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Abstract—In this paper we present a novel approach for
a trainable rotation invariant detection of complex structures
in 3D microscopic multi-channel data using a non-linear filter
approach.

The basic idea of our approach is to compute local features
in a window around each 3D position and map these features
by means of a non-linear mapping onto new local harmonic
descriptors of the local window. These local harmonic descriptors
are then combined in a linear way to form the output of the
filter. The optimal combination of the computed local harmonic
descriptors is determined in previous training step, and allows
the filter to be adapted to an arbitrary structure depending on
the problem at hand.

Our approach is not limited to scalar-valued images and can
also be used for vector-valued (multi-channel) images such as
gradient vector flow fields. We present realizations of a scalar-
valued and a vector-valued multi-channel filter.

Our proposed algorithm was quantitatively evaluated on col-
orectal cancer cell lines (cells grown under controlled conditions),
on which we successfully detected complex 3D mitotic structures.
For a qualitative evaluation we tested our algorithms on human
3D tissue samples of colorectal cancer. We compare our results
with a steerable filter approach as well as a morphology-based
approach.

Index Terms—3D microscopic multi-channel data, equivariant
non-linear image filter, rotation invariant detection, tissue, train-
able

I. INTRODUCTION

IN biomedical research quantitative analysis of cells in their
natural 3D surrounding becomes more and more important.

Specific fluorescence staining of certain structures and 3D
microscopic imaging techniques are well established, resulting
in a large number of 3D multi-channel data sets. In contrast,
the automated analysis of such data sets is still in its infancy.
In this paper we address a central task for such analyzes, the
detection of complex 3D multi-colored structures.

Window-based detectors combined with machine learning
approaches like the Viola-Jones detector [8] are very popular
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in image analysis but have the disadvantage of not being
invariant or equivariant to rotations of the object of interest.
However rotation invariance is required in many applications.
Popular approaches addressing this issue are often based on
the principle of template matching and incorporate rotations
by means of steering the template. Most of them are low-level
feature detectors, e.g. steerable filters, for lines and corners [1]
or surfaces [2] which are common in early vision and image
analysis. Some approaches have the ability to learn the objects
of interest using numerical or least square approaches [3] [4]
[5] in a rotation invariant manner. Many approaches are model
based such as the Hough transform [6]. For multi-channel
images most algorithms are only addressed to 2D problems
[7].

Our novel approach is based on the extension of the 3D
harmonic filter framework [4] [5] to multi-channel data by
utilizing spherical tensor analysis [9]. Therefore our approach
can be seen as an approach between a classical low-level
feature detector (e.g. steerable filter) and a high-level object
detector based on the generalized Hough transform [10].

The advantages of this framework are its high flexibility
due to the non-linear filter approach, the straight-forward
adaptation to new structures due to its learning ability, and
its speed, as it does not rely on large numbers of expensive
convolutions like steerable filter approaches.

We validate our approach on a well characterized cellular
3D structure, the metaphase of dividing, mitotic cells. In this
specific (sub-)phase of mitosis, the sister chromatids of the
cell have been arranged at a central position of the cell, and
are attached via spindle proteins to two opposite poles, the so
called centrosomal complex [11]. The 3D structure of mitotic
cells in metaphase encompasses well defined cellular objects
(i.e. the central structure of DNA and the bi-directionally
located poles, or multiple poles in aberrant mitosis). Therefore,
this represents an ideal system to validate our novel filter
approach by detecting complex structures of mitotic cells in
3D multi-channel data sets.

We compared our results with various reference approaches,
such as a steerable filter approach, mathematical morphology
based approach and the original single-channel harmonic filter
approach.
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II. PRELIMINARIES

A. Spherical Tensor Analysis

This section gives a brief summary of the theoretical back-
ground needed to understand our approach. Details and proofs
can be found in [4] [9].

Let Dj
g be the unitary irreducible representation of a g ∈

SO(3) (rotation group in three dimensions) of order j with
j ∈ N. They are also known as the Wigner D-matrices (see
e.g. [12]). The representation Dj

g acts on the vector space Vj

which is represented by C2j+1. The standard basis of C2j+1

is written as ejm. We write the elements of Vj in bold face,
e.g. u ∈ Vj and write the 2j + 1 components in unbold face
um ∈ C where m = −j, . . . j. We treat Vj as a real vector
space of dimension 2j+1, despite the fact that the components
of v might be complex. This means that Vj is only closed
under weighted superpositions of real numbers. Therefore,
components of u ∈ Vj fulfill the property um = (−1)mu−m.
The corresponding orthogonal space is denoted as iVj . We
write the elements w ∈ iVj as w = iv with v ∈ Vj .
Analogue to elements of Vj , the elements w ∈ iVj fulfill
always wm = (−1)m+1w−m. Hence, C2j+1 can be written
as direct sum of these two spaces C2j+1 = Vj ⊕ iVj . For the
transposition of a vector/matrix we write uT ; the joint complex
conjugation and transposition is denoted by u> = uT . The
relation of the standard coordinate vector r = (x, y, z)T ∈ R3

to the complex valued spherical coordinate u ∈ V1 is given
by an unitary coordinate transformation:

u =

 1√
2
(x− iy)
z

− 1√
2
(x+ iy)

 =

 w
z
−w

 = Sr ∈ V1 ,

with S = 1√
2

 1 −i 0
0 0

√
2

−1 −i 0

 .

Definition 1 (Spherical Tensor Field). A function f : R3 → Vj

is called a spherical tensor field of rank j if it transforms with
respect to rotations as follows

(gf)(r) := Dj
gf(U

T
g r) , for all g ∈ SO(3) .

