor histograms (important: color
space, illumination, color constancy)

3. Shape features
edge orientation histograms, line features, gradientgfihzde, orientation), shape context Fourier
descriptors

4. Others
gaussian derivative filters, differential invariants, qoex filters, cross correlation of sampled pixel
values, spin images

4.4 Learning

Our goal is to determine whether an object is present in agenma not. In order to decide that, pattern
recognition offers two fundamentally different methodengrative or discriminative learning.

Generative methoddearn probabilistic object modeB(input). For this, only the data of the current
class is necessary. Typically, distributions ®fobject present) and P(object absent) are learned,
whereP(object absent) is build from arbitrary background images or images cointgiother objects.
For decision, typically a likelihood ratio test of the twooites is performed to classify new images.
When adding a new object category, the old ones are not effect

Advantages of generative methods are that they can handgngior partially labelled data and new
classes can be added easily. Moreover, they can handle siiopality, where standard discriminative
models need all possible object variations in order to I#aerdecision function [71].

Discriminative methods a decision function is learned directly, i.€(class|input), e.g. by regres-
sion techniques. The decision function might be, e.g., bararpetric model, where the values of the
parameters are inferred from a set of labelled training,dateh as a neural network or an SVM.

Advantages of discriminative methods are that they arellysuery fast and are expected to be more
accurate than generative methods, since they optimizeettisidn function directly [71].

Learning methods also differ in the amount of supervisi@ytieed for training. Strongly supervised methods
typically need segmented objects or manual labels of spattifect parts. If a huge variety of object classes
is to be learned, this is not desirable. Weakly supervisethods only require the class labels per image, not
where exactly the object is located. Unsupervised leardoes not even require image labels.
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Since for discriminative methods, the goal is a direct mimation of the classification error, the performance
might be superior, however, when when training data is édhifgenerative approaches might be preferable,
as shown by Ng and Jordan [49].

Often, generative models and discriminative learning atermixed, e.g. [4, 23], in order to benefit from the
two worlds.

4.5 Feature Sets

One important property of patch based approaches is thatowethave to deal with individual features
or feature vectors describing the object, but with featwts,swhich require some further processing or the
modification of known pattern recognition techniques. Pamaple, if we want to use an SVM on feature
sets, we need specific set kernels for that [72].

The features are typically not ordered in the sets, andtdi@cespondences between features of two images
can not be established easily. A lot of features in a padicst might be doubled, since they occur at many
places of the object/image, or superfluous/erroneouse sy come from the background.

The lack of correspondence between the features of imagesechandled two fold:

Ignore the lack of correspondence This leads to so called “bag of features” approaches, waieh
basically histograms of features. They show generally guaformance, but localization can not be
done, since all spatial information is lost during histogiag.

Identify and correspond features In this approach, we are looking for specific “parts”. Hilé al.

[4] define a part to bedn entity with a fixed role (probabilistically modelléd)Parts can either be
something that corresponds to human perception like eypsgsnwheels, more abstract pieces like an
arbor or any other pattern. Whenever supervised learnimipre, humans tend to identify semantic
parts, however they do not necessarily mean that they amadisé discriminative ones. E.g., the hair
line is a good and stable part for the recognition of facesydver, people would not select this part
at first sight. The number and type of parts vary greatly féfedént approaches, e.g. Fergus [18]
constellation model has 3-7 parts where Agarwal et al. []Jaisodebook of 270 parts.

When we have detected specific object parts in an image résetiations (mainly location and scale relations)
provide a powerful cue for classification. The problem hertifind discriminative and geoetrically stable
parts of the object reliably.

4.6 Clustering

A way to cope with the diversity and size of the feature sete iduster them, i.e. to group them according

to some criteria and then to use the cluster centers onlhigmtay, we gain robustness to small variations in

the patch. Typically, a similarity measure is applied foouping the patches, e.g. (normalized) cross corre-
lation or a Minkowsky norm. This leads to a more abstract; decription of parts. Instead of the features

themselves, the cluster means or some other represestatierused for the different cluster members.

