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Abstract. For every segmentation task, prior knowledge about the ob-
ject that shall be segmented has to be incorporated. This is typically
performed either automatically by using labeled data to train the used
algorithm, or by manual adaptation of the algorithm to the specific ap-
plication. For the segmentation of 3D data, the generation of training
sets is very tedious and time consuming, since in most cases, an expert
has to mark the object boundaries in all slices of the 3D volume. To avoid
this, we developed a new framework that combines unsupervised and su-
pervised learning. First, the possible edge appearances are grouped, such
that, in the second step, the expert only has to choose between relevant
and non-relevant clusters. This way, even objects with very different edge
appearances in different regions of the boundary can be segmented, while
the user interaction is limited to a very simple operation. In the presented
work, the chosen edge clusters are used to generate a filter for all rele-
vant edges. The filter response is used to generate an edge map based
on which an active surface segmentation is performed. The evaluation
on the segmentation of plant cells recorded with 3D confocal microscopy
yields convincing results.

1 Introduction

The segmentation of volumetric data is a difficult, some say ill-posed problem.
Depending on the specific application as well as on the imaging technique, the
desired object boundary can have very different appearances. Thus, for every
new problem setting, the used method needs to be adapted and special prior
knowledge about the application has to be included. Important questions can
be: What is the appearance of the objects boundary? What edges are we look-
ing for? What is the texture of the object? In the same dataset, e.g. of a plant
cell, the user could be looking for either outer (the cell wall) or inner borders
(plasmalemma), or intracellular compartments (as the nucleus or chloroplasts).
This information can either be acquired by learning from ground truth data (e.g.
in [1]), if sufficient labeled data is available, or learned from user interaction. In



2 M. Keuper et al.

most cases of 3D image analysis, the generation of ground truth segmentations
(needed as input for the learning step) is a very tedious work, because the expert
has to draw correct object boundaries in every single slice of the volume. This
is why we are presenting a semi-supervised, user-guided segmentation method.
In [2], a user-guided tool for the segmentation of medical data is presented.
There, the authors propose a twofold strategy: they create a graph description
of contour fragments with a tesselation of the image plane. The actual segmenta-
tion is formulated as a path optimization, where the user has to manually select
control points on the contour. In [3], a user guided level set segmentation is
presented, that allows the user, similarly to our method, to define the edge map
before starting a level set segmentation. The edge map is defined by a threshold
either on the data itself or on the gradients. Thus, the method works satisfyingly
only if the edge information is homogeneous over the whole dataset.

We are presenting a segmentation framework, that uses K-means clustering of
the original object edges in order to enable the user to choose between different
possible edge appearances in one sample dataset. This information is used to
design an edge filter for the entire database, that can handle different appear-
ances of an object’s boundary. Then, a first segmentation with active surfaces is
performed, using the force field derived from the edge filter response. The filter
can be refined by adding more training samples. The needed user interaction is
a very simple, quick and intuitive operation.

Since we are working on biological cell data, we have adapted the presented
framework to the segmentation of star-shaped objects. The evaluation was per-
formed on 3D confocal recordings of developing plant cells.

2 Framework

The general workflow of the presented method is displayed in figure 1. We assume
that in the given database of recorded objects, the object detection step is already
solved and for every object, the estimated position of the center c is given.
For spherical objects, this detection step can be performed using the Hough
transform as e.g. in [4]. Given this set of objects, the first step is to choose a
random sample dataset. In this dataset, we find candidate positions at which edge
profiles are extracted. These edge profiles are used as features and are grouped
into different clusters. The processing up to this step will be presented in detail
in 2.1. The result of the clustering is mapped into the original dataset: edges
belonging to the same cluster are displayed in the same color. The next and most
important step is the user interaction. From the displayed edge distributions
presented in a 3D slice viewer, the user can decide which edges lie on the desired
object contour. This information is used to design a filter for the specified edges,
which is applied to the entire database. The generation of the filter is described
in 2.2. The filter response is used to perform a parametric 3D active surface
segmentation using spherical harmonics. This step will be described in 2.3. The
user can now verify the resulting segmentations and, if it is not sufficient for
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all datasets, choose the next training sample. The edge appearances in this new
sample are used to refine the filter and accordingly, to refine the segmentation.

profiles are
clustered and
backprojected

raw data

user chooses
the relevant

cluster(s) D

recursively
refine

] .

