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ABSTRACT
Image classification systems have received a recent boost
from methods using local features generated over interest
points, delivering higher robustness against partial occlusion
and cluttered backgrounds. We propose in this paper to use
relational features calculated over multiple directions and
scales around these interest points. Furthermore, a very
important design issue is the choice of similarity measure to
compare the bags of local feature vectors generated by each
image, for which we propose a novel approach by computing
image similarity using cluster co-occurrence matrices of local
features. Excellent results are achieved for a widely used
medical image classification task, and ideas to generalize to
other tasks are discussed.

Categories and Subject Descriptors: H.3 [Information
Storage and Retrieval]: H.3.1 Content Analysis and Index-
ing; H.3.3 Information Search and Retrieval; I.5 [Pattern
Recognition]: I.5.3 Clustering; I.5.4 Applications;

General Terms: Algorithms, Design

Keywords: Classification, Image Analysis, Image Annota-
tion, Local Features

1. INTRODUCTION
Digital recordings of all kinds of visual data are stored in

huge databases, consider e.g. image libraries at publishing
companies, digital art galleries or medical image archives
at hospitals. In order to retrieve specific images in these
databases again, powerful automatic tools working on the
image content are desirable. Content based image retrieval
(CBIR) methods are already capable of finding visually sim-
ilar images (e.g. from a color and/or texture point of view)
quite reliably. However, users want to retrieve images based
on semantic entities present in them. A traditional approach
is to use keywords for the description of the image content,
as was already used for printed image collections. Manual
annotation of the sheer mass of images is usually not feasi-
ble any more, even worse error prone, since different people
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tend to judge the content of an image differently.
Also in areas where the content of the image is undis-

puted, as e.g. in medical X-ray images, we need automatic
procedures to assign keywords, since sometimes the images
were never labeled or simply mislabeled. As an example, a
study carried out by the University Hospital in Aachen [12]
revealed over 15% errors in just one specific tag alone, which
was manually assigned to X-Ray images taken during nor-
mal clinical routine. Unless corrected, these images cannot
be found again with keyword search alone.

The assignment of keywords to an image can be seen as a
classification problem, especially if the pool of keywords is
fixed and only certain combinations of keywords are allowed
[26]. In some applications, the possibility to be able to as-
sign multiple classes to a single image has been considered
[19]. These applications call for effective image analysis al-
gorithms. Recent image analysis methods often employ local
information extracted around so called interest points. The
benefits are easy to see: they can deal with partial occlusion
and cluttered backgrounds better than globally computed
features. In this work, we present a method for classifi-
cation of images based on gradient-like relational features
computed around interest points. Apart from the features
themselves, also their spatial relation to each other is con-
sidered in order to improve recognition performance.

Related Work
The research area of general image classification has always
been very active. Recently the focus is drawn to methods us-
ing local information extracted in various ways from patches
around the above mentioned interest points. In this paper,
we extend the relational features introduced originally for
texture analysis to interest-point based general image clas-
sification. Their main advantages are increased robustness
to illumination changes, and the ease at which local informa-
tion at various scales can be captured. Current object clas-
sification systems also differ in the way the local information
of the patches is combined: some use only the feature vectors
extracted at the points, others also take their (normalised)
position information into account. Examples for effective
object classification systems neglecting the spatial layout of
the interest points are by Csurka et al [6] or Deselaers et
al [9]. They use histograms of patch cluster memberships
as features and for classification, SVM and discriminative
training respectively is used. An early example for the com-
bination of local appearance and positional information was
by Weber et al [27], further developed by Fergus et al [11]
and Fei-Fei et al [10]. They introduced a so called “constella-



tion model”, i.e. specific local image features in a probabilis-
tic spatial arrangement, to decide whether a certain object
is present in a scene or not. The positional information is
also used by Agarwal et al [1]. They classify sub-windows in
images using binary vectors coding the occurrences and spa-
tial relations of local features. In order to incorporate the
spatial position of interest points, we propose the use of co-
occurrence relationships derived from cluster memberships
of relational features calculated over different distances and
orientations. Gray-value co-occurrence matrices were origi-
nally introduced for texture classification by Davis et al [7],
these were extended to color correlograms by Huang et al
[15]. Belongie et al [4] used constellations of such correl-
ograms for contour matching, which were extended to use
local features by Amores et al [2] with encouraging results.
They used constellations of d + 2 dimensional correlograms
calculated for each member of a sparse set of points, by lin-
early quantizing the d dimensions of the local feature vectors
along with log-polar spatial quantization. However, joint
local information of multiple feature vectors was not used.
In our case, we propose a multi-dimensional co-occurrence
matrix capturing the statistical properties of the joint dis-
tribution of cluster membership indices derived from local
features.