Ug ∈ R3×3 denotes the real-valued rotation matrix repre-
senting g. The space of all spherical tensor fields of rank j is
denoted by Tj .
Definition 2 (Spherical Tensor Coupling). For j ≥ 0 we define
a family of bilinear forms of type

◦j : Vj1 × Vj2 → C2j+1

where j1, j2 ∈ N have to be chosen according the triangle
inequality

|j1 − j2| ≤ j ≤ j1 + j2 . (1)

For v ∈ Vj1 and w ∈ Vj2 , v ◦j w is defined by

(ejm)>(v ◦j w) =
∑

m=m1+m2

〈jm | j1m1, j2m2〉 vm1wm2

where 〈jm | j1m1, j2m2〉 are the Clebsch-Gordan coeffi-
cients.

This is just the ordinary angular momentum coupling known
in quantum mechanics (see [12] [13]). Note, the Clebsch-
Gordan coefficients 〈jm | j1m1, j2m2〉 are only non zero for
m = m1 +m2. In the following, we will present some other
useful properties of the products defined by definition 2.

Proposition 1. Let j1, j2, j ∈ N be chosen according to
the triangle inequality (1). If j + j1 + j2 is even, then ◦j
is symmetric and antisymmetric otherwise. The space Vj is
closed under symmetric products but not for antisymmetric
products. Then we have for v ∈ Vj1 and w ∈ Vj2

j + j1 + j2 is even⇒ v ◦j w ∈ Vj
j + j1 + j2 is odd⇒ v ◦j w ∈ iVj .

For a proof of proposition 1 see [9] or [14]. The most
important and useful property of the above defined products is
that they respect rotations of their arguments. Let j1, j2, j ∈ N
be chosen according to the triangle inequality (1). For any
v ∈ Vj1 and w ∈ Vj2 and g ∈ SO(3) holds(

Dj1
g v
)
◦j
(
Dj2
g w

)
= Dj

g (v ◦j w) .

The previously introduced products are giving us the ability to
not only couple tensors of different ranks, but also to couple
tensor fields of different ranks. Let v ∈ Tj1 and w ∈ Tj2 and
j1, j2, j ∈ N be chosen according to the triangle inequality
(1), then

f(r) := v(r) ◦j w(r)

defines a tensor field of rank j, i.e. f ∈ Tj . Tensor fields
can also be combined by convolution. The advantage of
combining tensor fields by convolution is that the so defined
”convolution” products also respect translation in a certain
sense. Therefore, let v ∈ Tj1 and w ∈ Tj2 and j1, j2, j ∈ N
be chosen according to the triangle inequality (1), then

(v◦̃jw)(r) :=
∫

R3
v(r′ − r) ◦j w(r′) dr′

is in Tj , i.e. a tensor field of rank j.

B. Spherical Derivatives

In [9] the spherical derivatives are introduced. They connect
spherical tensor fields of different ranks by differentiation.
They represent a basic tool in the context of spherical tensor
analysis, and will lead to an efficient formulation of our
proposed filter.

Proposition 2 (Spherical Derivatives). Let f ∈ Tj be a spher-
ical tensor field. The spherical up-derivative ∇1 : Tj → Tj+1

and the down-derivative ∇1 : Tj → Tj−1 are defined as

∇1f := ∇ •j+1 f (2)
∇1f := ∇ •j−1 f , (3)

where

∇ = (
1√
2
(∂x − i∂y), ∂z,−

1√
2
(∂x + i∂y))

is the spherical gradient and ∂x, ∂y, ∂z the standard partial
derivatives.
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•j : Vj1 × Vj2 → Vj are normalized symmetric products
given by

v •j w :=
1

〈j 0 | j10, j20〉
v ◦j w .

They are only defined for j + j1 + j2 = even. See [9] for
details. Note, for a scalar function the spherical up-derivative
is just the spherical gradient, i.e. ∇f = ∇1f .

C. Spherical Gaussian Derivatives

As a prerequisite to the Harmonic filter it is necessary to
mention that the spherical derivative ∇j of a Gaussian is just
a Gaussian-windowed solid harmonic Gj

σ:

∇je−
r2

2σ2 = (
√

2πσ)3Gj
σ(r) =

(
− 1
σ2

)j
Rj(r) e−

r2

2σ2

where Rj(r) := ‖r‖jYj(r/‖r‖) are the so called solid
harmonics, and Yj are the well known spherical harmonics.
In our paper, we use tensor notation for spherical harmonics,
therefore we write Yj = (Y j−j , · · · , Y jj ) where Y jm is a
spherical harmonic of band j and m = −j, · · · , j. Using this
notation we are able to write Yj as a mapping from the 2-
sphere S2 onto C2j+1

Yj : S2 → C2j+1 .

The solid harmonics Rj are a basis for harmonic functions.
Figure 1 shows the radial and the angular part of the first three
Gaussian windowed solid harmonics. An implication is that
convolutions with Gj

σ are derivatives of Gaussian-smoothed
functions, namely

Gj
σ ∗ f = ∇j(Gσ ∗ f) ,

where f ∈ T0. We use the convention

G0
σ = Gσ =

1
(
√

2πσ)3
e−

r2

2σ2 .

III. MULTI-CHANNEL HARMONIC FILTERS

Our goal is to build non-linear image filters that are
equivariant to Euclidean motion. The group of Euclidian
motion of degree 3 is denoted as SE(3). An SE(3)-
equivariant multi-channel image filter is given by the
following definition.

