



#### Protein structure description by INVARIANT FEATURES for classification and retrieval in large data bases

Maja Temerinac

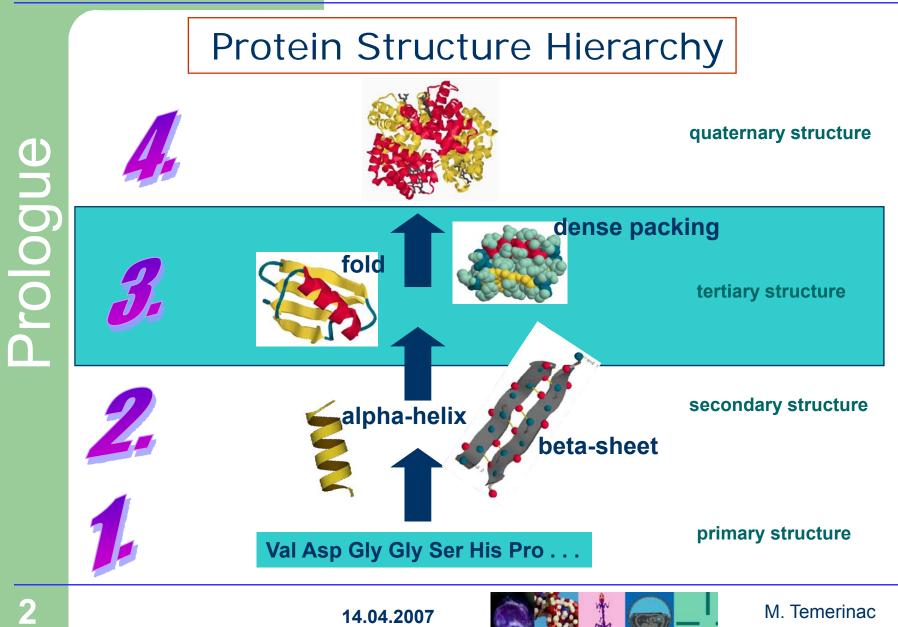
Chair for Pattern Recognition and Image Processing Institute for Computer Science Albert-Ludwigs-University Freiburg, Germany





**Protein structure description by invariant features** 





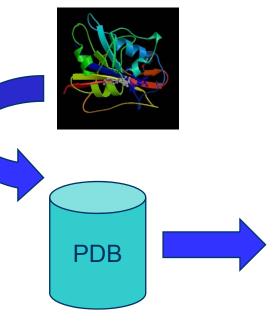




# **Protein Retrieval**

#### Idea: Perform a structural similarity search

#### query protein:1dlr



#### L1-Rank ID Scop-ID Class Score Querv 1dlr SCP PDB FEAT c.71.1.1 OXIDO-REDUCTASE 1dlr SCP PDB FERT 0.00 c.71.1.1 OXIDO-REDUCTASE OXIDOREDUCTASE 2 1boz SCP PDB FERT 0.96 c.71.1.1 SCP PDB FERT 0.98 3 1dls c.71.1.1 OXIDO-REDUCTASE OXIDOREDUCTASE 4 1s3w SCP PDB FERT 1.02 c.71.1.1 5 1pd8 SEP POB FERT 1.03 OXIDOREDUCTASE c.71.1.1 6 1u72 SEP POB FERT 1.04 OXIDOREDUCTASE 7 1hfp SCP POB FERT 1.12 c.71.1.1 OXIDOREDUCTASE 1hfr SCP PDB FEAT 1.12 8 c.71.1.1 OXIDOREDUCTASE 9 1mvs SEP POB FERT 1.20 c.71.1.1 OXIDOREDUCTASE 10 1pd9 SEP POB FERT 1.24 OXIDOREDUCTASE c.71.1.1