Outline
The paper is structured in a top-down approach to make
it more accessible. In Section 2 we first present in short
all the steps belonging to the proposed method, followed by
details on the individual stages. Experiments performed on
a radiograph database are described in Section 3, along with
a comparison with previously published results. We then
provide a thorough discussion on various interesting aspects
of the algorithm in Section 4, followed by a conclusion in
Section 5.

2. DESCRIPTION OF THE ALGORITHM
The major steps involved can be summarized as follows.

For all training images, do the following:

1. Preprocessing Convert image to grayscale if needed,
normalize grayvalues between 0 and 1.

2. Interest Points Apply an interest point detector (in
our case, the Lupias Salient-Point Detector). Sort the
obtained saliency map, and take the Ns points with
the highest saliency values for further computation.

3. Local Relational Feature Generation Evaluate a
number of relational functions ℜ(x, y, r1, r2, φ, n). Each
function gives for each interest point, a sub feature vec-
tor of length n. These are concatenated to get a local
feature vector for each interest point.

4. Clustering Take a random subset of local feature vec-
tors from all training images. Cluster these feature
vectors in Nc clusters according to some optimization
criteria. Save the cluster centers for later use with test
images.

5. Cluster Co-occurrence Matrix The nearest cluster
is calculated for all local feature vectors of the image.
The complete local feature vectors are discarded, and

Figure 1: 1000 Interest points with the highest
saliancy value for each of the two images shown on
the left. Although some interest points are found in
the non-discriminative parts of the images (for ex-
ample, the man-made object embedded in the chest
or the text in the top-right corner), local methods
are still very robust to partial matching.

the only retained information is the index of the near-
est cluster. Consider all possible salient-point pairs.
A cluster co-occurrence matrix of size Nc ×Nc is gen-
erated sector-wise (i.e. over radial and angle ranges),
yielding a 4-D feature matrix. This 4-D matrix is flat-
tened and used as the final feature vector for the image
for use with an independent classifier.

6. For the Test Images The steps 1, 2, 3 and 5 are
repeated for the test images. The cluster centers used
in step 4 are used as required.

7. Classification Multi-Class Support Vector Machines
(SVMs) are trained using the features obtained in step
5 for the training examples. Various parameters are
tuned using cross-validation. The best parameters are
selected and used to train a multi-class SVM using all
training examples. This is used to classify the given
test images.

2.1 Interest Point Detection
The method used here is the salient point extraction algo-

rithm introduced by Loupias and Sebe [20]. We have decided
to use this salient point detector as it was found that it has
more information content and better repeatability compared
with the well-known Harris detector [24]. Our informal tests
affirmed these statements atleast for the images taken from
the database used in this paper.

The assumption is that image points, where high varia-
tions occur, represent important information in the image
(areas of high relevance) and are thus extracted. One can
study the variations that are present in an image using the
wavelet analysis which allows for multiresolution representa-
tion of a signal (image). The algorithm starts from the coars-
est resolution after representing the image in the wavelet



domain, always going back one step to a finer resolution,
choosing from the set of available points the one with the
highest wavelet coeffient at that level. This is applied until
one ends up with picking one coefficient at level 1 (level 0
represents the original image). This coefficient represents a
number of points in the original image. Among these points,
the point with the maximum gradient is chosen and is given
a value representing its saliency. This saliency value is equal
to the sum of the absolute value of the wavelet coefficients
along the whole track:

s =
l

X

i=1

|ci| (1)

The above scenario is repeated for every wavelet coeffi-
cient that exceeds a certain threshold, τ , in order to avoid
computation time by not investigating small wavelet coeffi-
cients. We end up with a matrix (which we call the “Saliency
map” here) representing the saliencies of the image pixels.
The saliency map is then sorted and a fixed number of salient
points (Ns) per image is taken in this work. An alternative
strategy is to fix a threshold, and select all points having a
saliency above this threshold. The pixels very near to the
image boundary (upto 6 pixels in our case) are not consid-
ered candidates for an interest point, as the local features
cannot be accurately calculated there without introducing
artifacts. The detected interest points for two sample images
from the used database are shown in Figure 1

2.2 Relational Features
Relational features are motivated from the use of rela-

tional kernels in texture classification, introduced by Schael
in [23] based on the Local Binary Pattern (LBP) texture
features [22] which map the relation between a center pixel
and the pixels in its neighborhood into a binary pattern.