Definition 3 (SE(3)-Equivariant Multi-Channel Filter). A
scalar multi-channel image filter is a mapping

H : T0 × · · · × T0 → T0 .
We call such a mapping SE(3)-equivariant if

H{gf1, . . . , gfk} = gH{f1, . . . , fk}
for all g ∈ SE(3) and fi ∈ T0 for i = 1, . . . , k.

For building such a filter we follow the idea of [4]. By
treating each channel as a separate scalar-valued function
fi : R3 → T0 for i = 1, . . . , k (k ∈ N denotes the number

of channels), we can integrate this into the harmonic filter
framework under the assumption that all channels are
transformed by the same g ∈ SE(3).

Therefore, we first compute for each position r ∈ R3 the
projection onto the Gaussian windowed harmonic basis Gj

σ

for j = 0, . . . , n by a convolution of the input channels fi
with the basis elements:

pji := Gj
σ ∗ fi .

In a second step, we map these projections pji onto some new
local harmonic descriptors by means of a non-linear mapping

Nj(r) := Nj [ p0
1(r),p

1
1(r), . . . ,p

n
1 (r), . . . , (4)

p0
k(r),p

1
k(r), . . . ,p

n
k (r) ] ,

which describe the harmonic part of fi in a local neighbor-
hood. This can be interpreted as a local expansion of a kind
of voting function. The contribution of the voter at position r′

to the voxel r is then given by

Vr′(r) = Gη(r− r′)
n∑
j=0

Nj(r′) •0 Rj(r− r′) . (5)

In a final step, the contribution of all voters that contribute to
a voxel r is collected by convolution

H{f1, . . . , fk}(r) :=
∫

R3
Vr′(r)dr′

=
n∑
j=0

∫
R3

Gj
η(r− r′) •0 Nj(r′)

=
n∑
j=0

Gj
η •̃0 Nj . (6)

The output of the filter reflects the probability of the occur-
rence of the trained structure in a local window. In order to
ensure SE(3)-equivariance, Nj has to obey the equivariance
constraint (see [4])

Nj [D0
gp

0
1, ...,D

n
gp

n
1 , ...,D

0
gp

0
k, ...,D

n
gp

n
k ]

= Dj
gN

j [p0
1, ...,p

n
1 , ...,p

0
k, ...,p

n
k ] . (7)

For an efficient computation we make use of the spherical
derivatives in order to compute the projections onto the
harmonic basis. Furthermore, using the commuting property
for convolutions (see [9]) we can rewrite equation (6) as

n∑
j=0

Gj
η •̃0 Nj =

n∑
j=0

(∇jGη) •̃0 Nj

=
n∑
j=0

Gη •̃0 (∇jNj)

= Gη ∗
n∑
j=0

∇jNj
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Fig. 1. The radial and the angular part of the first three Gaussian windowed solid harmonics. The radial part is depicted in the left column. The angular
part (which are spherical harmonics Y j

m) is depicted in the right column. The color of the angular part indicates the value of the spherical harmonic (yellow
corresponds to ”+1” and blue to ”-1”). < denotes the real and = the imaginary part of complex numbers.

The filter algorithm in terms of spherical derivatives is then
given by

H{f1, . . . , fk} := Gη ∗
∑n
j=0 ∇jNj [ ∇0f1

s , . . . ,∇
nf1
s ,

...
∇0fks , . . . ,∇

nfks ]
(8)

with f is = Gσ ∗ fi are the Gaussian smoothed channels
and ∇0f1

s , . . . ,∇
nf1
s are their projections onto the Gaussian

windowed harmonic basis.
The parameter σ of the input Gaussian determines the size

of the local features which vote for the center of the object
of interest. In order to assure that every voxel of the object
can contribute to the resulting output, the size of the voting
function η should be at least half the diameter of the object.
The parameter n determines the expansion degree of our input.

We will utilize the spherical products ◦ to build the SE(3)-
equivariant non-linear mappings Nj [·] for multi-channel im-
ages.

A. Multi-Channel Voting Functions

In this section we will discuss how to construct the non-
linear mapping Nj [·] for multi-channel images. We will do
this by exemplary for k = 2 channels and give two possible
formulations.

For the first one, let f1, f2 ∈ T0 and let p0
1, . . . ,p

n
1 and

p0
2, . . . ,p

n
2 be their expansion in the Gaussian windowed

harmonic basis. We define Nj
Multi as

Nj
Multi[·] :=

∑
|j1−j2|≤j≤j1+j2
j1+j2+j even
j1,j2≤n

αjj1,j2 pj11 •j pj22 (9)

where αjj1,j2 ∈ R are expansion coefficients. Since pm1 ,p
m
2 ∈

Tm for m = 0, . . . , n and knowing the properties of •j it
is obvious that equation (9) defines an SE(3)-equivariant
mapping. The proof is analogue to the one given in [4] for
the single-channel filter. Algorithm 1 gives a realization of
the multi-channel harmonic filter, where Nj = Nj

Multi. In
order to become invariant against additive intensity changes we
neglect the zero order descriptor p0. To gain robustness against
illumination/contrast changes we use the same normalization
as [4]. Therefore, we introduce a special case for j = 1 in the
for-loop in algorithm 1 from line 3-6, and normalize the first
order descriptor p1 by

p1(r) =
1

γ + sdev(r)
∇1f(r) . (10)

Here, γ ∈ R is a fixed regularization parameter avoiding zero
divisions and sdev(r) denotes the standard deviation computed
in a local window around r. The normalization makes the filter
robust against multiplicative changes of the gray values and,
secondly, emphasizes the ’structural’ and ’textural’ properties
rather than the pure intensities. A possible workflow of the
filter is depicted in fig. 2 (only symmetric products • are
computed for Nj = Nj

