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Abstract—In this paper a framework for multichannel image A. Problem Outline

restoration based on optimization of the structural similaity . . . .
(SSIM) index is presented. The SSIM index describes the The recording of an image can be described by the point

similarity of images more appropriately for the human visual spread functiorh and the noise) introduced by the record-
system than the mean square error (MSE). It has not yet ing system. The recording process can be approximated by
been explored for the multi channel restoration task. The a wide sense stationary process:

construction of an optimization algorithm is difficult due to the

non-linearity of the SSIM measure. The existing solution baed y=hsxx+n, (1)

on a quasi-convex problem formulation is successfully exteled

for the multichannel image restoration. The correctness of Wwherex is the convolution operator.

the algorithm is verified on sample images and it is shown  Additive gaussian noise with standard deviatiop is

that multi-view information can significantly improve the  a5sumed in our model. The goal of multi-channel restoration

restoration results. is to find the best estimate ot given several recorded
Keywords-multichannel image restoration; structural simi- imagesy;. The quality of the reconstructed image is

larity; inverse filter; quasi-convex optimization of non-linear measured by a similarity measure. The simplified form of

functions the SSIM index as defined by [1] is chosen as the similarity
measure:
. INTRODUCTION SSIM(x.%) = 2pxptz + C1 . 20xx + Co @)
The structural similarity (SSIM) index has received quite o Ptz +Cr ox+oi+ 0o

a few attention in recent publications ([1],[2],[3]). Due t \yhereC; andC, are stabilizing constantg, is the mean
its ability to capture the similarity of two images in a more \5jye ando2 the variance
3 .

appropriate way than the mean square error (MSE), it poses

a real alternative to comparing images. The SSIM index8. Related Work

computes a product between three measures: luminance,|n [3] the statistical SSIM index has been introduced

contrast and structural correlation. These measures seem 4nd the restoration problem was solved for single channel

capture the human visual perception in a realistic way.  images. This solution is extended for multi-channel images
Multichannel processing of images is used whenever multThe statistical SSIM index is a straight forward extension

images of the same scene are available. This occurs faf the SSIM index by raplacing the empirical properties by

example when a moving object is recorded several timesheir statistical equivalences:

with the same camera, e.g. the license plate of a driving car,

and the license number needs to be reconstructed. Another ~ Hx = Elx[n]] ®3)
example where this kind of reconstruction is needed, is in 0% = E[(x[n] — p1x)?] (4)
recording biological objects with a microscope from difer Oxy = E[(x[n] — px) (y[n] — p1y)] (5)

ent viewing angles. The goal is to use the multiinformation )

present in those images in order to restore the original@nagC- Notation

more appropriately. Bold letters are used to denote vectors, egg. =
Several multichannel restoration methods based on MSEg[0], g[1],...,g[N — 1])T ande = (1,1,...,1)T are both

([4], [5], [7]) have already been developed. In this work, length N vectors. The mean of the source and the observed

a framework for multiview restoration based on the SSIMobject areux and uy,. The cross covariance between the

index is designed. The work by Channappayya et al ([3]) issource{[n]) and the observed imagge = (y[n],y[n —

extended to multichannels. 1],..,yln — (N — D)7 is defined bycyxy = E[(z[n] —
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Figure 1. Block diagram. The inverse filtg1,...,gn are optimized
adjointly to produce the best reconstruction of imageaccording to the
SSIM index.

px)(y — epy)] andKyy = E[(y — euy)(y — euy)] is the
covariance matrix of sizé&v x N.

D. Paper Organization

In Section Il the framework for multichannel restoration
for M images is described and a general solution for finding
the inverse filters is presented. In Section lll, the sohlutio

20 B[S0 o gililyi[n — i]] + Ca
12+ (B[l S0 elilywln — i]))2 + Ch
2pix (g1 ey, + ... + gm epyy,) + C1
px + (g1 Tepy, + ... + gmTepyy, )2 + Ch

G = 2L = )OS, 3 el — )+ C
Bl(xln] — o1+ BT, S0y &l — 107 + Cs

2 Zfil giTny,-l + C2
U>2c +2 vail Zjvil giTKinjgj + Cs

whereKyy is the covariance matrix anek, the cross covari-
ance vector between the sourreand the observed procegs

A nonlinear equation is obtained consisting of the multiglion
of two quotients. The first quotient depends only gh By
constrainingg e to a;, the optimization problem is simplified to
finding g(«):

ga) =arg max Qa

subject tog’e=a

whereg is a matrix with the rows being the vectags, ...gns.
Following [3], a boundaryy to StatSSIM (x[n],x[n]) is set and
the above equation is converted to a quasi-complex opttioiza
problem:

for the case of two images is computed explicitly. In Section

IV experiments based on the solution in Section IIl are
presented. In Section V a conclusion is drawn and future

research are discussed.