Local Binary Pattern features are invariant against mono-
tonic grayscale transformations. They eliminate the effect
of illumination by comparing the value of a center pixel with
the values of the pixels in its neighborhood. Then the sign
of the difference is considered instead of the value itself. If
the value of a neighboring pixel is greater than or equal the
value of the center pixel, then the difference is mapped to
the value 1, else it is set to 0. Applying this to all pixels in
a circular neighborhood of the center pixel, we end up with
a binary pattern which can be transformed into a unique
number as follows [22]:

LBP =
n−1
X

i=0

s (vi − vc) 2i, where (2)

s (x) =



1, x ≥ 0
0, x < 0,

(3)

where vi and vc are the grayvalues at a neighboring pixel and
at the center pixel, respectively, and n gives the number of
the pixels in the circular neighborhood of the center pixel.
Since the signed difference (vi − vc) is considered, the effect
of grayscale shifts is totally eliminated. Invariance against
scaling of the grayscale is achieved by the s operator as the
sign of the difference is mapped to 0 or 1.

It is obvious that the main disadvantage of these features
is the discontinuity of the LBP operator (the s function),
which makes them sensitive to noise; a small disturbance in
the image may cause a big deviation of the feature. To over-

Figure 2: Calculation of a set of relational features.
A feature is formed by applying the relational func-
tion to the gray-value difference of the pixels lying
on specific distance and phase to the salient point
in question (i.e. center of the circles)

come this problem, Schael [23] has introduced an operator
which extends the step function in Equation 3 to a ramp
function giving values in the range of [0, 1]:

rel (x) =

8

<

:

1 if x < −ǫ
ǫ−x

2ǫ
if −ǫ ≤ x ≤ ǫ

0 if ǫ < x
, (4)

where ǫ is a threshold parameter. This way, the features
are much more robust against noise, but we also sacrifice
the 100% invariancy to monotonic grayscale transformations
(although the features are still robust to these transforma-
tions). If ǫ is set to zero, the rel function will reduce to the
simple LBP operator s.

Based on the relational operator defined in Equation 4, we
define a relational function ℜ(x, y, r1, r2, φ, n) 7→ R

n, calcu-
lated on a salient point x, y of the image I as center. To
simplify notation, let the individual output values of the
function be given by

Rk = [ℜ(x, y, r1, r2, φ, n)]k, k = 1, . . . , n

Then,

Rk = rel(I(x2, y2) − I(x1, y1)),

where

(x1, y1) = (x + r1 cos(k · 2π/n), y + r1 sin(k · 2π/n)),

and

(x2, y2) = (x + r2 cos(k · 2π/n + φ), y + r2 sin(k · 2π/n + φ))

The process is illustrated in Figure 2. Bilinear interpola-
tion is used for points not lying exactly on the image grid.
Based on different combinations of r1, r2 and φ, local infor-
mation at different scales and orientations can be captured.
In this work, we use 3 sets of parameters, (0, 5, 0), (3, 6, π/2)
and (2, 3, π), each with n = 12. The 3 subvectors are con-
catenated to yield a local feature vector of length 36 at each
salient point. It is of interest to note, that in applications
where rotation invariance is desired, a subvector can simply
be summed up to yield a rotation invariant descriptor.

The ensemble of local feature vectors extracted from all
training images are clustered as explained in the next sec-
tion. To remain computationally feasible, the process is car-
ried out on 18000 randomly chosen local feature vectors.



2.3 Clustering
Clustering can be understood as a grouping of similar ob-

jects. For vectorial data, this process has also been exten-
sively studied in the branch of vector quantization. The
main benefit of clustering is that of compaction (and thus
implicitly abstraction) of data. In this respect, clustering
can be more effective than a uniformly spaced histogram
whose bins have been derived more or less independently of
the training data.