similarity list:1dlr



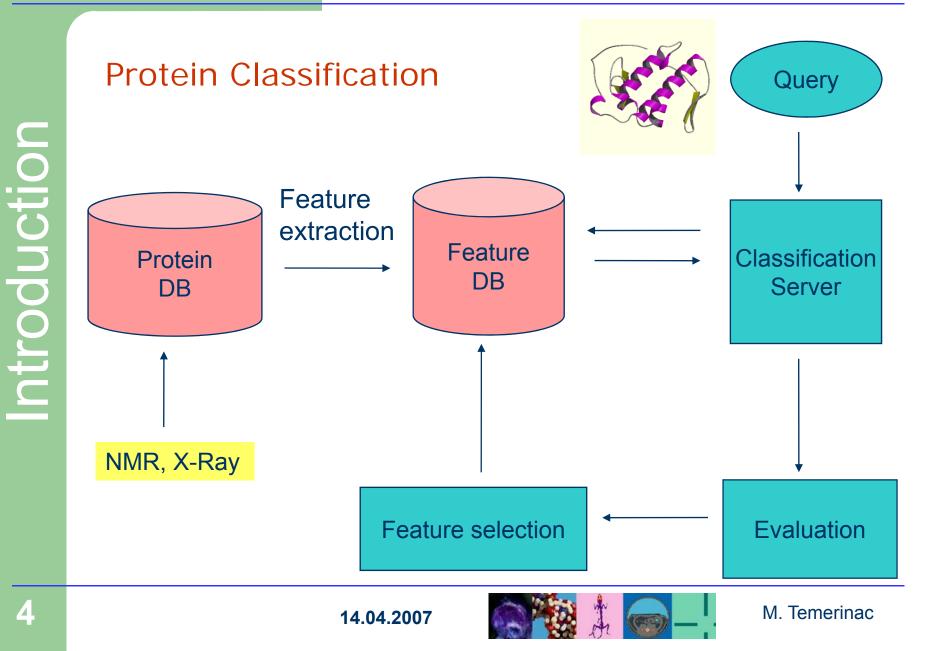




ntroduction











### How to compare two structures?

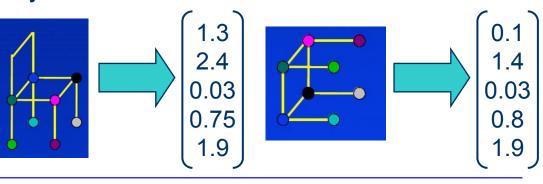
#### **Alignment Methods:**

- RMSD: Root Mean Square Error
- CMO: Contact Map Overlap
- DALI: Distance Matrix Alignement

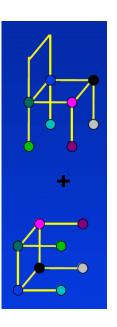
## Structural Fingerprint Methods:

14.04.2007

- PRIDE: Priority of Identity
- Gauss Integrals





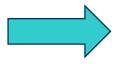




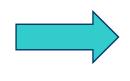




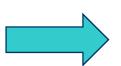
## Group Integration for Structural Fingerprints



Use Invariant Theory to describe the structure



Combine with Spherical Harmonics and D-Wigner Matrices



Compare to State-of-the-Art methods

Goal: Construct a scalable method which provides any wished trade-off between accuracy and complexity









# Incorporating PSD into Group Integration (GI)

We want to find an invariant function I such that:

$$X_1 \overset{G}{\Box} X_2 \Longrightarrow I(X_1) = I(X_2)$$



 We use the Haar-Integral to find an invariant representation for X

$$I_{k}(X) = \int_{G} k(gX) dg$$
  
kernel function











### Incorporating PSD into Group Integration (GI)

choosing the kernel function

$$k_{d}(X) = X(0) \cdot X(d)$$

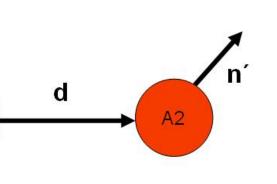
keeping more information

 $k_{d}(X,\nabla X) = h_{n}(\nabla X(0)) \cdot h_{n'}(\nabla X(d))$ 

14.04.2007

where

$$h_n(v) = |v| \cdot \delta_1 \left( \frac{|v^T n|}{|v|} \right)$$





n

A1





# Incorporating PSD into Group Integration (GI)

computing the gradient for proteins

$$\nabla X(r) = \sum_{i} \delta_{u_i}(r) \frac{2}{\sigma^2} \sum_{j} (u_i - u_j) e^{-2\left(\frac{\|u_i - u_j\|}{\sigma}\right)}$$