Clustering can also used as a mean for part selection [18lerWWire cluster features from training images
all containing the object, we assume that clusters withhestoriginating from the object should be big,
where the background patches should end up in smaller dusiace they should have arbitrary appearance.
However, this is only true when the object is photographettally diverse scenes. Usually, the background

17



is also somehow similar (streets, office), so bigger clasteight as well be from the background. Maybe
this information still helps for classification, e.g., if weant to discriminate cars on roads against office
backgrounds (or the similar), then the street patches walsldl be discriminative (and it is to suspect that
exactly this is the case in many object recognition systems.

Clustering can be seen as unsupervised learning, sin@lniho labelling of the data is done. Depending on
the clustering algorithm, we might obtain different clustg solutions, some of which might be more suitable
than others for object class recognition. Even for the sdgwithm, the exact solution can differ, because of
random initialization and local minima.

There is a variety of different clustering algorithms, adoweerview about them can be found in [64]. Cluster
algorithms used for object recognition mainly fall into arfehe two categories:

1. Hierarchical clustering

Divisive clustering The data is first regarded as a whole, then it is split conaetytin smaller
parts. Examples for that is e.g. the Linde-Buzo-Gray [3d4pdathm. This approach is followed
by [12, 13] as an example.

Agglomerative clusteringHere, initially all data entries are regarded as singletehss and they
are grouped with the most similar clusters in the followitgps, until all data is grouped. This
procedure can be visualized by dendrograms. To obtainichdiVclusters, the tree is “cut”, so that
either a certain number of clusters emerge, or the simjlafithe clusters is above some threshold.
A disadvantage of this approach is that very small clustaghtroccur, and this did not prove
useful for object class recognition. Moreover, we have tal déth large time O(N?log(N)))
and space(®(N?)) complexity. As an advantage, we get visually very comphgiters. Methods
falling into this category are applied, e.g., by [2, 29].

2. Clustering based on function optimization
Here, a function/ gets minimized, e.g. the distance of the data entries toltister centers. Typically,
the number of clusters has to be given. How to select the eaber of clusters is not always clear. Itis
commonly determined experimentally. Examples are k-maad<$EM clustering. For our experiments,
clusters obtained by k-means were already well suited, peefprmed better than the agglomeratively
clustered ones for cluster membership histograms. [74ugd Llustering techniques of this kind.

The clusters obtained in this way are referred to as “visodebook” or “visual words”, depending on the
background of the authors. Again, different strategiesbeafollowed for the construction of the clusters: one
is to obtain very specific codebook entries that describectass particularly well, an other is to obtain very
generic ones, so that the codebook might be used for mangtatigesses. This leads to the question whether
there should exist specialized codebooks for each objassdr if there are generic ones where clusters (i.e.
object parts) are shared by different object classes [6B, 8ihce clustering is usually very expensive, it
would be desirable to have one general codebook that carebdarsall classes, so that the addition of a new
classes does not require new clustering in order to buildradigtionary or a complete rebuild of an existing
codebook.

Recently, Miklolajczyk et al. [42] introduced a new mixedsiering approach, where first k-means clustering
and then agglomerative clustering is performed in orderet@ble to deal with hundreds of thousands of
feature vectors.
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4.7 Object Geometry

The spatial layout of object parts is a powerful cue for rettign. Despite the fact that bag of word ap-
proaches often perform very well in two class object rectigmitasks, the geometric relation of parts gives
beneficial hints, especially in a multi class setting. Bagrofd approaches perform well if the pure existence
of certain structures give a strong indication whether geaths present or not. However, an object is more
than the pure collection of parts, and some parts might beatisecriminative in a specific constellation only.
So it is useful to study how object geometry might be modedlied used for recognition.

One difficulty is that for 3D objects in the real world, the gestric configuration of parts and sometimes
even worse the parts visible might differ tremendously. @pproach is to restrict the modelling of object
geometry to a certain view and use several of them to receghiz object, an other one is to learn a true
3D model. Typically, the former approach is taken, where etimes already transitions between views are
learend [65].

A vital part for treating structure is that specific parts éaw be identified. These parts can be strong ones
with a semantic meaning like eyes, wheels and so on, or ratifeones like edges, bars, corners, that might
match at many positions, but where the distributions arevknieelative to an object reference point. Several

possibilities exitst to decide which object parts to choose

Selection of patches by hand, e.g. by clicking on them [6]

Selection of patches by exhaustive search and test on atiaficset [73]
Selection of patches directly by a classifier [53, 16].