There are many possible approaches to clustering, in this
work we use one of the most common algorithm, the k-
means clustering algorithm. K-means is an iterative algo-
rithm which minimizes the sum, over all clusters, of the
within-cluster sums of point-to-cluster-centroid distances.
The k in k-means stands for the number of desired clus-
ters and is an input to the algorithm. Other decisions to
be made include an appropriate distance measure, which
we simply take to be Euclidean, and the choice of initial
clusters, which we take to be randomly chosen local feature
vectors.

The number of clusters is denoted in this paper by Nc

and must be selected carefully as the size of the final feature
vector increases quadratically with Nc.

2.4 Cluster Co-occurrence Matrix
An open research problem with local features has been on

how to incorporate in the image similarity definition, both
the similarity between local feature vectors as well as the
spatial orientation of the salient points where the local fea-
ture vectors were extracted. In [8], for example, it was found
that even simply appending the raw (x, y) coordinates of the
salient point to its local feature vector improves classifica-
tion performance for tasks in which translation invariance is
not required.

In this paper, we propose the use of cluster co-occurrence
matrices (CCM), which can be interpreted as the joint prob-
ability of two kinds of local regions to occur at a specific
distance and orientation to each other. Thus, this type of
CCM is invariant to translation. If required, the CCMs can
be made rotation invariant simply by averaging the orien-
tation information. To generate a CCM, the local feature
vectors are first clustered using the cluster centroids derived
in the previous section. The local feature vectors are no
longer needed, they are thus disposed off, and only the as-
signed cluster indices as well as the location where they were
extracted are retained. This process is illustratively shown
in Figure 3. The process of generating a CCM from a cluster
image can be described as follows:

Let s be the location (x, y) of a salient point, and I(s)
denote the cluster index assigned to the local relational fea-
ture vector extracted at s. We define a vector defining
the bin boundaries for the distance quantization in the co-
occurrence matrix, D = (D1, D2, . . . DNd+1)

T , and another
for the angle quantization, A = (A1, A2, . . . AN∡+1)

T , where
Nd and N∡ are the number of quantization bins used for
the radial and angular direction, respectively. The set of all
salient point pairs having cluster indices c1 and c2 respec-
tively, and located at a specific spatial orientation to each
other is then given as:

S(c1, c2, d, a) = { (s1, s2) | I(s1) = c1

∧ I(s2) = c2

∧Dd < ||s1 − s2||2 < Dd+1

∧Aa < ∡(s1, s2) < Aa+1 }
The indices run c1 = 1, . . . , Nc, c2 = 1, . . . , Nc, d =

1, . . . , Nd, and a = 1, . . . , N∡ . Furthermore, ∡(s1, s2) is
the angle in the range [0, 2π) made by the vector s2 − s1

with the x-axis. The co-occurrence matrix M consists of
the cardinalities of the above sets.

M(c1, c2, d, a) = |S(c1, c2, d, a) |
The resulting CCM can be interpreted either as a single

4-D array, or as a series of 2-D CCM matrices, one each for a
specific ring sector. To give an idea about the values which
can be used in practice, the distance bin boundaries selected
in this paper are for example,

D = (0, 15, 30, . . . , 150 )T

measured in pixels (in comparison, the larger dimension of
images in the used database was always 512), and the angle
bin boundaries are for example,

A = ( 0, π/4, π/2, 3π/4, π )T

measured in radians. It can be seen that only the [0, π)
angle range needs to be covered, as each salient point pair
(s1, s2) would otherwise be counted twice in the matrix (with
cluster bins swapped, and in an angle bin which is at an an-
gle π radians from the other). A fuzzy accumulator can also
be used to generate the matrix M, but was not investigated
in this work.

2.5 Classification
We use Support Vector Machines (SVM) to classify the

images based on the above generated feature vectors. SVMs
are binary functions (i.e. meant for distinguishing two classes),
which find optimal seperating hyperplanes (OSH) for given
training data.

In general, the classes may not be linearly seperable in the
original feature space. In this case, a feature vector xi can be
transformed to another (usually higher-dimensional) space
as φ(xi) using the mapping φ. With the kernel trick [25],
it is possible to work in the transformed space without ever
calculating the map φ(xi) explicitly. This can be achieved
by defining a kernel function k(xi,xj) = 〈φ(xi), φ(xj)〉 as
the algorithm needs access only to scalar products between
vectors, and not to the actual vectors themselves. Determi-
nation of a kernel function appropriate for a given problem
remains an open research problem. The most commonly
used functions are Linear, Polynomial and Gaussian ker-
nels, as shown in Table 1. General RBF kernels of the form
k(x,y) = exp(−γ(d(x,y))2) where d is an appropriate dis-
tance metric are also popular. In [5], it was shown that ker-
nels based on the L1 norm are very suitable for accumulator-
like features, which is the case with cluster co-occurrence
matrices. In this work, we use the histogram intersection
kernel defined in Table 1 which is provably positive definite
[3].