<] user chooses L filter
additional 4 «—— ]
training — filter and generate filter
sample if segment for chosen
necessary all datasets cluster(s)

Fig. 1. Schematic overview over the whole workflow.

2.1 Profile Extraction and Grouping

In most applications, the user is interested in laying a boundary on certain
positions with high gradient magnitude, i.e. image edges. In positions where
the information is lacking, the user usually wants a smooth interpolation of the
boundary. As candidate positions at which the profiles will be extracted, we
thus choose points with high gradient magnitude. To avoid finding too many
candidates and to ensure that we are looking at the most important positions in
the sample, we perform a non maximum suppression in gradient direction and
take all the maxima in gradient magnitude as candidates. At these positions
grayvalue profiles are extracted in radial direction from the center. This makes
sense because we are assuming that the objects are star-shaped (i.e. there exists
a point ¢ such that each line segment connecting ¢ to the object’s boundary
lies completely within the shape). When looking at more general shapes with
spherical topology, one should extract profiles that are normal to the surface at
this position, instead. For the extraction of the profiles, two parameters can be
adjusted: the step size of the profile and its length. These have to be chosen such
that the desired edge appearance can be captured and resolved.

We want to use these profiles as features to describe the appearance at the
respective position. For microscopic data we are expecting strong variations in
the absolute grayvalues even within the same recording due to absorption. To
make our features robust against these variations, we use the derivative of the
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profile grayvalues, which is invariant against a graylevel offset. The continuous
profile derivative p is a function of the radial length [ € R and the position x.
With respect to the center ¢, p(x,1) is given by

o) = T (x| 1)

[x — ¢

where [ is the sample dataset. Thus, the discrete profile vector pyx is given by
px(i) = p(x, A+ (i — %)), where 0 < i < L € N is the position on the profile, L
is the profile length and A is the stepsize. In order to be also invariant against
multiplicative grayvalue changes, we normalize the features by the maximum
absolute value. (0)
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The Py are clustered using K-means clustering (see e.g. [5]). This basic clustering
method is suitable for our purpose, because it directly measures the similarity
between the profiles and discriminates as soon as the euclidean distance is too
large. The number of clusters scales with the number of extracted profiles. In
our implementation, there are on average 4000 profiles in one cluster.

2.2 User Specified Filtering

Once the profiles are grouped into different clusters C;, the user has to decide
which of the clusters are relevant for the actual application. Therefore, the data
must be presented such that it is easy to distinguish between relevant and non
relevant clusters. For every cluster, we generate a 3D overlay plot in which all
the points belonging to this cluster are marked in the original 3D sample data.
The user can view this overlay and decide, whether the marked points lie on
the desired boundary or not. This information is used to generate a Gaussian
probability density function (PDF) for every chosen cluster, with

ij (I—)) _ 1 —%(l_)—ﬂfcj)ngl(l_)—ch) (3)
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where Yg, is the covariance matrix of all profiles pc; in the chosen cluster C;
and Ke, the expected value. With these PDF's, the edge filter is already defined
and can be applied to all objects in the database. In the filtering step, we have
to extract the profile px at every position x in the dataset. For this profile, we
compute the Mahalanobis distance

T
Dus(e. ) = (B — i, ) 5 (B — i, ()
to every chosen cluster. The filter response is then given by

A(x) = min (Dy (Px, Cj)) - ()

J
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A has low values, where the distance to the closest cluster center is small, i.e.
where the profiles are similar to those belonging to the selected clusters. In order
to have high responses at these positions, we compute A = 1 — A/ max(A4). A is
used to generate the external force field for the parametric active surfaces.