14.04.2007

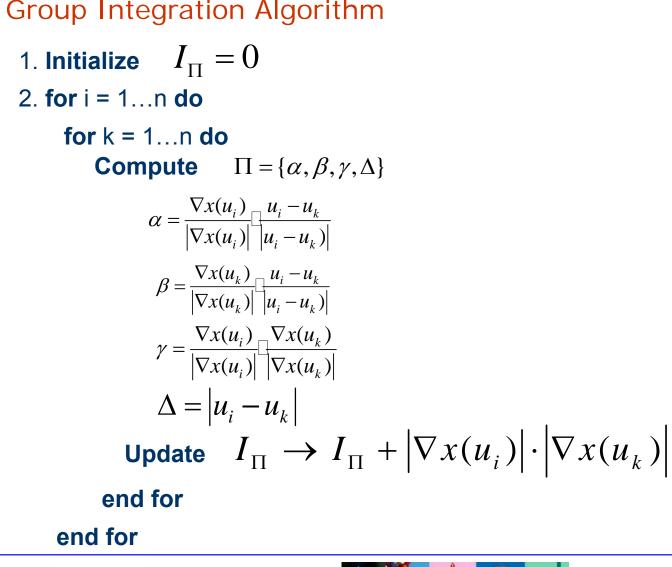
computing the group integral

$$I_{\Pi} = \sum_{i,k} \theta_{\Pi} \cdot \delta_d \left( \left| u_i - u_k' \right| \right) \cdot \left| \nabla X(u_i) \right| \cdot \left| \nabla X(u_k') \right|$$









10

14.04.2007



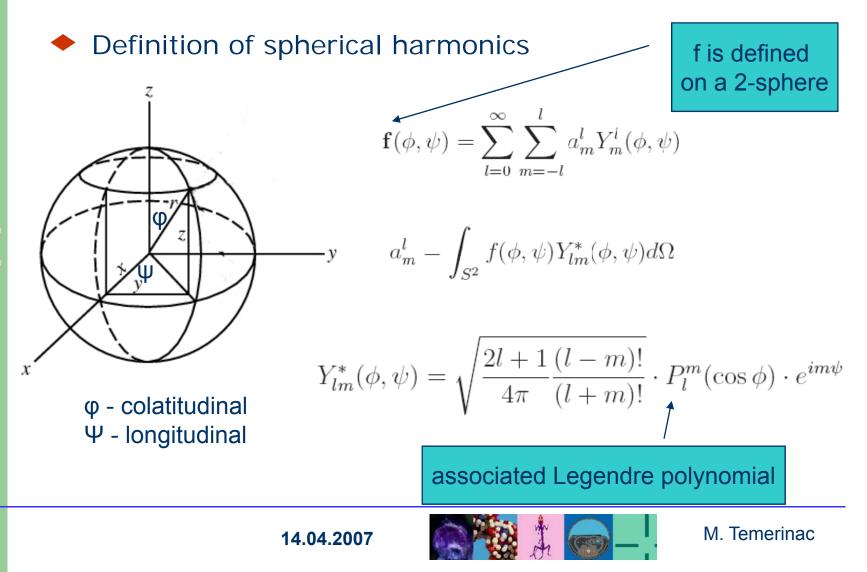


Approach

11



### Extending GI with Spherical Harmonics







- Spherical Harmonics Algorithm
  - 1. Initialize  $I_{\Pi} = 0$
  - 2. for i = 1...n do for k = 1...n do Compute  $\Pi = \{\alpha, \beta, \gamma, \Delta\}$ Update  $I_{\Pi}^{lm} \rightarrow I_{\Pi}^{lm} + Y_{m}^{l} \left( \frac{u_{i} - u_{k}}{|u_{i} - u_{k}|} \right) \cdot |\nabla x(u_{i})| \cdot |\nabla x(u_{k})|$ end for end for 3. Make invariant  $I_{\Pi}^{l} = \sum_{i=1}^{l} |I_{\Pi}^{lm}|^{2}$



14.04.2007







#### Data Set Overview

Data& Results <sup>sco</sup> <sup>3:1</sup> <sup>a.2</sup>

| SCCS    | dataset     | # of domains | classification level | # of classification classes |
|---------|-------------|--------------|----------------------|-----------------------------|
| ?.1.1.1 | all-classes | 2,650        | SCOP-class           | 7                           |
| a.?.?.? | all-alpha   | 3,680        | SCOP-fold            | 172                         |
|         | 27fold      | 685          | SCOP-fold            | 27                          |
|         | cath        | 20,937       | CATH-homology        | 2147                        |









### Experiments with GI features

#### Results SCOP classes and folds

| Feature  | 1NN  | 1T   | 2T   | EM   | DCG  |
|----------|------|------|------|------|------|
| noSH     | 99.8 | 86.8 | 91.4 | 13.4 | 96.7 |
| SH       | 99.8 | 87.6 | 92.5 | 13.4 | 97.2 |
| D-W1gner | 99.5 | 86.1 | 89.9 | 13.3 | 96.3 |