SVMs in their original form are binary classifiers. Many
extensions have been proposed for the multi-class case [14].



Figure 3: Schematic diagram depicting how the final features are reached. A cluster index image is formed
using the local feature vectors around the salient points. For each sector of the ring, a cluster co-occurrence
matrix is formed by considering all pairs of salient points whose orientation is the same as that of the sector
with respect to the center of the semi-circle. Taking the point with cluster index 4 in the boxed region as an
example, the three other interest points would be considered in the co-occurrence matrix.

Table 1: SVM kernels
Kernel k(x,y)

Linear 〈x,y〉
Polynomial (γ(xi · xj) + coef0)d, γ > 0

RBF exp(−γ‖x − y‖2), γ > 0

Histogram Intersection
Pn

i=1
min(xi, yi)

We use here the so-called one-vs-rest approach. A binary
classifier is trained for each class, with the remaining classes
grouped into a single class. A test object is subjected to
all trained SVMs, and is assigned the class for which the
most positive decision function output is achieved. The Lib-
SVMTL implementation1 is used for the experiments.

3. EXPERIMENTS AND RESULTS
We test our algorithm on the publicly available2 IRMA

2005 Radiograph database. The database consists of 9.000
fully classified radiographs taken randomly from medical
routine at the Aachen University Hospital, Germany. A
further 1000 images are available as test radiographs which
have to be classified in one of the 57 pre-defined categories.
The categories differ from each other either on account of

1http://lmb.informatik.uni-freiburg.de/lmbsoft/libsvmtl/
2http://irma-project.org

difference along one of the four axis: image modality, body
orientation, body region examined and biological system ex-
amined [18].

Some characteristics exhibited by the database are:

• Relatively high number of classes (in total 57, see Fig-
ure 4 for examples)

• Overall high intra-class variability (see Figure 5).

• Asymmetric a-priori distribution of classes (some classes
have over 1000 training images, while some have less
than 20 training images per class).

• Small to medium position variability.

• Mostly upright images, but a few arbitrarily rotated
outliers.

• Medium to drastic brightness and contrast variability.

The database was extensively tested during the Image-
CLEF 2005 Medical Annotation Task 3. A total of 12 groups
participated in the campaign. The aim of the benchmark is
to find out how well current techniques can identify image
modality, body orientation, body region, and biological sys-
tem examined based on the image content. The results of
the classification step can be used for multilingual image an-
notations as well as for DICOM header corrections. The best

3http://www-i6.informatik.rwth-aachen.de/˜deselaers/
imageclef05annotation.html



Figure 4: Sample Images from the IRMA05 Database. One good-quality image each from 10 fairly distinct
categories are depicted.

Method Group Error Rate (%)

This work

Cluster-Coocurrence Matrices w/ Rel. Features Uni Freiburg
- 20 × 20 × 10 × 4 matrix, 1000 salient points 8.1
- 20 × 20 × 10 × 4 matrix, 600 salient points 8.9
- 15 × 15 × 10 × 4 matrix, 1000 salient points 9.1

Previous Best

Sparse Histograms w/ Position[8] RWTH-Aachen
- using maximum entropy classification 9.3
- using support vector machine 10.0

ImageCLEF 2005 Benchmark, Top-7 results

Image Distortion Model[16] RWTH Aachen 12.6
Image Distortion Model & Texture IRMA-Group 13.3
Patch-Based Classifier (Maximum Entropy) RWTH Aachen 13.9
Patch-Based Classifier (Boosting) Uni-Liège 14.1
Image Distortion Model & Texture IRMA-Group 14.6
Patch-Based Classifier[21] (Decision Trees) Uni-Liège 14.7
GNU Image Finding Tool (GIFT) Uni Geneva 20.6