No selection at all, maybe reduction of parts by clusterfrapplicable [2]

Popular methods modelling the geometry of objects aremria the “star model”, i.e. object parts in relation
to a center point. Examples for this method are Leibe et &], [2ergus et al. [19] or Shotton et al. [59].
Another possibility is the “constellation model” [18] wihienodels the joint probability of all parts to another.
This can be seen as a new variant of the “parts and structgbach already proposed by Fischler and
Elschlager [20] in 1973, where objects are modelled as aciwdin of parts that are connected by springs.

5 Comparison of Systems

The recognition of visual object classes is a very activeaesh field, and every year, a variety of new papers
dealing with this topic are published. We want to give a sma#irview about approaches that had great
impact on research in this area and describe current stéte aft techniques.

The properties of most of these approaches are summariZeabia 1, classification error rates on standard
datasets are listed in Table 2, 3, 4 and 5.

In the following list, which is only comprised of a fractiori the published literature on this tofica huge
variety of different methods were proposed to deal with #sk f visual object class recognition. Typically,
the systems make exhaustive use of machine learning tesslike EM, SVMs or Ada-boost, but also tra-
ditional Bayesian approaches are frequently used or iftedn The approaches can be roughly divided into
methods using the geometric distribution of parts or negigdahem, or in generative as well as discrimina-
tive methods. Current research trends tend to combine adgweviously proposed methods, e.g. different
interest point detectors, different features or diffeneratching strategies, which makes it difficult to judge

8the selcetion was based on what was considered to be impbytaine authors and may well be biased
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the overall performance of the individual components, esithe interplay and the fine tuning of the differen
parts becomes more and more important.

Burl, Weber, Perona [7] 1998

A Probabilistic Approach to Object Recognition Using LocalPhotometry and Global Geometry
Ipts: Manual selection of candidate parts, eyes, nosetip, mautiecs; correlation
Features: Dominant local orientation

Distance: Correlation

Classifier: Likelihood ratio

Translation, rotation and scale invariance is achieveddiygurelative positions to reference points.

Weber, Welling, Perona [74] ‘ 2000
Unsupervised Learning of Models for Recognition

Ipts: Forstner detector

Features: Gray values, gradients

Distance: Normalized correlation

Classifier: Likelihood ratio

Forstner interest points get extracted, then featuresleded and clustered with k-means (100 clusters, ¢
features from the positive class are used). Clusters wathtlean 10 members are removed, also clusters
are similar to others after a small shift. A number (3-7) dftidictive parts get selected, according to th
classification performance on a validation set. For clasgifin, the joint probability density of the detect
part locations is evaluated.

Agarwal, Roth et al. [3, 2] 2002, 2004
Learning a Sparse, Part Based Object Representation

Ipts: Forstner detector, sgare patches 13x13 pixel

Features: Gray values

Distance: Normalized cross correlation

Classifier: SNOW (Sparse Network of Winnows)

Part detection via matched filtering, then a probabilistiee model is applied (joint probability of parts)

t

nly
that
eir
ed

Features are clustered in an image and the occurrence térclnembers at a specific spatial relationship
coded in a binary vector. As a classifier, winnow are used.ld¢aalization, a sliding Windows approach
used to calculate a classifier activation map, i.e. the fnitibes, that an object at a certain location is prese

is
2Nt.

Later, a multiscale approach was also proposed.
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Dorko, Schmid et al. [15, 16] ‘ 2003, 2005

Object Class Recognition Using Discriminative Local Feattes

Ipts: Kadir & Bradey, Harris-Laplace, Harris-affine, patchesmmimalized (geometry, scale,
direction)

Features: SIFT

Distance: Gaussian Kernel Density

Classifier: Number of “activated” part classifiers above threshold

Extraction of scale and affine covariant parts, calculatbiSIFT features, clustering of the features w
GMM, each Gaussian represents a cluster. Part classifiefsudt (NN with Gaussian kernel density) af

discriminative parts are found with two criteria: classifion likelihood or mutual information. For classifi

cation, then most discriminative object parts are used and the final aecis done whether the number
“activated” positive part classifiers is above a certairshiold, which is determined for each class.