2.3 Parametric Active Surfaces

Active surfaces are a common tool for the segmentation of 3D biological data.
Given a rough estimate of the objects position and size, i.e. its center ¢ and radius
r, an accurate fitting of the model to the underlying data can be performed.
Active surfaces classically have internal energies Fj., depending only on the
shape of the model itself, and are exposed to external energies Fext coming
from the underlying dataset. The total energy of an active surface s is thus
E(s) = Eint(s) + Eext(s). The active surface adaptation, i.e. the minimization
of E(s), leads to an Euler-Lagrange equation that can be considered as a force
balance system Finy + Fext = 0 (see [6]). It can be performed in the spatial
domain, using a suitable surface mesh as it was done e.g. in [7] or in the Spherical
Harmonic domain using parametrically deformable models based on (truncated)
spherical harmonic expansions

B l
F0.0)=>">" f"Y™(0.9), (6)
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where
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and the flm are the spherical harmonic coefficients with degree [ and order m,
B is the maximal bandwidth. The P/™ are the associated Legendre polynomials,
j is the imaginary number. Parametric active surfaces have e.g. been used in
[8] and have the advantage that they not only yield smooth surfaces but also a
parametric shape description.

Parameterization The first step of the active surface implementation is the
choice of an appropriate parameterization. For the segmentation of star-shaped
objects, an easy way of parameterizing a shape is describing it in spherical co-
ordinates (0, ¢,r) with the two polar variables 6 and ¢, where 0 < 6 < 7 and
0 < ¢ < 2rand r = s(0, ¢) (compare [9]). r is the Euclidean distance of the sur-
face from the center. For a so parameterized active surface s(6, ¢), we can directly
compute the corresponding shape descriptor as d = (83, §f17 39,81,...,8)T. For
a perfect sphere, s(0, ¢) = const. and §;" = 0 for all I,m # 0.

Alternatively, for the more general case of objects with spherical topology, [10]
proposes a suitable parameterization that assigns to every pair of angles a three-
tuple of coordinates: s(6, ¢) = (z(0, ¢),y(0, ¢),2(0,¢))T, thus laying a latitude-
longitude grid over the shape. This parameterization has been used e.g. in [8]
to perform a parametric deconvolution of 3D images. However, for our appli-
cation, the first and easier parameterization is sufficient because when dealing
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with cells, we always expect to find star-shaped objects. This easier parameter-
ization also has the advantage that no explicit internal energy is needed. The
regularization can be done implicitly by limiting the bandwidth of the spherical
harmonic expansion. This is more difficult when the second parameterization is
used: this parameterization tends to artificially introduce sharp edges even at
low bandwidth values (compare [8]).

External Forces The external forces Fqy are computed from the filter response
A. This filter response is usually well representing all positions, where the edges
are similar to those chosen by the user in the sample data. Due to the normal-
ization, we can even handle linear gray scale variations. On the other hand, the
normalization also causes some spot-like filter responses in the background (com-
pare fig. 3d). Accounting for the fact that we are searching for object surfaces,
i.e. locally plane-like structures, we can get rid of these wrong filter responses
simply by applying the steerable filter for plane detection described in [11]. The
filter response is used as edge map. On the gradients of the edge map, we com-
pute the gradient vector flow (GVF) [6] to get a smooth force field . Then we
can start with the surface adaptation.

Active Surface Evolution As we are initializing the active surface as a sphere,
at the beginning we have s(,¢) = const.. For every iteration, we project the
forces that act on the surface onto their radial components, and compute their
spherical harmonic expansion. The actual surface update can be performed in
spherical harmonic domain. To get the new surface positions in the spatial do-
main, we then need to perform an inverse spherical harmonic transform.

When the process is finished on the whole database, the user can again in-
teract. If the segmentation is not sufficient for all datasets, the user chooses a
new sample and runs through steps 2.1 and 2.2. The new appearance clusters are
added to the model and all wrongly segmented datasets of the previous iteration
are segmented using this new model.

3 Experiments

The evaluation was performed using three sets of 3D recordings of living tobacco
leaf protoplasts (cells lacking the cell wall). Plant protoplasts are a unique tool
to study e.g. the function of the plasma membrane, cellular reprogramming and
development [12]. An exact segmentation of the cells is needed for various ap-
plications, such as the description of the cell anatomy itself or of developmental
processes in a meaningful anatomical coordinate system.

