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Abstract—In this paper a framework for multichannel image
restoration based on optimization of the structural similarity
(SSIM) index is presented. The SSIM index describes the
similarity of images more appropriately for the human visual
system than the mean square error (MSE). It has not yet
been explored for the multi channel restoration task. The
construction of an optimization algorithm is difficult due t o the
non-linearity of the SSIM measure. The existing solution based
on a quasi-convex problem formulation is successfully extended
for the multichannel image restoration. The correctness of
the algorithm is verified on sample images and it is shown
that multi-view information can significantly improve the
restoration results.
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I. I NTRODUCTION

The structural similarity (SSIM) index has received quite
a few attention in recent publications ([1],[2],[3]). Due to
its ability to capture the similarity of two images in a more
appropriate way than the mean square error (MSE), it poses
a real alternative to comparing images. The SSIM index
computes a product between three measures: luminance,
contrast and structural correlation. These measures seem to
capture the human visual perception in a realistic way.

Multichannel processing of images is used whenever multi
images of the same scene are available. This occurs for
example when a moving object is recorded several times
with the same camera, e.g. the license plate of a driving car,
and the license number needs to be reconstructed. Another
example where this kind of reconstruction is needed, is in
recording biological objects with a microscope from differ-
ent viewing angles. The goal is to use the multiinformation
present in those images in order to restore the original image
more appropriately.

Several multichannel restoration methods based on MSE
([4], [5], [7]) have already been developed. In this work,
a framework for multiview restoration based on the SSIM
index is designed. The work by Channappayya et al ([3]) is
extended to multichannels.

A. Problem Outline

The recording of an imagex can be described by the point
spread functionh and the noiseη introduced by the record-
ing system. The recording process can be approximated by
a wide sense stationary process:

y = h ∗ x + η, (1)

where∗ is the convolution operator.
Additive gaussian noise with standard deviationσx is

assumed in our model. The goal of multi-channel restoration
is to find the best estimate of̂x given several recorded
imagesyi. The quality of the reconstructed imagêx is
measured by a similarity measure. The simplified form of
the SSIM index as defined by [1] is chosen as the similarity
measure:

SSIM(x, x̂) =
2µxµx̂ + C1

µ2
x + µ2

x̂
+ C1

·
2σxx̂ + C2

σ2
x + σ2

x̂
+ C2

, (2)

whereC1 andC2 are stabilizing constants,µx is the mean
value andσ2

x the variance.

B. Related Work

In [3] the statistical SSIM index has been introduced
and the restoration problem was solved for single channel
images. This solution is extended for multi-channel images.
The statistical SSIM index is a straight forward extension
of the SSIM index by raplacing the empirical properties by
their statistical equivalences:

µx = E[x[n]] (3)

σ2

x = E[(x[n] − µx)2] (4)

σxy = E[(x[n] − µx)(y[n] − µy)] (5)

C. Notation

Bold letters are used to denote vectors, e.g.g =
(g[0], g[1], ..., g[N − 1])T and e = (1, 1, ..., 1)T are both
lengthN vectors. The mean of the source and the observed
object areµx and µy. The cross covariance between the
source(x[n]) and the observed imagey = (y[n], y[n −

1], ..., y[n − (N − 1)])T is defined bycxy = E[(x[n] −



Figure 1. Block diagram. The inverse filterg1, ...,gM are optimized
adjointly to produce the best reconstruction of imagex according to the
SSIM index.

µx)(y − eµy)] andKyy = E[(y − eµy)(y − eµy)] is the
covariance matrix of sizeN × N .

D. Paper Organization

In Section II the framework for multichannel restoration
for M images is described and a general solution for finding
the inverse filters is presented. In Section III, the solution
for the case of two images is computed explicitly. In Section
IV experiments based on the solution in Section III are
presented. In Section V a conclusion is drawn and future
research are discussed.

II. PROBLEM FORMULATION

The following model(See Figure 1) is considered: Imagex

is recordedM times and the resulting images arey1, ...,yM.
The main goal is to find inverse filtersg1, ..,gM in order to
restore the image , given the imagesy1, ...,yM, the blurring
filtersH1, ..., HM and the probability density function (PDF)
of the noise.

The restored imagêx is then computed by:

x̂[n] = g1[n] ∗ y1[n] + ... + gM[n] ∗ yM[n]. (6)

The inverse filterg1, ...,gM of sizeN are found adjointly
by optimizing the statistical SSIM index (for a definition see
[3]) between the original imagex and the restored imagêx:

ĝ = arg max
g∈RMN

StatSSIM(x[n], x̂[n]). (7)

The StatSSIM is computed explicitly by:

StatSSIM(x[n], x̂[n]) =
2µxµx̂ + C1
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whereKyy is the covariance matrix andcxy the cross covari-
ance vector between the sourcex and the observed processy.