th
nd

Df

Fergus, Perona, Zisserman [18] 2003
Object Class Recognition by Unsupervised Scale-Invariantearning

Ipts: Kadir & Bradey detector

Features: Gray values, dimension PCA reduced (10D)

Distance: Gaussian

Classifier: Likelihood ratio

About 30 Kadir & Bradey regions get extracted and normalied 1x11 pixels. The approach is simil
to [74], however, here also the part appearance as well ascthive scale is modelled. All parameteg
of the model are learned via EM, even the selection of partshypothesis vector assigns the detectig
to the previously learned parts or marks them as hidden. sifitation is done using the likelihood rat
considering shape, appearance, scale and detectorfoccktatistics. Disadvantages are the long train

Al
Is
ns
(0]

ing

and classification times, since a huge number of paramessrsohbe learned and part mappings have tg be
found. For this, all possible configurations of the detegtads are evaluated.

Leibe, Schiele [31] 2003

Interleaved Object Categorization and Segmentation

Ipts: Harris detector

Features: Gray values

Distance: Normalized correlation

Classifier: Hough like voting scheme

A codebook of object parts is generated using agglomerahigtering and normalized grayvalue correlation.
For each codebook entry and object class, probabilitiesliggct centers are calculated from a training set.
Segmentation masks are stored for each codebook entry. l[d&ssification, a hough like voting scheme|is
applied, with that, probable object centers can be foundindgJthe backprojeckted hypothesis, a refined
sampling can be done to get an improved hypothesis. The snege also be segmented using previously

learned segmentation masks.
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Carbonetto, Dorko, Schmid [8] 2004

Bayesian Learning for Weakly Supervised Object Classificabn

Ipts: Harris-Laplace, Kadir & Bradey, LoG, DoG, Harris-affinendmm selection
Features: SIFT

Distance: Gaussian kernel density

Classifier: Probit link classifier

This works deals with object class recognition as data &ssme problem: features form training images m
contain the object or the background, task of the classgiay reveal their affiliation. A probit link classifie
is used for each patch, the parameters are learned by a MCM&k@V Chain Monte Carlo) algorithm. Th
sum of the label probabilities for each patch in the imagd teaa decision.

Leibe, Schiele [33, 32] | 2004

ay

D =

Interleaved Object Categorization and Segmentation, Scal Invariant Object Categorization Using a
Scale-Adaptive Mean Shift Search

Ipts: Harris detector, DoG detector
Features: Gray values

Distance: Normalized Correlation
Classifier: Hough like voting scheme

Improvements to [31]: The use of MDL (Minimum Descriptionrigéh) for multi object recognition, Mea

Shift search for fast maximum search in the Hough accumugatay and scale invariant interest point detec-
tion using the DoG detector.

Csurka, Dance, Fan, Willamowski [10] 2004

Visual Categorization with Bag of Keypoints

Ipts: Harris affine

Features: SIFT

Distance: SVM: linear kernel

Classifier: Naive Bayes, linear SVM

SIFT features get extracted at geometrically normalizedisiaffine patches. These are then clustered using
k-means clustering and histograms of cluster membersHiag) (of keypoints”, “bag of words”). Classifi-
cation is done by Naive Bayes and SVMs, where the latterepidpns the former. All spatial relations are

ignored in this approach.
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Torralba, Murphy, Freeman [66] 2004

Sharing Features: Efficient Boosting Procedures for Multidass Object Detection

Ipts: Exhaustive search
Features: Gray values templates (dimension 2000) and spatial masks
Classifier: Joint boosting

As features, 2000 random patches get extracted from tgpiniages of the 21 object classes together v
spatial masks. They are used as a kind of matched filter. &airtg, a “joint boosting” approach is proposeg
This means that from the pool of weak learners, the one isechtisat not only separates a single class fn
the background best, but all the selected classes. This aater is then added to the strong learners of
selected subset. Results on both toy data as well as on rela wages show that it is beneficial to use t
shared classifiers, which - in this case - corresponds tedHaatures, since one weak classifier means
specific feature.