Multi).
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Algorithm 1 Multi-Channel Harmonic Filter Algorithm
Input: f1, f2 : R3 → T0, i = 1, 2
Output: y : R3 → R, y := H{f1, f2}

// compute projections onto harmonic basis
1: Convolve p1

0 := Gσ ∗ f1
2: Convolve p2

0 := Gσ ∗ f2
3: for j = 1 : n do
4: p1

j = ∇1p1
j−1

5: p2
j = ∇1p2

j−1

6: end for
// compute harmonic descriptors

7: Initialize yn := 0 ∈ Tn
8: for j = n : −1 : 1 do
9: yj−1 = ∇1

(
yj + Nj

[
p1

0, . . . ,p1
j ,p2

0, . . . ,p2
j
])

10: end for
11: Let y := y0 + N0

[
p1

0, . . . ,p1
j ,p2

0, . . . ,p2
j
]

// collect the contribution of all voters
12: Convolve y := Gη ∗ y

A second possibility is to extend Nj
Multi by using antisym-

metric products. This extension makes only sense for multi-
channel images, as we will see. For example, let j = j1 =
j2 = 1 and v = Sb, w = Sc ∈ V1 and b, c ∈ R3 it holds

(v ◦1 w) = − i√
2
S (b× c)

where × denotes the cross product. When we think of v =
∇1f(r) and w = ∇1g(r) being the spherical gradient at
position r of two scalar fields f and g (actually we have
∇1f(r) = S ∇f(r) and ∇1g(r) = S ∇g(r) ), then v ◦1 w
computes the cross product of their gradients at position r.
Obviously, this is only useful when we are in the context of
multi-channel images, otherwise we have (think of the single
channel case) that (∇1f(r)) ◦1 (∇1f(r)) = 0.

Since the resulting field f ◦j g for f ∈ Tj1 ,g ∈ Tj1 for
j + j1 + j2 = odd, maps onto elements of iVj (see Prop.1),
we have to multiply with −i in order to get a spherical tensor
field that maps onto Vj :

−i (f ◦j g) : R3 → Vj .

We have then that −i (f ◦j g) ∈ Tj . Inserting this in our
voting function Nj

Multi[·] we are able to formulate the following
extension for multi-channel images. We define Nj

Asym as

Nj
Asym[·] :=

∑
|j1−j2|≤j≤j1+j2
j1+j2+j even
j1,j2≤n

αjj1,j2 pj11 •j pj22

−
∑

|j1−j2|≤j≤j1+j2
j1+j2+j odd
j1,j2≤n

αjj1,j2 i (pj11 ◦j pj22 ) (11)

where αjj1,j2 ∈ R are expansion coefficients. A possible
workflow of the filter is depicted in fig. 2. Algorithm 1 gives
a possible realization for Nj = Nj

Asym.

Fig. 2. Workflow of the harmonic filter for two channels: green and blue. The
input is expanded up to a degree of n = 2. The star ? denotes a convolution
of the incoming images. The plus denotes an addition of incoming channels.
∇ denotes the spherical derivative. ◦ and • denote the spherical coupling of
incoming channels.

B. Multi-Channel Filters for Tensor Fields

The generalization to tensor-valued input and output is
indeed very simple. We will give an example for a first order
tensor field with a scalar output.

One has to construct a filter of type H : Tj1×· · ·×Tj1 → Tj2
in the sense of definition 3 (but now for arbitrary j1 and j2).
According to the formulation we gave in section III in order
to compute the projection onto the harmonic basis, we can
compute the descriptor images for a higher order input f ∈ Tj1
as before by pj = ∇j(Gσ ∗ f). The difference is that the
resulting descriptor images have higher orders:

pj ∈ Tj+j1 .

We also have to adjust the local non-linear mappings Nj [·].
They have to be of the following type:

Nj : To+j1 × · · · × Tn+j1 → Tj+j1 .

Actually, we can use the same formulation as in equation (8)
to map the local non-linearities onto the output.

A vectorial filter with scalar-valued output is given by the
following definition.

Definition 4 (SE(3)-Equivariant Vectorial Filter). A vectorial
image filter is a mapping

H : T1 × · · · × T1 → T0 .

We call such a mapping SE(3)-equivariant if

H{gf1, . . . , gfk} = gH{f1, . . . , fk}

for all g ∈ SE(3) and fi ∈ T1 for i = 1, . . . , k.

C. Pre-processing for the Vectorial Harmonic Filter

We used the gradient vector flow field ([15] and [16]) of a
scalar-valued function in order to construct an rank-1 tensor
field. Given a scalar field f : R3 → R, the gradient vector



6

flow field is defined as the vector field v : R3 → R3 that
minimizes the energy functional

E =
∫

R3
µ
∑
i

(
∂v(r)
∂ri

)2 + ||∇f(r)||2||v(r)−∇f(r)||2 dr .

(12)
Due to the variational formulation, the resulting field gets

smooth in regions with low gradient magnitude ||∇f ||. In
regions with large gradient magnitude ||∇f || v tends to ∇f .
The parameter µ is a regularization parameter and should be
set according to the amount of noise presented in the image
(see [16] for details). After computing the gradient vector flow
we applied the vectorial image filter to the resulting field.