A nonlinear equation is obtained consisting of the multiplication
of two quotients. The first quotient depends only ongi. By
constraininggT

i e to αi, the optimization problem is simplified to
finding ĝ(α):

ĝ(α) = arg max
g∈RMN

Q2

subject to:gT
e = α ,

whereg is a matrix with the rows being the vectorsg1, ...gM .
Following [3], a boundaryγ to StatSSIM(x[n], x̂[n]) is set and
the above equation is converted to a quasi-complex optimization
problem:

min: γ

subject to:

max: Q2 ≤ γ

subject to:gT
e = α.

(8)

f(γ) is defined by:
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and equation (8) is reformulated as:

min: γ

subject to:

min: f(γ) ≥ 0

subject to:gT
e = α.

(10)

The overall problem is convex and can be solved by applying
the Lagrange multipliersλ and applying the first order sufficiency
condition:

▽g(f(γ) + λ1(g
T
1 e−α1) + ... + λM (gT

Me−αM )) = 0 (11)

A set of linear equations is obtained and can be solved easily. In
Section III, an explicit solution forM = 2 is presented.

The optimal γ is computed using the bisection method as
proposed in [3]:



1. Initialize γ (sayγ0) between0 and1.
SetupLimit = 1, lowLimit = γ0

2. Evaluate the optimal filter.
if f(γ) ≥ 0 then

if (upLimit− lowLimit) < ǫ then
Optimal γ found.
Exit.

else
Setγ = (upLimit− lowLimit)/2
upLimit = γ.
Go to step2.

end if
else

Setγ = (upLimit− lowLimit)/2
lowLimit = γ.
Go to step2.

end if

Algorithm 1. Algorithm to search for the optimalγ

III. SOLUTION FOR TWO IMAGES

The gradient▽g1
,▽g2

,▽λ1
and▽λ2

is computed:

▽g1
(f(γ) + λ1(g

T
1 e − α1) + λ2(g

T
2 e − α2))

= γ(2Ky1y1g1 + 2Ky1y2g2 − 2cxy1 + λ1e) = 0
(12)
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T
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(15)

The gradient equations (12) and (13) are rewritten by:

Ag1 + Bg2 = h1 (16)

B
T
g1 + Cg2 = h2, (17)

whereA,B,C,h1,h2 are defined as:

A := 2γKy1y1

B := 2γKy1y2

C := 2γKy2y2

h1 := 2cxy1 − λ1e

h2 := 2cxy2 − λ2e

(18)

From (16) follows:

g1 = A
−1(h1 − Bg2) (19)

and substitute it in :

B
T(A−1(h1 − Bg2)) + Cg2 = h2 (20)

Now the equation is solved forg2:

g2 = g2,0 + λ1g2,1 + λ2g2,2, (21)

with
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whereK andc are defined as:

K := Ky2y2 − Ky2y1K
−1
y1y1

Ky1y2

c := cxy2 − Ky2y1K
−1
y1y1

cxy1

(23)

Now g2 from (21) is substituted to equation (19) and the equation
is rewritten by:

g1 = g1,0 + λ1g1,1 + λ2g1,2, (24)

with
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Substituting (19) and (21) to (14) and (15), a solution forλ1 and
λ2 is obtained:

»

λ1

λ2

–

=

»

gT
1,1e gT

1,2e

gT
2,1e gT

2,2e

–−1 »
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–

(26)

IV. EXPERIMENTS

The performance of the algorithm is tested on two different kind
of images: Images recorded with a standard camera (Lena and
Checkboard) and microscopical images (Drosophila egg). These
images have been chosen since they contain highly structural infor-
mation like hair, chessboard pattern, single cells. In our experiments
three parameters are varied in order to explore their influence on the
restoration quality: standard deviation of Gaussian noise, standard
deviation of Gaussian blur and the inverse filter size.

A. Implementation

The filter is implemented pixelwize, for a neighborhood of
size K × K (in this implementationK = 35).The covariance
matrix cxy as well as the source varianceσx is estimated by
the method described in [6]. Computingλi is not necessary by a
simple trick: For each neighborhoodni the meanmi is subtracted
before applying the filtergi. After the reconstruction the mean
of the mean values (̄m = 1

N

PN

i=1
mi) is added back to the

reconstructed pixel. The computation ofλi can be omitted, since
for zero-mean blocks the first quotient in theStatSSIM equation
(8) is no longer dependend ong. Two-channels are used for the
image reconstruction.

The algorithm is implemented in Matlab R2009a and the com-
putation time for images of size50 × 50 pixels is 30 seconds on
a Intel Core 2 Duo processor with 3GHz.