Baseline Results

32 × 32 images as feature, 1-NN/L2 classification - 36.8

Table 2: Results for the IRMA 05 Database. The comparison results are taken from the ImageCLEF 2005
Benchmark, and from a recent improvement we are aware of. The complete ImageCLEF results can be
viewed at the URL http://www-i6.informatik.rwth-aachen.de/˜deselaers/imageclef05 aat results.html.

results obtained in the 2005 benchmark was 12.6 % (mea-
sured as error rate for 1000 test images), which was improved
later on by Deselaers et al [8] to 9.3 %. The method pro-
posed here already reaches a best of 8.1 %. Our results and a
selection of published results are shown in Table 2. It should
be mentioned that due to the large number of parameters

(see discussion below), a joint optimization was not feasible,
and each parameter was only individually optimized during
cross-validation.

Our group participated in the 2006 ImageCLEF Medical
Annotation Task by applying the proposed method to the
newly available database without further modification. The



Figure 5: Intra class variability: Five images from the class described as “x-ray, plain radiography, coronal,
upper extremity (arm), hand, musculosceletal system”. As can be observed, the variability includes brightness
changes, partial occlusion, and translation, apart from some inevitable human to human variablility.

new database contains X-ray images which are more finely
granuled in 116 classes. Our method achieved the second
best results from 27 submissions. The complete results along
with the task description can be viewed on the web4, and
are not repeated here for brevity.

4. DISCUSSION

Relational Features vs. Gray-value features
Gray-value patches as features over interest points have been
used in various works. In [9], robustness towards additive
illumination changes is achieved by performing a PCA trans-
formation, and simply discarding the first coefficient. While
in many cases this does hold true, it is possible that impor-
tant discriminative information is also lost in the process, as
the PCA is performed over the ensemble containing patches
from all classes. On the other hand, the features proposed
in this work are implicitly invariant towards additive illumi-
nation changes, and due to the clamping performed by the
rel operator, also robust towards other kinds of monotonic
illumination changes. Furthermore, the features can be ele-
gantly adjusted to work in different scenarios. For example,

• To achieve robustness against desired transformations,
so called virtual samples are often generated from train-
ing data, by subjecting the training examples to small
transformations. In case robustness to small rotations
is needed, the existing relational features for each (r1, r2)
pair can simply be circularly shifted by a small dis-
placement (say one unit shift), to achieve the desired
effect.

• On the other hand, if complete invariance towards ro-
tation is desired, the existing relational feature sub-
vector for each (r1, r2, φ) combination need only be
summed up to get a rotation-invariant descriptor.

Scale Robustness
Incorporating robustness to scale changes is trickier but pos-
sible. First of all we propose to use an interest point detector
which can deliver a scale ζ for every interest point s (for ex-
ample, the Difference-of-Gaussian detector as used in SIFT).
The relational features can be adapted to the new scale in-
formation simply by mapping the parameter set (r1, r2, φ)
to (ζr1, ζr2, φ). However, the scale information must still
be incorporated in the radial quantization performed dur-
ing the calculation of the co-occurrence matrix. This can be

4http://www-i6.informatik.rwth-aachen.de/˜deselaers/
imageclef06/medaat-results.html

done by redefining the distance measure between two salient
points as d(s1, s2) = ||s2 − s1||/ζ̃ where ζ̃ is appropriately
derived from the scale information of the two salient points,
e.g. ζ̃ =

√
ζ1ζ2, under the assumption that the scale changes

are smooth over the image.

Tunable Parameters
An important issue to discuss is the number of tunable pa-
rameters or the choices that one has to make at each feature
extraction or classification step. Some of these issues are to
be tackled by any image classification algorithm, while some
are unique to our approach.

Number of Salient Points, Ns

One option is to select a threshold and take all points which
have a higher saliency value in the saliency map. We how-
ever take a fixed number of salient points per image by sort-
ing the saliency map. For this particular database, Ns be-
tween 500 and 1000 gives best results.

Number of Clusters, Nc

This parameter is often choosen heuristically and is required
as an input to most clustering algorithms. We found that
our algorithm is not very sensitive to small changes to Nc.
Values of Nc < 15 leads to a scenario that the feature differ-
ences are not satisfactorily modelled. Nc between 15 and 30
gives good results, and increasing Nc even further does not
lead to any improvement. Since the size of the co-occurrence
matrix increases quadratically with Nc, we choose Nc = 20
for most experiments.