IV. EXPERIMENTS

A. Detection of Dividing Cells in Metaphase of Mitosis

1) Data: For our study, the 3D structure of metaphase
cells was visualized by staining the DNA material with DAPI
(blue channel) and immunofluorescence staining of the protein
kinase Aurora-A [17] (green channel). This was performed on
colorectal cancer cells lines, which reflect differential Aurora-
A protein expression of colorectal cancer tissue specimens
[18] [19]. With this, we provide the basis for continuing
functional biological studies addressing the question of how
differential Aurora-A affects quantitative and qualitative as-
pects of metaphase in mitotic colorectal cancer cells. All
image stacks were recorded with a Carl Zeiss microscope
equipped with an ApoTome and PlanApochromat 40x/1.3
oil objective at 1µm distance, resulting in a voxel size of
0.16µm × 0.16µm × 1µm. For further analysis the data was
rescaled to cubic voxels of size 0.5µm×0.5µm×0.5µm. This
was done for practical reasons, such as reducing the actual
window size of our basis functions resulting in convolutions
with smaller data and smaller features to store in memory. The
remaining information after rescaling was sufficient for solving
the problem at hand. However, one can easily adapt the method
to the real-world voxel size by the following modifications:
Our method uses a Gaussian window for windowing the
harmonic basis functions and for gathering the contribution of
all voters in the final collection step. In order to take the real-
world voxel size into account, the Gaussian in grid-coordinates
has to be anisotropically squeezed and stretched to obtain an
isotropic Gaussian in the real world coordinate system. In a
similar way the non-cubic voxel size has to be incorporated
during the computation of the spherical derivatives via the
finite difference scheme by dividing the individual partial
derivatives by the corresponding edge length of the voxel.

2) Reference Approaches: For steerable filters, we used a
similar detector to the one introduced in [2]. Since we do not
have templates that can be defined in an analytical way, like
a line or a surface as used by [2], we determined the detector
(template) empirically. We chose the parameters to best fit the
spindle centers of mitotic cells in shape and size. Since the
steerable filter approach can be interpreted as kind of local
voting procedure for the desired template, we did a further
collection step as for the harmonic filters. This means we
applied a Gaussian of size η, after the steerable filter algorithm.

For a better comparison with our results we used a second
steerable filter for roundish structures on the blue channel
and combined it with the previously described steerable filter
for the green channel. To be more precise, we computed the
gradient magnitude image of the blue channel and detected
sphere-like structures. The steerable filter approach itself is an
approach per channel, and by combining channels the response
is therefore multi-dimensional and has the dimensionality of
the number of channels (the filter response is the Cartesian
product of the filter responses of all channels). For decision
making one would usually use a classifier (e.g. a support vector
machine) which maps the multi-dimensional filter response
onto a binary output (decision). However for the problem at
hand, there is a way to combine the multi-dimensional filter
response to a one-dimensional, namely by using a logical AND
operation. Since the structure of a mitotic metaphase cell has
to be detected in both channels (green: spindle centers, blue:
roundish DAPI) and therefore has a high filter response at
the same positions in both channels, we combine them by
multiplication (logical AND). Although, the filter on the blue
channel only has very poor results, the combination is better
than only using the green channel.

Furthermore, we used the original (single channel) harmonic
filter approach with the same parameters for σ,η,γ and expan-
sion degree as for our proposed multi-channel filter. In fact,
we made a little modification, namely training the filter on
both, the green and the blue channel, which led to much better
classification results than using only one channel.

In addition we applied a standard 3D morphology-based
approach: On the blue nuclei channel this approach mainly
consists of a shading correction, a gray-valued ”fill-holes” and
an Otsu-Thresholding. In a post-processing step a watershed
on the inverted distance transform of the binary image was
used to cut clustered cell nuclei. On the green spindle channel
a thresholding relative to the maximum intensity and a con-
nected component labeling was performed. An analysis of the
overlapping regions of the two channels then finds the mitotic
cells (The full algorithm is described in the supplements).

3) Training (only harmonic filters): We determined the
expansion coefficients α of the voting function in a training
step. For all harmonic filters, training was conducted on two
image stacks containing 17 mitotic cells in metaphase. Since
the filter is linear in α we followed a linear least square fit
for determining optimal expansion coefficients. Therefore, we
provide for all training samples the desired output in form of
a label image with ones where we want the filters to have high
response, and otherwise zeros where no response is requested.
In figure 3, this is illustrated at a 2D example. In this example
we want to have our filter detecting the cell, which is marked
with a red point (see figure 3(a)), and not detecting other cells
in the image. Furthermore, we also want our filter to have a
peak exactly at the marked position. This would then result
in a label image as depicted in figure 3(b), in which a single
pixel is set to one at the center of the cell, and all other pixels
remaining zero. Afterward, the expansion coefficients arise by
solving the normal equations of the corresponding system of
linear equations.
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(a) (b)

Fig. 3. Illustration of how the label images were designed at a 2D
example. (a) shows the original image with the cell we want to detect. The
wanted cell/position is marked with a red point. (b) shows the corresponding
label image. In this case the label image contains a one a the pixel which
corresponds to red point in (a), and other pixels remain zero.

4) Results: Our test data set contained 14 image stacks
with an overall amount of 91 mitotic cells in metaphase. The
steerable filter SF was applied to the green channel only. In
addition, we used a version with a further collection step of
local voters for the steerable filter SFS. The steerable filter
which combines responses of both channels as mentioned in
section IV-A2 is denoted as SFMC.

The single-channel harmonic filter HF-Single was trained
on both channels. This means that after training the model also
incorporates the information and relation of both channels.
This is due to the fact that the evolving system of linear
equations for computing the filter parameters consists of
information of both channels.