Bar-Hillel, Weinshall [4] 2004

Efficient Learning of Relational Object Class Models

Ipts: Kadir & Bradey detector
Features: Normalized grayvalues, DCT transformed, (15D)
Classifier: Boosting

vith
d.
om
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In this approach, the appearance, location and scale of aegtconsidered. A Bayesian network is used to
learn the dependencies of part locations and part scalesalN@lations of parts are used to another, but

only to an object reference point. The models have an intgiates number of parts (60) and the paramet

ers

are learned using boosting. For classification, the prdibaloif the feature sets belonging to the class are

calculated over marginalization.

Opelt, Pinz, Fusenegger [50, 52, 53] ‘ 2004, 2005

Generic Object Recognition with Boosting

Ipts: Harris-Laplace, Harris-affine, DoG, regions acquired bgnfrity measure segmenta-
tion”

Features: Diverse (subsampeled gray values, basic moments, intanaments, SIFT, intensity
distributions and invariant moments for regions)

Distance: Diverse (Euclidean, Mahalanobis, etc.)

Classifier: Boosting

The rationale behind this approach is that the performanaedvidual detectors, descriptors and distar
measures might be category specific. So they should be aikafto the classifier which should select the i

ce
est

combination. For this, a boosting framework is proposed dwdy interest point/region features are used, put

also segmented areas.
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Ulusoy, Bishop [71] 2005

Generative Versus Discriminative Methods for Object ClassRecognition

Ipts: DoG
Features: SIFT
Classifier: Discriminative: softmax model in a linear network, genimet Gaussian mixture model

The authors compare a discriminative and generative apprima object class recognition in a weakly super-

vised framework. Images are not classified directly, buptitehes in the image. Whenever a patch is labe
to belong to an object class, the whole image gets this latmktize object is regarded to be present. For

generative model, they use Gaussian mixtures and learratlagngters with an EM-style algorithm, for the

generative model they use linear as well as non linear nktvamd a softmax model. The results are teg
using a cow/sheep database.

Sudderth, Torralba, Freeman, Willsky [62] | 2005

Learning Hierarchical Models of Scenes, Objects, Parts

Ipts: Affine Covariant Regions (prob. Harris/Hesse-Affine, MSER)
Features: SIFT
Classifier: Maximum likelihood

Objects are modelled as a set of parts with an expected apmeaand position, in an object centered cg
dinate frame. The parameters of this model are learned villasGampler, which uses a graphical mode
analytically average over many parameters. The approdgwanks for images with roughly aligned object
as in the Caltech 101 object database. In a nice graphicifispgearts and the distribution of their location

the image is shown. The parts were obtained by getting alibpiaBs per image and clustering them to
clusters. In the second part of the paper, a graphical medmldd to also model the scene the object is in,
this is rather sketched as an idea.

Fergus, Perona, Zisserman [19] 2005
A Sparse Object Category Model for Efficient Learning and Exhaustive Recognition

Ipts: Kadir & Bradey, multi-scale Harris, curves

Features: Normalized gradients, dimensions reduced via PCA

Classifier: Bayes (Likelihood ratio)

Basically, the constellation model of [18] gets improveahfra speed point of view in that for the geomet
layout, not a full joint probability density is used any motastead, one specific landmark gets determi
and the geometric configuration depends only on this. Thentamnk is assumed always to be present

occlusion of this part). Also, 3 different types of detestarere used, besides the Kadir & Bradey dete¢

also the multiscale Harris and a curve detector (linked €alyes, broken at bitangent points). Patches
represented using normalized gradient intensity, the dénoas are reduced via PCA. The selection of pi
is again done using a validation set. For testing, exhaustdarch is proposed: all PCA basis vectors
convolved with the image for the first k PCA components, tr@refich model part an activation map can
computed. However, this is again quite expensive.
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Deselaers, Keysers et al. [12, 13] ‘ 2005, 2006

Discriminative Training of Patch Cluster Histograms

Ipts: Loupias interest point detector + regular grid, squaredip at fixed and variable scale
Features: Gray values, PCA transformed

Distance: Euklidean distance, symmetric KLD

Classifier: Bayes with discriminative training

Features get clustered and histograms build from the clasgenberships. Using the histogram, a variety

of classification methods get tested, e.g. global patchckeand voting, nearest neighbor, Naive Bay|
generative single Gaussian and discriminative traininge Tast one gets identified best, as it weights
feature clusters according to their discriminativity. hetsecond paper, the approach gets improved,
patches get extracted at various scales and brightnessliwation is performed by removing the first PQ
coefficient of the gray value features. Also SVMs were tested classifier.