Il. PROBLEM FORMULATION

The following model(See Figure 1) is considered: Image

is recordedV/ times and the resulting images 3¢ ..., ym.-
The main goal is to find inverse filtegs, .., gng in order to
restore the image , given the images ..., ym, the blurring

filters Hy, ..., H); and the probability density function (PDF)

of the noise.
The restored imag# is then computed by:

X[n] = ga[n] *ya[n] + ... + gm(n] * ym(n]. (6)

The inverse filteg, ..., gnm Of size N are found adjointly

min:
subject to:
max: Qz <~y
- T ®)
subject to:g” e = a.
f(7) is defined by:
M M
f(’Y) = ’Y(o—i +2 Z z giTK)'iyJ'gj + 02)
i=1 j=1
o ©)
_(2 Z giTCXyi + CQ)
=1
and equation (8) is reformulated as:
min:
subject to:
min: >0
fv) = (10)

subject toig” e = a.

by optimizing the statistical SSIM index (for a definitiorese

[3]) between the original image and the restored image The overall problem is convex and can be solved by applying
the Lagrange multipliers. and applying the first order sufficiency
g = arg max StatSSIM (x[n],X[n]). (7)  condition:
geR

A(gFe— et s (gare — =0 (11
The StatSSIM is computed explicitly by: Ve(f() +hlgre—an)+ .+ Aur(gue — anr)) (1

A set of linear equations is obtained and can be solved edsily
Section Ill, an explicit solution folM = 2 is presented.

The optimal v is computed using the bisection method as
proposed in [3]:

QHXH& + Cl . 20—x§( + C2
px+pz +C1 o+ o+ Co
= Ql . Q2

StatSSIM (x[n], x[n]) =




1. Initialize v (say~,) between0 and1.
SetupLimit = 1, lowLimit = g
2. Evaluate the optimal filter.
if f(v) >0 then
if (upLimit — lowLimit) < e then
Optimal v found.
Exit.
else
Sety = (upLimit — lowLimit)/2
upLimit = 7.
Go to step2.
end if
else
Sety = (upLimit — lowLimit)/2
lowLimit = .
Go to step2.
end if

Algorithm 1. Algorithm to search for the optimal

IIl. SOLUTION FORTWO IMAGES
The gradient/g, , Ve,, Va, ands/y, is computed:

Ve (f(7) + Ai(gi e — 1) + Aa(gs e — a2))
= 7(2Ky1y1 g1 + 2Ky, y,82 — 2¢xy; + )‘19) =0

Ve (f(7) + Mgl e — ar1) + Xa(g2 € — )
= 7(2Ky2y1gl + 2Ky2y2g2 - 2ny2 + )\29) =0

U (F(7) + Ailgi e — a1) + Aa(g3 € — a2))

= grlre —a1 =0
Vo (F(7) + A1(gi € — 1) + Az(g2 € — a2))
= gge —az =0
The gradient equations (12) and (13) are rewritten by:
Agi +Bgz=h;
BTg: + Cg2 = ha,
where A, B, C, hy, h2 are defined as:

A = 27Ky, y,
B := 27Ky, y,
C:=27Ky,y,

h1 = 2ny1 — )\19

hs := 2cxy, — A2e
From (16) follows:

g1 =A '(h; — Bgz)
and substitute it in :

B"(A"'(h1 — Bgz)) + Cgz2 = h2
Now the equation is solved fagz:

g2 = Z2,0 + A182,1 + \282,2,

(12)

(13)

(14)

(15)

(16)
17

(18)

(19)

(20)

(21)

with
1.
g2,0 = -K 1C
Y

Y1iY1

1. _
g2,1 = ZK 'Ky Kyl € (22)
1.1
= —K
82,2 2’7 €,

whereK andc are defined as:

o -1
K:= K)’2Y2 - Kyzley1y1KY1)’2

. (23)

€= Cxy, — Kyay; Ky11y1 Cxy1
Now g5 from (21) is substituted to equation (19) and the equation
is rewritten by:

g1 = 81,0 + Mig1,1 + A2g1,2, (24)

with
1 _ _
81,0 = ;(K)ql)q (Cx)’1 - Ky,y.K lc))

1 _,_ _ _
g1,1 = _(%K . (I-Kyy,K lezle . )e) (25)

Y1iy1 Y1iy¥1

1 _
g1,2 = ZKyllleylyzK le

Substituting (19) and (21) to (14) and (15), a solution fqrand
A2 is obtained:

{)\1} _ |:g’£1e grlr,ze} - {041 - gfoe] (26)

T T T
A2 821€ 82 2€ Qa2 — g2 0€

IV. EXPERIMENTS

The performance of the algorithm is tested on two differéntik
of images: Images recorded with a standard camera (Lena and
Checkboard) and microscopical images (Drosophila egggsé&h
images have been chosen since they contain highly strliattme:
mation like hair, chessboard pattern, single cells. In apeements
three parameters are varied in order to explore their infleem the
restoration quality: standard deviation of Gaussian natandard
deviation of Gaussian blur and the inverse filter size.

A. Implementation

The filter is implemented pixelwize, for a neighborhood of
size K x K (in this implementationKX = 35).The covariance
matrix cxy as well as the source varianee, is estimated by
the method described in [6]. Computing is not necessary by a
simple trick: For each neighborhood the meanmn; is subtracted
before applying the filtery;. After the reconstruction the mean
of the mean valuesig = + >°~ m;) is added back to the
reconstructed pixel. The computation ®f can be omitted, since
for zero-mean blocks the first quotient in tieatSSTM equation
(8) is no longer dependend agn Two-channels are used for the
image reconstruction.