The (scalar) multi-channel filters HFM, HFM-Asym using
the information of each single channel and the combination of
both. HFM uses the voting function as described in equation
(9), and HFM-Asym the one given by equation (11). In detail,
HFM computes the same products as HF-Single, plus all pos-
sible symmetric products. In addition to HFM, HFM-Asym
computes all possible antisymmetric products. The (vectorial)
multi-channel filter HFM-GVF is in principle the same filter
as HFM, but this filter uses the gradient vector flow field of
each channel as input data. We used a normalized version for
all harmonic filters except for the vectorial filter HFM-GVF.
The normalization was done as proposed in section III-A. This
means we normalized the first order descriptor of each channel
as described in equation (10), and neglected the zero order
descriptor (simply the intensities). For HFM-GVF we are
already invariant against additive intensity changes, because
the gradient vector flow field is based on the image gradient
(see section III-C). But we did no further normalization for
this type of filter. An overview of all filters can be found in
table I. The color or color combinations indicate the channels
and/or products they incorporate.
For η we chose half of the average cell diameter (4.5µm).
We achieved our best results with a local feature size of
σ = 1.5µm. Since the intensity values of our data were very
stable regarding outliers, we chose to scale the data onto the
interval [0, 1] (we did the same for the steerable filters) and set
gamma to the maximum value of the data (γ = 1) which was
found to very robust. Slight variations of γ did not influence
the result. When γ is selected much smaller (e.g. γ = 0.1),
the overall performance drops. For the expansion degree we

chose n = 4 for HFM and HFM-GVF. For HFM-Asym we
only calculated the expansion for n = 3. The results for n = 4
were worse than for n = 3. An explanation for this is, that we
compute a lot more products than for the other filters, and the
filter looses its ability to generalize and adapts too much to
the training data. In this context we also have to mention, that
our training data sets do not cover all the intra-class variance
of the mitotic cells occurring in our test data set, and one has
to be careful to avoid over-fitting in the training step. Figure
4 shows qualitative results of the filter responses of SF and
HFM on cell line data and should give an impression of the
computed filter responses. The presented results of SF should
also clarify why for SFS a further smoothing was performed
to gather nearby maxima to one single maximum.

For the evaluation we determined precision and recall. In
order to determine these measures we have to determine “num-
ber of hits (NHits)”, “number of false alarms (NFalseAlarms)”,
“number of misses (NMisses)” and calculate

precision =
NHits

NHits + NFalseAlarms
, recall =

NHits

NHits + NMisses
.

For each manually labeled cell we determine all local maxima
of the filter response in a certain small radius (3.5µm) around
the manual label position and mark them as possible detections
(see figure 5) for this cell. Then for each cell, we consider all
possible detections and mark only the one with the highest
filter response as possible hit for this cell and mark all others
as possible false alarm, as well as all other local maxima
which are not in a precision radius around a manual label. The
values for NHits, NMisses and NFalseAlarms are then determined by
setting a threshold for the filter response (decision boundary
for classification). This means NHits are possible hits with a
value higher than the threshold, NFalseAlarms are possible false
alarms with a value higher than the threshold, and NMisses are
all labels with no hit.

Fig. 5. An illustration of how we determined the values for precision and
recall. Of all possible detections (local maxima in the filter response), we
mark only the one with the highest filter response as possible hit. A possible
false alarm is local maxima not within the precision radius of a ground truth
label. After setting a threshold for the filter response we decide whether a
possible hit is counted as hit or not (has to be higher than the threshold), and
if a possible false alarm is counted as false alarm or not (has to be higher
than the threshold). If a ground truth label has no hit than it is counted as
miss.

The precision/recall graph for a varying threshold is de-
picted in fig. 6. All results were calculated as described above
with a radius of 3.5µm around the given label positions.

The morphology-based approach reaches good results on
the cell line data. A recall of 96.7% at a precision of 84.6%
was reached when the parameters were tuned for high recall
(see supplements for details).

B. Detection of a Specific Structure
For the task of mitosis detection as discussed above, it is

important to have a model which neglects higher frequencies
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(a) Original (b) SF (c) HFM

Fig. 4. Qualitative results of (b) a steerable and (c) a harmonic filter on (a) a cell line 3D test image of colorectal cancer. (a) depicts a maximum intensity
projection of the test image; (b) and (c) show the corresponding filter response.

TABLE I
OVERVIEW OF THE DIFFERENT FILTERS USED IN OUR EXPERIMENTS.

and is able to generalize. However, our approach can also
be used to distinguish objects which have a (well-defined)
specific structure from all other objects, e.g. a mitotic cell
in metaphase with exactly three blobs in the green channel
and a “ball-shaped” structure in the blue channel. Figure 7(a)
shows a training (upper) and a test (lower) data set, each of
them containing a mitotic cell with this specific structure.
For the training step, we labeled only the cell we want to
detect. The others are considered as background. The filter
response after training is depicted in figure 7(b) (upper). Figure
8 shows the first few detections sorted in descending order
(from left to right) by the filter response value. Following a
max-margin approach, we determined our class boundary for
decision making as value between the lowest positive detection
and the highest negative detection. In our case this results
in a value of 0.955 (see the first two detections from left in
figure 8) for decision making. The center of the red circle is
the location of the local maximum in the thresholded filter
response. Applying the so gained model to the test data set
(fig. 7(a) lower), we get the response depicted in figure 7(b)
(lower). After applying the threshold determined in the training
step to our test data set (decision making), we are able to
detect only the cell with exactly three blobs in the green and
a ball-shaped structure in the blue channel. The result is shown

Morphology

HF−Single(green,blue)