Mikolajczyk, Leibe, Schiele [42] 2006

Multiple Object Class Detection with a Generative Model

Ipts: Dense sampling at gradients, Laplacian scale selection
Features: SIFT features, dimension reduced to 40 via PCA
Classifier: Likelihood ratio

Features are calculated from all points in the image whergtadient magnitude is above a certain thresh
The scale at these points gets determined via Laplaciaa se#dction according to [46]. For every featu
a geometry term gets determined coding the distance aniiveebngle of the object center to the interg
point, according to the dominant gradient orientation draldcale of this interest point. SIFT features
calculated at these areas and the dimension reduced to BC¥WaA top-down bottom up clustering method
applied: first, the data is partitioned using k-means, tlethe individual clusters agglomerative clustering
performed. A hierarchical tree structure for appearanagstefs is build, which is used for efficient similari
computation. Classification is done in Bayesian manner cimgp the likelihood ratio. This test is don
at local maxima of the likelihood function of the object bgipresent. Some additional tests are applied
determine whether objects of different classes shareairmiilisters or overlapping objects exist. In this w
the location, scale and orientation of multiple objects lpametermined.
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‘ Method H #ipts/image‘ clustering ‘ part select. ‘ scale inv. ‘ rot. inv. ‘ Iocalization‘ multiObj. ‘ geometry‘
Deselaers et al. [12] || 1000+300 div. LBG, 512/4096 | disc training no no no no no
Deselaers et al. [13] 500+300 div. LBG, 4096 disc. train | yes, manual no no no no

‘ Agarwal et al. [3, 2] H 8 agglom., avg. link ‘ no ‘ yes, manual‘ no yes no yes

Dorko et al. [15] 100-300 GMM LikRat/Mul | yes, detectorl  yes pre-step no no
Carbonetto et al. [8] 3x100 no MCMC yes, detecto  yes pre-step no no
Burl et al. [7] 5 no manual yes yes yes no yes
Weber et al. [74] 150 k-means(100) EM+valid no no yes no yes
Fergus et al. [18] 30 no EM+valid | yes, detector no yes no yes
Fergus et al. [19] 60 no EM+valid | yes, detector no yes yes yes

‘ Leibe et al. [31, 33, 32” 8269/16 ‘ agglom, avg.link(2519)‘ nein ‘ yes ‘ no yes yes yes
| Opeltetal[52,53] || many | SIFT: k-means(100-300) boosting | yes, detectof no no no no
Csurka et al. [10] avg. 360 k-means (1000) no yes, detecor| yes no no no
Mikolajczyk et al. [42] 2.5-10° k-means + agglom. no yes, detecor| yes yes yes yes

Table 1: Summary of features for different systems




Caltech dataset§ motorbikesside | faces| airplanes| carsrear | leaves| UIUC carsside

[2] 21
[12] 15 5.8 2.6
[13] 11 3.7 14
[14] 1.3 3.9 0.8
[16] 0.5 0.46 1.25 1.08
[8] 0.0 0.2
[29] 2.5
[18] 7.5 3.6 0.8 9.7 11.5
[19](various) 2.7 9.7 6.3 2.3
[52, 53] 5.7 0.0 2.5 0.0 0.0

Table 2: Error rates for different approaches on the Caltlatasets

| Graz-01 DB|| bikes | people]|

[16] 8.0 | 12.0
8] 8.0 | 16.0
[53] 16.5 | 235

Table 3: Error rates on the Graz-01 datasets

7 Graz-02 _u_w: c_xmmi _omo_o_i omﬂi
| 531 | 222] 18.2 | 295]

Table 4: Error rates on the Graz-02 datasets

7 uluc : omaw_o_mi

2] 21.0
[18] 11.5
[29] 2.5
[52,53] | 0.0

Table 5: Error rates on the UIUC dataset
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