The algorithm is implemented in Matlab R2009a and the com-
putation time for images of siz&0 x 50 pixels is 30 seconds on
a Intel Core 2 Duo processor with 3GHz.

In Figure 2 the reconstruction of one part of the hair in thage
Lena degraded byn, =1, on, = 2 ando, = 5 is presented.

The fine structure of the hair is recovered very nicely ushmey t
multi-channel approach.
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Figure 2. The original lena image (top row left) is distorteglo,, = 5, Dfigeel, _ +Ditanedd Dottt
on, = 1andoy, = 2 resulting in the images Distorted 1 ( MSE: 102.128, E = e o
SSIM: 0.917) and Distorted 2 ( MSE: 180.337, SSIM: 0.846)p (tow
middle and right). After SSIM restoration is applied theulesare presented
for single-channel restoration of Distorted 1 (MSE: 85.28%IM: 0.935)
and Distorted 2 (MSE: 156.397, SSIM: 0.879)(bottom row &eftl middle)
and multi-channel restoration (MSE: 52.673, SSIM: 0.96®)tiom row
right)

55IM restored 2
P Fmm

B. Influence of Noise

The original imagex is degraded with two gaussian bluis
and h, resulting in two distorted imageg:; andy.. The size of
the blur isW = 5 and the standard deviation (STD) of the blur
is on, = 1 and oy, = 2 respectively. The STD of the noise,
is increased gradually from O to 50 pixels. Noise with sames
added to each blurred image, however the noise is generated f ()
each image separately. The inverse filter lengtl’is- 9 pixels.

In Figure 3 you can see the SSIM values for differeptand ] ] ]
the reconstruction with two separately estimated inveltardig; Figure 3. Influence of Noise on Checkboard.(a)The influence of
and g (single im1 and single im2) and with the two combined noise (x-axis) on the SSIM index (y-axis) is plotted for daghannel

. . . . restoration (red and blue) and multi-channel restoratipredn). (b) The
inverse filtersg (multi restaured). Fow, < 10, the multiview original chessboard image (top row left) is distortedday— 30, op,, = 1

reconstruction does not improve the results. However,qfpr> andoy,, = 2 resulting in the images Distorted 1 (MSE: 1616.418, SSIM:
10 the multiview reconstruction improves the results sigaifiity! 0.712) and Distorted 2 (MSE: 2266.447, SSIM: 0.572) (top middle and
Even for high noised,, = 50), a high SSIM value can be reached. right). After SSIM restoration is applied the results aregented for single-
In Figure 4 the results on the drosophila egg depicting singl channel restoration for Distorted 1 (MSE: 1371.034, SSIMZ48) and
cells are shown. The parameter setting is the same as for theistorted 2 (MSE: 1867.621, SSIM: 0.621) (bottom row leftiamiddie)
chesshoard image. The cell structure can be recovered velty w and multi-channel restoration (MSE: 692.040, SSIM: 0.8@fttom row
even forg, = 0 the multi-channel reconstruction exceeds the 9n0-
single-channel reconstruction.

C. Influence of Blur V. CONCLUSION

The multi-channel SSIM deconvolution significantly impesv
the single-channel SSIM deconvolution. The method is ini@ar
larly very effective if the noise level is high. A small filtsize is

For the chessboard image, the noise is kept constant 30
and varyoy, and on,, whereoyn, = 20n,. From Figure 5 it
is obvious that the SSIM multiview reconstruction is bettiean - ; . :
the single SSIM reconstructions, however as the blur ise®a sufficient to achieve optimal reconstruction results.

not much improvement can be achieved by using SSIM multiview . Future research aims at extending this method to three dimen
reconstruction. sional microscopy images and applying it to data as degtribe

[5]. Further the influence of the number of distorted imagéon
D. Influence of Filter Size the reconstruction quality will be studied.

The SSIM value of the reconstructed images is explored for ACKNOWLEDGMENT
varying the filter sizeF'. From Figure 6 the optimal filter size is 5 The authors would like to thank S. S. Channappayya for provid
pixels, thus the reconstruction can be computed very guickl ing the matlab code implementing the method described ifT}dk
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Figure 4. Influence of Noise on Drosophila Cells.(a)The influence
of noise (x-axis) on the SSIM index (y-axis) is plotted fongle-channel
restoration (red and blue) and multi-channel restoratigreen). (b) The
original image (top row left) is distorted by, = 3, oy, = 1 andoy, =

2 resulting in the images Distorted 1 (MSE: 116.475, SSIM:6@)9and
Distorted 2 (MSE: 256.474, SSIM: 0.910) (top row middle aigiht). After

SSIM restoration is applied the results are presented foglesichannel
restoration of Distorted 1 (MSE: 83.431, SSIM: 0.974) andt@ited 2
(MSE: 188.594, SSIM: 0.942) (bottom row left and middle) amailti-

channel restoration (MSE: 49.611, SSIM: 0.984) (bottom rimht).
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