Table 6.3: **Results 'all-classes'.** Results on the 'all-classes'-dataset with GI, SH and D-Wigner features.

| Feature  | 1NN  | 1T   | 2T   | EM   | DCG  |  |
|----------|------|------|------|------|------|--|
| noSH     | 974  | 84.8 | 88.6 | 35.6 | 94.4 |  |
| SH       | 97.8 | 89.3 | 92.2 | 37.4 | 96.0 |  |
| D-Wigner | 97.4 | 87.5 | 90.4 | 36.8 | 95.2 |  |

Table 6.4: **Results 'all-alpha'.** Results on the 'all-alpha'-dataset with GI, SH and D-Wigner features.

Classification into classes is better than classification into folds

14









#### Experiments with GI features

#### Results 27 folds data set

| Feature | 1NN  | 1T   | 2T   | EM   | DCG  |
|---------|------|------|------|------|------|
| noSH    | 77.3 | 31.0 | 41.2 | 27.2 | 67.9 |
| SH      | 78.8 | 32.4 | 44.7 | 28.7 | 69.3 |
| Dwigner | 77.8 | 29.5 | 39.1 | 26.2 | 66.8 |

Table 6.5: **Results '27fold'.** Results on the 'all-classes'-dataset with GI, SH and D-Wigner features.

Difficult for classification

SH improve the results for 1.5%

D-Wigner are worse than SH

ata&Results

14.04.2007







#### Comparison to State-of-the-Art methods

#### Group Integrals vs. DALI (Alignment)

| Feature | 1NN  | 1T   | 2T   | EM   | DCG  |
|---------|------|------|------|------|------|
| SH      | 78.8 | 32.4 | 44.7 | 28.7 | 69.3 |
| DALI    | 85.1 | 59.1 | 67.8 | 45.0 | 82.8 |

Table 6.13: **Comparison of results with DALI.** Comparison of the results on the '27folds'-dataset computed by DALI and by the new method.

DALI is better for 6.3%

Time consumption!

SH ~ 2 min

DALI ~ 1 week











#### Comparison to State-of-the-Art methods

#### Group Integrals vs. PRIDE (Structural Fingerprint)

|   | dataset     | Feature | 1NN  | 1T   | 2T   | EM   | DCG  |  |
|---|-------------|---------|------|------|------|------|------|--|
|   | all-classes | SH      | 99.8 | 87.6 | 92.5 | 13.4 | 97.2 |  |
|   | all-classes | PRIDE   | 99,7 | 84.8 | 88.2 | 13.3 | 96   |  |
| 2 | all-alpha   | SH      | 97.8 | 89.3 | 92.2 | 37.4 | 96.0 |  |
|   | all-alpha   | PRIDE   | 96.8 | 80.7 | 85   | 34.3 | 92.7 |  |
|   | 27folds     | SH      | 78.8 | 32.4 | 44.7 | 28.7 | 69.3 |  |
|   | 27folds     | PRIDE   | 70.7 | 29.4 | 38.9 | 25.9 | 65.1 |  |
|   | cath        | SH      | 98.9 | 72.6 | 77.7 | 41.2 | 91.1 |  |
|   | cath        | PRIDE   | 98.8 | 66.8 | 73.2 | 39.1 | 88.8 |  |

Table 6.14: **Comparison with PRIDE features.** Comparison of the results on the '27folds'-dataset computed by PRIDE and by the new method.

On the 27 folds data set SH are better by 8.1%



14.04.2007







#### Comparison to State-of-the-Art methods

#### Group Integrals vs. Gauss Integrals (Structural Fingerprint)

| dataset     | Feature | 1NN  | 1T   | 2T   | EM   | DCG  |
|-------------|---------|------|------|------|------|------|
| all-classes | SH      | 99.8 | 87.6 | 92.5 | 13.4 | 97.2 |
| all-classes | Gauss   | 99.2 | 73.3 | 81.2 | 12.1 | 93.6 |
| all-alpha   | SH      | 97.8 | 89.3 | 92.2 | 37.4 | 96.0 |
| all-alpha   | Gauss   | 94.2 | 63.8 | 72.9 | 29.5 | 87.0 |
| 27folds     | SH      | 78.8 | 32.4 | 44.7 | 28.7 | 69.3 |
| 27folds     | Gauss   | 67.6 | 26.1 | 35.5 | 23.2 | 63.3 |
| cath        | SH      | 98.9 | 72.6 | 77.7 | 41.2 | 91.1 |
| cath        | Gauss   | 98.4 | 69.8 | 76.4 | 40.2 | 90.0 |

Table 6.15: **Comparison with Gauss Integrals.** Comparison of the results on the '27folds'-dataset computed by Gauss Integrals and by the new method.