Number of bins for spatial quantization, Nd and N∡

For the radial direction, we conducted experiments to de-
termine the radial range needs to be covered, and choose
the range upto 150 pixels, which is about a third of the im-
age size. This was quantized in Nd = 10 bins, which was
only coarsely determined through experimentation. For an-
gle, we showed before that only the [0, π) range needs to be
covered. We experimented with 3, 4 and 6 bins in this angle
range, finally selecting 4 evenly sized angular bins.

Length of Final Feature Vector
As stated earlier, the dimensions of the final cluster co-occu-
rence matrix are given by Nc ×Nc ×Nd ×N∡ . For the final
values chosen after cross-validation, this results in a 16000-
dimensional feature vector per image. It is clear that the
information contained in the vector is sparse and should
be compressible. In this work, we do not perform any fur-
ther feature selection or extraction steps, but still provide



some general ideas, in case it becomes necessary for much
larger databases. A seemingly paradoxical advantage gained
by the high dimensions could be that simple functions sets
(e.g. linear) can be used for classification, perhaps avoiding
overfitting.

Principal Component Analysis (PCA)
PCA is a commonly used technique for dimensionality re-
duction. The basic idea behind PCA is to find another or-
thogonal coordinate system such that each subsequent di-
mension explains as much of the remaining variance in the
given data. For correlated data, it is not uncommon to find
that most of the variance (say, above 99 %) is contained in
a small fraction of the number of final dimensions. How-
ever, care should still be taken while selecting the number
of retained PCA dimensions, as the low amplitude informa-
tion contained in the higher PCA coefficients might still be
critical for discrimination between different classes.

Feature Selection
We include this paragraph for the sake of completeness.
There exist various feature selection strategies in the ma-
chine learning literature. The interested reader can refer to
[17] for an overview of some of the popular alternatives. The
main distinction is between so-called filter methods, which
compute a ranking for the features without taking the in-
ducer (classifier) into account, and the wrapper methods,
which search in the set of subsets of features for the optimum
subset for the specific inducer. However, the high number of
classes in this case can make it difficult to perform feature
selection, as different features might be discriminative for
different classes.

Further Feature Extraction
Gray-value co-occurrence matrices have been used exten-
sively as texture descriptors in the image processing liter-
ature. The high-dimensionality has been tackled there by
using instead of the complete co-occurrence matrix, some
statistical properties derived from it. For example, Haral-
ick et al [13] proposed 10 statistical properties which can be
derived from a 2-D GLCM, namely Entropy, Energy (An-
gular Second Moment), Contrast, Homogeneity, SumMean
(Mean), Variance, Correlation, Maximum Probability, In-
verse Difference Moment, and Cluster Tendency. As stated
before, our 4-D CCM can be interpreted as a series of 2-D
CCMs. It is however, important to note that only 3 of the
above given properties, namely Entropy, Energy and Max-
imum Probability can be adapted to use in a CCM. This
is because, unlike a GLCM, in which neighbouring rows or
columns indicate similar regions (gray value), the clusters in
CCMs cannot be ordered linearly, and thus properties such
as contrast (

PNc

i=1

PNc

j=1
(i − j)2C(i, j) , where C is a 2-D

CCM) are simply meaningless in our context. In the future,
the possibility of extracting further statistical information
from a CCM would be considered.

Computation Time
The experiments were carried out on an AMD Opteron 2.4
GHz machine running Debian Linux. Relational feature cal-
culation per image takes less than 0.5 s for an image of size
approximately 512 × 512. K-means clustering with 20 clus-
ters takes about 3 minutes. It takes slightly less than a
second to compute one 4-D co-occurrence matrix. Inspite

of the large feature vector, SVM training with 9000 feature
vectors of dimension 16000 takes less than 2 hours, most of
the time being spent in calculating the kernel matrix. Final
classification of 1000 image vectors takes about 10 minutes,
or about 0.5s per image.

5. CONCLUSIONS
A content based image classification system was presented

in this paper. The main novelties are the use of local rela-
tional features for illumination-robust general-purpose im-
age classification, and the introduction of cluster co-occurrence
matrices which incorporate elegantly the spatial information
of the interest points in the matching process. The method
obtains without much tuning the best results published so
far for a publicly available medical radiograph database.
Still, the main concerns are the many possibilities to choose
various parameters, and the high dimensionality of the final
feature vector. We discussed these and other issues in detail
and provided alternatives where necessary.
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