SPATIALLY-VARIANT LUCY-RICHARDSON DECONVOLUTION FOR MULTIVIEW FUSION OF MICROSCOPICAL 3D IMAGES

Maja Temerinac-Ott

Olaf Ronneberger, Roland Nitschke,

Wolfgang Driever and Hans Burkhardt

University of Freiburg, Germany

The Third LSM Workshop, Toulouse, October 13th-14th, 2011

SPIM =Single Plane Illumination Microscopy

Goal: Joint Fusion and Deconvolution

Estimation of the PSF at Bead Positions

Related Work

- Blending [Preibisch 2010]
 - Combines Gray values without a prior model
 - Fast Computation
 - Smearing of the points + blur
- > Average PSF for Multiview Deconvolution [Krzic 2009]
 - Assumes constant PSF
 - Good in the center
 - Bad at the corners of the image

Contribution

- Location variant PSF estimation for joint deconvolution and fusion
- Approach:
 - > PSF Estimation
 - > Overlap-Save Deconvolution
 - Lucy-Richardson Algorithm
 - Multiview deconvolution
 - > TV Regularization

LRMOS-TV

Problem Formulation: Multiview Fusion

- Given:
 - \succ Recorded images ${Y}_1, \ldots, {Y}_N$
 - > **PSF** at bead positions H_1, \ldots, H_N
- Goal:
 - Find true image X that maximizes

 $p(X|Y_{1,...},Y_N,H_{1,...},H_N) = \prod_{i=1}^N p(X|Y_i)$

Solution: Regionwise Multiview Fusion

PSF Estimation

Imb.informatik.uni-freiburg.de M. Temerinac-Ott - Multiview Fusion of Microscopical 3D Images

Overlap-Save Deconvolution

- Model spatially-variant PSF by blockwise constant PSFs
- Consider large overlapping regions to overcome boundary artifacts

Image Formation Model

Convolution with the PSF of the system:

BURG

Deconvolution: MLE Estimation

Lucy-Richardson Algorithm

$$\hat{X}^{p+1}(\boldsymbol{v}) = \hat{X}^{p}(\boldsymbol{v}) \cdot C^{p}(\boldsymbol{v})$$
Correction Factor: $C^{p}(\boldsymbol{v}) = (H^{s} * \frac{Y}{S^{p}})(\boldsymbol{v})$
Simulated Image
$$H^{s}(\boldsymbol{v}) = H(-\boldsymbol{v}) \qquad S^{p} = (H * \hat{X}^{p})(\boldsymbol{v})$$

FREI

Multiview Deconvolution

> Total Correction Factor (CF) as average of the individual correction factors [Krzic 2009]:

$$C^{p} = \frac{1}{N} \sum_{i=1}^{N} C_{i}^{p}$$

Computation of the individual CF:

$$C_{i}^{p}(\boldsymbol{v}) = (H_{i}^{s} * \frac{Y_{i}}{S_{i}^{p}})(\boldsymbol{v})$$
$$S_{i}^{p} = (H_{i} * \hat{X}^{p})(\boldsymbol{v})$$

Imb.informatik.uni-freiburg.de M. Temerinac-Ott - Multiview Fusion of Microscopical 3D Images

TV Regularization

Regularization of the initial energy by Total Variation [Dey 2004] :

$$J_{TV}(X) = J(X) + \lambda \int_{v} |\nabla X(v)| dv$$

Resulting iteration using Green's one-step-late (OSL) algorithm:

$$\hat{X}^{p+1}(\boldsymbol{v}) = \underbrace{X^{p}(\boldsymbol{v})}_{1-\lambda \operatorname{div}(\frac{\nabla(\hat{X})^{p}(\boldsymbol{v})}{|\nabla(\hat{X})^{p}(\boldsymbol{v})|})} \cdot C^{p}(\boldsymbol{v})$$

Results: Visual Comparison to Blending

Parameters: r = 11, p =4, s+r = 64 Computation Time: 40 min

[Preibisch 2010] Computation Time: 20 min

Imb.informatik.uni-freiburg.de M. Temerinac-Ott - Multiview Fusion of Microscopical 3D Images

Results: Visual Comparison to Blending

LRMOS-TV fusion **Blending fusion** XZ XZ уz уz

BURG

NU F

Quantitative Evaluation

UNI FREIBURG

Results: Comparison to Average PSF

Conclusions

- A new framework for the fusion of the SPIM images was presented
- Spatially-variant Deconvolution better models the optical properties of the system than existing methods
- The structure borders are well preserved due to the TV regularization

 $\begin{bmatrix} Y_{11} & Y_{12} & \dots & Y_{1n} \\ Y_{21} & Y_{22} & \dots & Y_{2n} \\ \vdots & \vdots & & \vdots \\ Y_{n1} & Y_{n2} & \dots & Y_{nn} \end{bmatrix} \xrightarrow{} Y_{ij}^{(r+s)} = \begin{bmatrix} \times & \times & \times \\ \times & Y_{ij} & \times \\ \times & \times & \times \end{bmatrix} \xrightarrow{} \text{The algorithm is fast and can be} easily parallelized$

Thank you for your attention!

Proposed Algorithm ("LRMOS-TV")

for m = 1 to T_1 do for n = 1 to T_2 do for k = 1 to T_3 do 1. Extract extended region $R_i = Y_{mnk}^{(r+s)}$ from Y_i for each view *i*. 2. Obtain $H_i = H_{m,n,k}^{(r+s)}$ by padding with zeros for each view i. 3. Compute the initial estimate: $\hat{X}^{0} = \frac{1}{N} \sum_{i=1}^{N} R_{i}^{p}$ 4. Iterate: $\hat{X}_{m,n,k}^{p+1}(\mathbf{v}) = \frac{\hat{X}_{m,n,k}^{p}(\mathbf{v})}{1 - \lambda \operatorname{div}\left(\frac{\nabla \hat{X}_{m,n,k}^{p}(\mathbf{v})}{|\nabla \hat{X}_{m,n,k}^{p}(\mathbf{v})|}\right)} \cdot C^{p}(\mathbf{v})$ 5. Extract \hat{X}_{mnk} from $\hat{X}_{mnk}^{(r+s)}$ and save into \hat{X} . end for end for end for

Imb.informatik.uni-freiburg.de M. Temerinac-Ott - Multiview Fusion of Microscopical 3D Images

UNI FREIBURG

Outlook

- Algorithm:
 - Additional regularization strategies
 - Optimal number of iteration steps
 - A parametric model of the PSF along the lightsheet
- Microscopy:
 - Insert and record beads inside the sample for better PSF modeling inside the tissue
 - Automatic centering of the sample

Coverage of the Beads in xz

Imb.informatik.uni-freiburg.de M. Temerinac-Ott - Multiview Fusion of Microscopical 3D Images

LAND LAND

Average PSF vs Variant PSF

	deconvolved with average PSF	deconvolved with variant PSF
σ_x	1.5375 (max 1.6409)	1.4835 (max 1.6179)
σ_y	1.3598 (max 1.7707)	1.2937 (max 1.7233)
σ_z	2.0252 (max 2.4188)	2.0354 (max 2.038)