On the 27 folds data set SH are better by 11.2%









#### Time requirements

| dataset     | size   | Time   |
|-------------|--------|--------|
| 27folds     | 685    | 2min   |
| all-classes | 2,650  | 40 min |
| all-alpha   | 3,680  | 1h     |
| cath        | 20,937 | 2h     |

Table 6.16: **Time requirements new method.** Time requirements of the new method on different datasets.

| Method     | Time   |
|------------|--------|
| New Method | 2 min  |
| PRIDE      | 2min   |
| Gauss      | 2min   |
| DALI       | 1 week |

Table 6.17: **Comparison of time requirements.** Comparison of the time requirements on the '27folds' dataset with different methods.









# Summary

- Introduced automatic structural classification for proteins
- Found a good set of features for the protein structure
- Comparison with DALI:
   8% lower accuracy in classification
   1000 times faster computation time
- Comparison with PRIDE and Gauss: 10% higher accuracy in classification same computation time
- Appropriate for fast pre-classification

Summary&Outlook









# **Supplementary Slides**











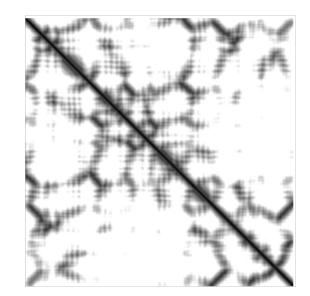
# Distance Matrix D\_ij

 $C\alpha^1$   $C\alpha^2$   $C\alpha^3$   $C\alpha^4$ 

- Protein Retrieval & Classification by Distance Matrices
- Distance between Ca-atoms (Angstrom A°)

| Cα¹             | 0  | 10 | 20 | 15 |
|-----------------|----|----|----|----|
| Cα <sup>2</sup> | 10 | 0  | 12 | 30 |
| Cα <sup>3</sup> | 20 | 12 | 0  | 3  |
| Cα <sup>4</sup> | 15 | 30 | 3  | 0  |

Example: Distance matrix of protein with 4 Ca-atoms .



**Example:** Distance matrix of 1dlr protein with 186 **Ca-atoms**.

State-of-the-Art

14.04.2007

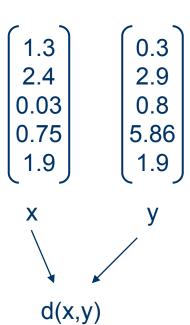






#### Computing the Distance

GI Approach



| Distance measure   | abbreviation | Formula                                                                |
|--------------------|--------------|------------------------------------------------------------------------|
| Manhattan Distance | L1           | $d_{L1}(\mathbf{x}, \mathbf{y}) = \sum_{i=0}^{n}  x_i - y_i $          |
| Euclidean Distance | L2           | $d_{L2}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=0}^{n} (x_i - y_i)^2}$ |
| Maximum Distance   | $L_{\infty}$ | $d_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{i}  x_{i} - y_{i} $        |

Table 5.1: The L-distance measures used for feature vector comparison.

| Distance measure      | abbreviation | Formula                                                            |
|-----------------------|--------------|--------------------------------------------------------------------|
| $\chi_1^2$ - Distance | $\chi_1^2$   | $d_{\chi_1^2}(x,y) = \sum_{i=0}^n \frac{(x_i - y_i)^2}{x_i + y_i}$ |
| $\chi^2_2$ - Distance | $\chi^2_2$   | $d_{\chi_2^2}(x,y) = \sum_{i=0}^n \frac{(x_i - y_i)^2}{x_i}$       |

Table 5.2: The  $\chi^2$ -distance measures used for feature vector comparison.











Princeton Shape Benchamark

- Standard for evaluation of retrieval for 3D objects
- 5 statistical measures
- Nearest Neighbor
- First Tier
- Second Tier

the percentage of the closest matches that belong to the same class as the query

the percentage of models in the query's class that appear within the top K matches, where K depends on the size of the query's class. Specifically, for a class with |C| members, K = |C| - 1 for the first tier, and K = 2 (|C| - 1) for the second tier.