In Figure 2 the reconstruction of one part of the hair in the image
Lena degraded byσh1

= 1, σh2
= 2 andση = 5 is presented.

The fine structure of the hair is recovered very nicely using the
multi-channel approach.



Original Distorted 1 Distorted 2

SSIM restored 1 SSIM restored 2 SSIM restored multi

Figure 2. The original lena image (top row left) is distortedby ση = 5,
σh1

= 1 andσh2
= 2 resulting in the images Distorted 1 ( MSE: 102.128,

SSIM: 0.917) and Distorted 2 ( MSE: 180.337, SSIM: 0.846) (top row
middle and right). After SSIM restoration is applied the results are presented
for single-channel restoration of Distorted 1 (MSE: 85.277, SSIM: 0.935)
and Distorted 2 (MSE: 156.397, SSIM: 0.879)(bottom row leftand middle)
and multi-channel restoration (MSE: 52.673, SSIM: 0.962) (bottom row
right)

B. Influence of Noise

The original imagex is degraded with two gaussian blursh1

and h2 resulting in two distorted imagesy1 and y2. The size of
the blur isW = 5 and the standard deviation (STD) of the blur
is σh1

= 1 and σh2
= 2 respectively. The STD of the noiseση

is increased gradually from 0 to 50 pixels. Noise with sameση is
added to each blurred image, however the noise is generated for
each image separately. The inverse filter length isF = 9 pixels.

In Figure 3 you can see the SSIM values for differentση and
the reconstruction with two separately estimated inverse filters g1

and g2 (single im1 and single im2) and with the two combined
inverse filtersg (multi restaured). Forση < 10, the multiview
reconstruction does not improve the results. However, forση >
10 the multiview reconstruction improves the results significantly!
Even for high noise (ση = 50), a high SSIM value can be reached.

In Figure 4 the results on the drosophila egg depicting single
cells are shown. The parameter setting is the same as for the
chessboard image. The cell structure can be recovered very well:
even for ση = 0 the multi-channel reconstruction exceeds the
single-channel reconstruction.

C. Influence of Blur

For the chessboard image, the noise is kept constantση = 30
and varyσh1

and σh2
, where σh2

= 2σh1
. From Figure 5 it

is obvious that the SSIM multiview reconstruction is betterthan
the single SSIM reconstructions, however as the blur increases,
not much improvement can be achieved by using SSIM multiview
reconstruction.

D. Influence of Filter Size

The SSIM value of the reconstructed images is explored for
varying the filter sizeF . From Figure 6 the optimal filter size is 5
pixels, thus the reconstruction can be computed very quickly.

(a)

(b)

Figure 3. Influence of Noise on Checkboard.(a)The influence of
noise (x-axis) on the SSIM index (y-axis) is plotted for single-channel
restoration (red and blue) and multi-channel restoration (green). (b) The
original chessboard image (top row left) is distorted byση = 30, σh1

= 1

andσh2
= 2 resulting in the images Distorted 1 (MSE: 1616.418, SSIM:

0.712) and Distorted 2 (MSE: 2266.447, SSIM: 0.572) (top rowmiddle and
right). After SSIM restoration is applied the results are presented for single-
channel restoration for Distorted 1 (MSE: 1371.034, SSIM: 0.745) and
Distorted 2 (MSE: 1867.621, SSIM: 0.621) (bottom row left and middle)
and multi-channel restoration (MSE: 692.040, SSIM: 0.861)(bottom row
right).

V. CONCLUSION

The multi-channel SSIM deconvolution significantly improves
the single-channel SSIM deconvolution. The method is in particu-
larly very effective if the noise level is high. A small filtersize is
sufficient to achieve optimal reconstruction results.

Future research aims at extending this method to three dimen-
sional microscopy images and applying it to data as described in
[5]. Further the influence of the number of distorted imagesM on
the reconstruction quality will be studied.
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Figure 4. Influence of Noise on Drosophila Cells.(a)The influence
of noise (x-axis) on the SSIM index (y-axis) is plotted for single-channel
restoration (red and blue) and multi-channel restoration (green). (b) The
original image (top row left) is distorted byση = 3, σh1

= 1 andσh2
=

2 resulting in the images Distorted 1 (MSE: 116.475, SSIM: 0.961) and
Distorted 2 (MSE: 256.474, SSIM: 0.910) (top row middle and right). After
SSIM restoration is applied the results are presented for single-channel
restoration of Distorted 1 (MSE: 83.431, SSIM: 0.974) and Distorted 2
(MSE: 188.594, SSIM: 0.942) (bottom row left and middle) andmulti-
channel restoration (MSE: 49.611, SSIM: 0.984) (bottom rowright).
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