Fig. 6. Precision/Recall graph of the different filter algorithms for the
mitosis detection task on cell line data. A detection was counted as pos-
itive if it was in a radius of 3.5µm around the given label position.
Explanation of acronyms in the legend of the plot: SF(green) = “Steer-
able Filter green channel”; SFS(green) = “Steerable Filter green channel
with smoothing”; SFMC(green,blue) = “Steerable Filter green/blue chan-
nel with smoothing”; HF-Single(green,blue) = “Single-Channel Harmonic
Filter green/blue channel ”; HFM(green,blue,combined) = “Multi-Channel
Harmonic Filter green/blue channel and combined with symmetric products”;
HFM-GVF(green,blue,combined) = “Multi-Channel Harmonic Filter on the
Gradient Vector Flow field green/blue channel and combined with symmetric
products”; HFM-Asym(green,blue,combined) = “Multi-Channel Harmonic
Filter green/blue channel and combined with symmetric and antisymmetric
products”.

in figure 7(c) (lower), also with a circle around the detected
position. A detailed listing of the first few detections of the
test data set with the highest filter response values and the
corresponding classification results is depicted in figure 9.
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(a) Original (upper: training / lower: test) (b) Filter response (c) Detected positions after thresholding

Fig. 7. Results of the experiment where we wanted to detect cells with exactly three blobs in the green channel and a roundish structure in the blue channel.
The upper row shows the training data set, and the lower shows the test data set. (a) shows the original data set of training and test. (b) shows the corresponding
filter response after training and after classification respectively. (c) shows the locations of the cells marked with a red circle around the detected positions
after thresholding the filter response.

For gaining such a specificity, one has to expand to higher
bands (n in eqn. (6)), and as an implication of that compute
more products in the voting function (eqn. (9) and eqn. (11)).
In this case an expansion up to band n = 5 was sufficient to
detect only cells that have the predefined specific structure.

C. Experiments on Tissue

We did only few experiments on tissue samples and there-
fore we have only qualitative results. Figure 10(c) shows
the filter response of the multi-channel harmonic filter HFM
applied on a human tissue 3D test image (fig.10(a)). The filter
was trained in a previous step on a human tissue sample (the
training sample in this case was the lowermost data set shown
in fig. 11(a)). As comparison we applied SFS (fig.10(b)) to
the test image.

On the tissue data the morphology-based approach com-
pletely failed. The blue nuclei staining in tissue is largely
inhomogeneous and the nuclei are densely packed. So neither
by the Otsu-Method, nor by manual adjustment a suitable
threshold can be found that delivers homogenous regions for
the nuclei. Furthermore, the distance-transform based cutting
does not work satisfactorily on such densely packed nuclei.
In the green spindle channel it was also not possible to
segment the requested spindle centers from the highly cluttered
background by a threshold approach.

D. Experiments Concerning the Portability of the Model

Another issue we want to address is, whether it is possible
to use a model which was gained by training on cell lines
recorded for example by a fluorescence microscope and clas-
sify on cell lines recorded by a confocal laser microscope or
even classify cells in human tissue.

1) Training on Cell Lines and Classify in Tissue: For this
experiment, we used the same model as for the classification
of cell lines (see section IV-A) to classify cells in tissue. Figure
11 shows the results of this experiment. For the harmonic filter
HFM, which was trained on the raw image stacks of cell lines,
we can clearly see that it is not possible to detect the mitotic
cells. Although we have little peaks in the filter response (at
least for the lower two data sets in fig. 11(b)), a thresholding
of these responses would result in a very low precision. But if
we have a look at the filter responses we get from the HFM-
GVF (fig. 11(c)), we see that after using the gradient vector
flow as a preprocessing step the results look much better. After
thresholding, we are able to detect all cells except the lower
right of the first data set.
The explanation for the missing detection of the cell in the
topmost data set shown in figure 11(a) is due to the fact
that the cell is only partially recorded. Figure 12 shows
the corresponding cells of this data set in a shaded volume
rendering. One can see that the cell is located at the border of
the data set, and only half of the cell is recorded.
We can improve our results by expanding to higher bands

in training, as one can see in figure 11(d). We expanded one
band higher than in figure 11(c) from n = 4 to n = 5.

2) Changing the Microscope: In our last experiment, we
classified cell line data recorded with a confocal laser scanning
microscope. The data sets contained an overall amount of 12
mitotic cells. We used the model of HFM from the mitosis
detection experiment to classify all data sets. By setting the
threshold to end up with a precision of 100%, we were able
to detect 10 out of 12 mitotic cells. The two cells which were
not detected are depicted in the lower two rows of figure 13.
For the lowermost the explanation is quite easy. The cell is not
in metaphase anymore (a false label was assigned), but all our
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Label 1 0 0 0 0 0 0
Filter Response 1.13171 0.78362 0.756323 0.566023 0.412747 0.370805 0.359218

Fig. 8. Results after training: the first few detections are depicted sorted in descending order (from left to right) by the filter response value. The first row
shows a maximum intensity projection of the cropped region around the detection. The detection itself is marked as a red point. The “Label” row shows the
corresponding ground truth label which was used during training. In the last row the corresponding filter response value is listed for each detection. 1

Filter Response 1.35368 0.795895 0.549038 0.416676 0.342027 0.322867 0.316429
Decision 1 0 0 0 0 0 0

Fig. 9. Results after applying the filter to the test data set: the first few detections are depicted sorted in descending order (from left to right) by the filter
response value. The first row shows a maximum intensity projection of the cropped region around the detection. The detection itself is marked as a red point.
The “Filter Response” row lists the corresponding response value of the detection. The last row shows the class label after decision making. 1

(a) Original (b) SFS (c) HFM

Fig. 10. Qualitative results of (b) steerable and (c) harmonic filter on (a) a human tissue 3D test image of colorectal cancer. (a) depicts a maximum intensity
projection of the test image; (b) and (c) show the corresponding filter response.

training samples were. As one can see in the corresponding
filter response, there are two small peaks at each part of the
cell. The diameter of middle cell is larger (blue channel) than
by the other mitotic cells. As reference in the uppermost row,
a representative example for the other mitotic cells is depicted.