- E-Measure
- Discounted Cumulative Gain

a composite measure of the precision and recall for a fixed number of retrieved results

results near the front of the list weigh more than correct results later in the ranked list



ata&Results

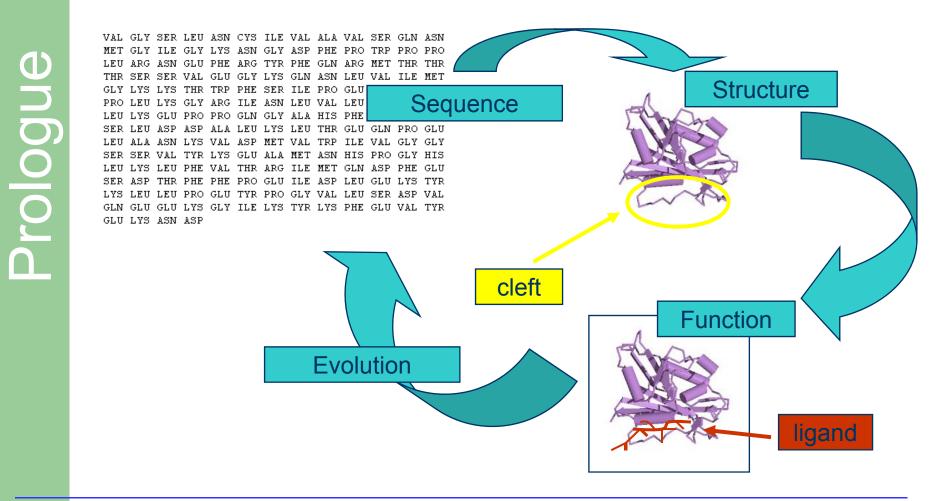
14.04.2007







# Cycle of Life







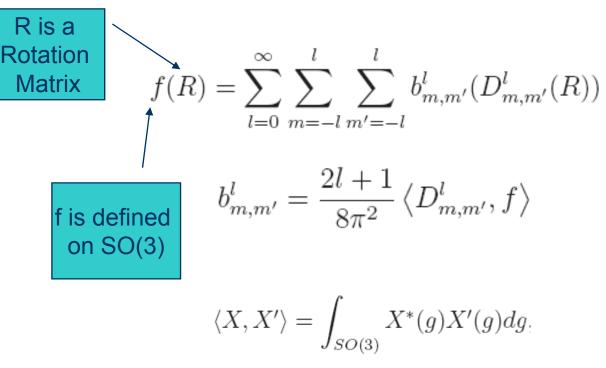




### Extending GI with D-Wigner Matrices





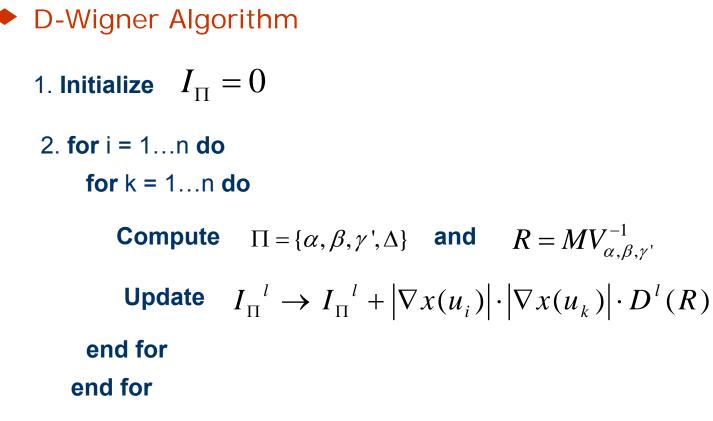












3. Make invaraint: Take norm of each column of the matrix.



14.04.2007







# **Default Parameter Set Overview**

| Gradient computation            | $\sigma$    | 400        |
|---------------------------------|-------------|------------|
| Coordinate Distance Scaling     | DScale      | 0.02       |
| Sequence Distance Scaling       | SeqDScale   | 40         |
| Histogram Bin Dimension         | hist $\Pi$  | [16,2,2,8] |
| Spherical Harmonics Coefficient | $l_{sharm}$ | 1          |
| D-Wigner Matrix Coefficient     | $l_{dwig}$  | 1          |







# Outlook

Application of GI for clustering

#### Improvement of accuracy by moderate increasing of computation time:

- Use chemical information (hydrophobicity)
  Use other atoms besides Cα-atoms
  Include secondary structure information
- Find an algorithm for domain definition
- Classify structures which were not yet published



