Computer Vision
6" Assignment

This exercise is on disparity estimation, which is the task of finding dense correspondence between two images
from a stereo camera pair. Due to the given camera geometry, epipolar lines are known to be horizontal, i.e.
correspondences are known to lie on the same horizontal line as the reference points. Disparity estimation can
hence be seen as predicting the offset in x-direction between corresponding points (negative when matching
from left to right, positive from right to left). Two images from a stereo image pair and the ground truth
disparity are shown in Figure 1.
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Figure 1: Disparity estimation between a stereo camera image pair: (a) Left camera image. (b)
Right camera image. (c) Disparity from left to right, i.e. negative scalar values that indicate the shift in
x-direction between corresponding points from the left to the right image. Blue denotes large shifts and red
denotes small shifts. Note that objects close to the camera have larger displacements than far away objects.

FlowNet [1] and DispNet [2] are established architectures for the tasks of optical flow and disparity estimation.
Note that disparity estimation can be seen as a constrained form of optical flow estimation and approaches
for optical flow estimation can hence be also applied for disparity estimation. Both the FlowNet and the
DispNet exist in a “S” (Simple) and a “C” (Correlation) variant. The “Simple” variants simply concatenate
both input images and rely on the training for learning to search corresponding points. The “Correlation”
variants explicitly use a correlation layer within the network, that correlates reference points with points in
the other image at fixed offsets. For details, see [1].

In this exercise, we first set up a DispNetC by changing the correlation layer of the FlowNetC from exercise
5. Then we will evaluate both the DispNet and the FlowNet on a disparity estimation task. Finally, we
apply the DispNet to two images that were not captured by a stereo camera. For this, we need to rectify
the images before feeding them to the network.

1. Installation

In your miniconda environment, install PyTorch and TorchVision from here, the exact command to setup
with GPU support depends on your system. On the pool computers use this command:

conda install -y pytorch torchvision pytorch-cuda=11.8 -c pytorch -c nvidia

Afterwards check if your GPU is detected (the command should print True):

python -c 'import torch; print(torch.cuda.is_available())'

In case you get the error chardet not found, run pip install chardet

See learn the basics and other tutorials to get started with PyTorch.

2. Adapt FlowNetC correlation layer to set up a DispNetC

DispNet is a deep network architecture for disparity estimation. A DispNetS differs from a FlowNetS only
in some details (e.g. a single output channel and ReLUs at the output). In addition to this, a DispNetC
differs from a FlowNetC by using a different correlation layer that exploits the restricted correspondence
search space. For this, points in the reference image are correlated with points from the other image not in
a quadratic grid as in a FlowNetC, but in the same row, as shown in Figure 2.

We provide weights for a trained DispNetC and DispNetS. To use the DispNetC, your task is to adapt the


https://pytorch.org/get-started/
https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch.org/tutorials/
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Figure 2: FlowNetC and DispNetC correlation layers: (a) Reference image (left stereo camera image)
with a selected reference point (red). Note that Correlation is done for all points in the reference feature
map. Furthermore, the correlation is done on features not raw pixel values. (b) Correlation points in the
other image (right stereo camera image) in a FlowNetC correlation layer. Colors indicate the correlation
score. (c) Correlation points in the other image in a DispNetC correlation layer.

correlation layer by implementing the class DispSamplingPoints in the file 1ib/corr.py.

Todo: Complete the class DispSamplingPoints in the file 1ib/corr.py. Test your implementation with by
running the command python -m pytest

In the next task, we will run DispNetC.

3. Evaluate FlowNet and DispNet for disparity evaluation

In principle, disparity between a stereo camera image pair can be estimated with a FlowNet or a DispNet.
In case of a FlowNet, one simply ignores the y-component of the optical flow and only considers the x-
component. However, a DispNet should give better results, as it is more specialized for the task at hand
(regarding the correlation layer and training data).

Your task is to evaluate a FlowNetS, FlowNetC, DispNetS, and DispNetC for disparity estimation on the
FlyingThings3D test set. Plot the results in a similar form as shown in Figure 3.
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Figure 3: FlowNet and DispNet results on FlyingThings3D: (a) Plot of the average EPEs per sample.
(b) Plot of the average EPEs on the whole dataset.
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Todo: Evaluate FlowNet and DispNet by following the instructions in the jupyter notebook . You can
either a) connect your notebook with a GPU machine or b) run the evaluations in the command line, then
load the results with the notebook.

For option a), we recommend running jupyter notebook using vscode: To do that, you need to connect vscode
via remote ssh directly to one of the pool machines, not the login node, and then select an appropriate kernel
(python of a conda environment). Please check the FAQ under ‘Remote SSH in vscode directly to a pool
machine’ https://github.com/lmb-freiburg/cv-exercises/blob/master/FAQ.md.

For option b), the commands are given in the notebook.

4. Apply DispNet to images from a monocular camera

Next, we want to apply DispNet to images that were not captured simultaneously with a stereo camera but
sequentially with a monocular camera. The input images are shown in Figure 4. For this, the input images
need to be rectified before being fed to the network. This means warping the images based on the known
camera intrinsics and extrinsics such that the images are coplanar and epipolar lines are horizontal.

()

Figure 4: (a), (b) Input images from a monocular camera with epipolar lines for two reference points.
In this general case, epipolar lines are not horizontal which conflicts with the DispNet assumptions. (c)
DispNet prediction when feeding the non-rectified images. (d), (e) Image pair after rectification. Note the
horizontal epipolar lines. (f) Predicted disparity when applying DispNet to the rectified images and warping
the prediction back to the original viewpoint.

Your task is to implement a function that rectifies an image pair with known camera calibration. As interme-
diate steps, you have to implement functions for projecting 3d points to an image plane, computing epipoles,
and computing the essential and fundamental matrices. The notebook exercise_disparity_estimation.ipynb
will guide you step-by-step through the implementations.

Todo: Implement the functions project_to_image, get_epipole, compute_essential_matrix,
compute_fundamental_matrix, rectify_images in the file 1ib/utils.py. Use the notebook
exercise_disparity_estimation.ipynb to check your implementations.

You can then run DispNet on the rectified images:

python inference.py --model DispNetC --path data/realthings --rectify --auto_restore


https://github.com/lmb-freiburg/cv-exercises/blob/master/FAQ.md
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5. Bonus: Train a DispNetS

The provided code includes training code for a DispNetS and DispNetC. As a bonus, you can train a DispNetS
yourself with the following command:

python train.py --model DispNetS --iterations 100000 --output output/dispnets_things_100k
We suggest training only for 100k iterations to reduce the training time (should take around 7 hours on the
given hardware). Of course you can train longer, if you have enough time.

You can evaluate the resulting model with the following command (you should get an EPE of around 4.2):
python eval.py --model DispNetS --output output/dispnets_things_100k --restore

output/dispnets_things_100k/checkpoints/checkpoint-model-iter-000100000.pt

The tensorboard logs are stored in the output folder and contain important training curves (loss, learning
rate, etc.), as well as qualitative outputs from the training and the evaluation.
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