V. CONCLUSION

We have proposed a new approach for the design of SE(3)-
equivariant non-linear multi-channel image filters suitable for
generic feature/object detection. Our approach is not limited
to one specific task like the detection of mitoses. It has the
ability to be adapted to other problems due to its learning
scheme, and therefore many other applications are possible.

Furthermore, we have shown that our filter approach performs
very well on more challenging tasks like classification of tissue
cells or training a model with cell line data sets and classify
cells in tissue data sets.

In addition, we gave suggestions for creating SE(3)-
equivariant voting functions, but other voting functions are
possible, as long as they obey the equi-variance property. Our
experiments on cell line data have shown that our proposed
method leads to significantly better results than a steerable fil-
ter or a single-channel harmonic filter approach for the mitosis
detection task. On human tissue samples, the qualitative results
of our multi-channel approach outperformed the steerable filter
approach, as well as the morphology based approach which
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(a) Original (b) HFM (c) HFM-GVF (d) HFM-GVF (higher band)

Fig. 11. Results of the classification on tissue data sets with a previous gained model of cell line cells. (a) shows the original test images. (b) shows the
results of HFM. (c) shows the results of HFM-GVF. (d) shows also the results of HFM-GVF but with higher expansion in training.

Fig. 12. Shaded volume rendering of two mitotic cells of a tissue data set of
colorectal cancer. The upper left cell was fully recorded as the lower right cell
was only recorded half. The cutting plane can be clearly seen in the shaded
volume rendering.

failed completely on tissue.
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2009, pp. 131–140.



12

[6] J. Schulz, T. Schmidt, O. Ronneberger, H. Burkhardt, T. Pasternak,
A. Dovzhenko, and K. Palme, “Fast scalar and vectorial grayscale based
invariant features for 3d cell nuclei localization and classification,” in
Proceedings of the 28th Pattern Recognition Symposium of the German
Association for Pattern Recognition (DAGM 2006), Berlin, Germany.
LNCS, Springer, 2006, dAGM Award.

[7] B. Cyganek, “Object detection in multi-channel and multi-scale images
based on the structural tensor,” in Computer Analysis of Images and
Patterns, ser. Lecture Notes in Computer Science, vol. 3691/2005.
Springer Berlin / Heidelberg, 2005, pp. 570–578. [Online]. Available:
http://www.springerlink.com/content/6x764501cgw3unl4/

[8] P. A. Viola and M. J. Jones, “Robust real-time face detection,” Interna-
tional Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[9] M. Reisert and H. Burkhardt, “Spherical tensor calculus for
local adaptive filtering,” in Tensors in Image Processing
and Computer Vision, ser. Advances in Pattern Recognition,
S. Aja-Fernández, R. de Luis Garcı́a, D. Tao, and
X. Li, Eds. Springer, 2009, to appear. [Online]. Avail-
able: http://www.springer.com/computer/computer+imaging/book/978-
1-84882-298-6

[10] D. Ballard, “Generalizing the hough transform to detect arbitrary
shapes,” Pattern recognition, vol. 13, no. 2, pp. 111–122, 1981.

[11] P. Meraldi and E. T. Nigg, “The centrosome cycle,” FEBS Letters, vol.
521, no. 1-3, pp. 9–13, June 2002.

[12] M. Rose, Elementary Theory of Angular Momentum. Dover Publica-
tions, 1995.

[13] M. Tinkham, Group Theory in Quantum Mechanics. Dover Publica-
tions, 2004.

[14] M. Reisert, “Spherical derivatives for steerable filtering in 3d,” IIF-
LMB, Computer Science Department, University of Freiburg, Tech. Rep.
Internal Report 3/07, 2007.

[15] C. Xu and J. L. Prince, “Gradient vector flow: A new external force for
snakes,” in IEEE Proc. Conf. On, 1997, pp. 66–71.

[16] C. Xu and J. Prince, “Snakes, shapes, and gradient vector flow,” Image
Processing, IEEE Transactions on, vol. 7, no. 3, pp. 359–369, Mar 1998.

[17] O. Gautschi, J. Heighway, P. Mack, P. Purnell, P. J. Lara, and D. Gan-
dara, “Aurora kinases as anticancer drug targets,” Clin Cancer Res,
vol. 14, no. 5, pp. 1639–1648, March 2008.

[18] S. Lassmann, R. Weis, F. Makowiec, J. Roth, M. Danciu, U. Hopt,
and M. Werner, “Array cgh identifies distinct dna copy number
profiles of oncogenes and tumor suppressor genes in chromosomal-
and microsatellite-unstable sporadic colorectal carcinomas.” J Mol
Med, vol. 85, no. 3, pp. 293–304, Mar 2007. [Online]. Available:
http://dx.doi.org/10.1007/s00109-006-0126-5

[19] S. Lassmann, M. Danciu, M. Müller, R. Weis, F. Makowiec,
J. Schulte-Mönting, U. T. Hopt, and M. Werner, “Aurora a
is differentially expressed and regulated in chromosomal and
microsatellite instable sporadic colorectal cancers.” Mod Pathol,
vol. 22, no. 10, pp. 1385–1397, Oct 2009. [Online]. Available:
http://dx.doi.org/10.1038/modpathol.2009.111