3.1 Data

Samples containing one to three single cells were recorded by confocal laser scan-
ning microscopy (CLSM). Single cells were detected using a voter-based Hough
transform for spheres [4], which provides us with a good estimate of the object’s
center ¢ and the radius r, and cropped to separate volumes. The processed data
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Fig. 2. (a-c) Slices of the recorded channels: a) transmitted light. b) protein pattern
(Cyt). ¢) chloroplasts. (d-e) maximum intensity projections in z-direction (top) and in
y-direction (bottom) of the protein stainings: d) Cyt. e) ER. f) GA.

volumes have dimensions ranging from 159 x 118 x 71 voxels for small cells to
509 x 350 x 269 voxels for larger cells. The spatial resolution in xy-direction is
0.28 x 0.28um? while the resolution in z-direction is either 0.4 or 0.5um. The
used imaging technique imposes some special image properties, like artefacts
from the point spread function (PSF), noise that is generated at the different
stages of the signal chain and absorption resulting in signal intensity attenuation
in recording direction, i.e. z-direction (see bottom row in fig. 2). The cells have
been recorded on three successive days resulting in different cell shapes from
roundish over elongated to more complex deformed shapes. Three channels have
been recorded, a transmitted light channel and two confocal fluorescence chan-
nels, one showing the auto-fluorescence of the chloroplasts and another showing
the fluorescence of the tagged protein (see fig. 2a-c). Here we used the protein
pattern channel for segmentation. Three different protein patterns have been
recorded which all have a different appearance (see fig. 2d-f). While the cyto-
plasm (Cyt, 55 cells in the database) fills the space between the chloroplasts,
the endoplasmatic reticulum (ER, 46 cells) forms a mesh structure and the golgi
apparatus (GA, 86 cells) is organized in spot-like structures. All protein patterns
are located in the outer shell of the cell, i.e. between outer cell membrane and
inner vacuole membrane (cf. fig. 2b).

3.2 Segmentation

The whole segmentation process was performed on slightly smoothed data, we
applied a Gaussian smoothing with o = 0.28um. For the user specified boundary
filtering step, we had to specify certain parameters. The chosen profile length
is 8 at a stepsize of 0.56pm which is the double voxel size in xy-direction. The
steerable filter, which was used for filtering out spot-like filter responses in the
background, also has a parameter o5 that specifies the thickness of the planes
it searches for. We have set o to 0.56um. Finally, the active surfaces were
initialized with the estimated radius r from the detection step. The bandwidth
was limited to 16 bands. For the cells with stained Cyt, we have displayed the first
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Fig. 3. a) Sample with Cyt staining. b) The clustering result from the K-means cluster-
ing with six clusters. Inner and outer boundaries lie, as expected, in different clusters.
One can clearly see, that the absorption in z-direction leads to less candidates for edges
and thus less training examples for the edge appearance in the lower z-regions. c) The
two clusters colored in green were chosen as relevant. d) The filter response A. e) The
used edge map (after the application of the steerable filter). f) The segmentation result.

training sample and the results of the different steps of the presented framework
in fig. 3 in two orthogonal views.

3.3 Evaluation and Results

To evaluate our method, we applied the segmentation to all 187 cells in our
database. For each of the three patterns, one cell was randomly chosen as first
training cell. The segmentation results for all cells were visually inspected in a
3D slice viewer by two experts, who gave label 1 if the segmentation was correct,
and label 0 if not. For those cells that were not correctly segmented after the
first iteration, a second training step was performed: one of the cells with label 0
was chosen for each pattern as training sample. Altogether, we performed three
iterations. The results can be seen in table 1. Most of the cells were already
correctly segmented after the first iteration. Some results can be seen in fig. 4.
For further evaluation, we compared the segmentation carried out with our

lExperiment[# of cells[Iteration lllteration 2[Iteration 3‘

Cytoplasm 55 85.5% 94.6% 94.6%
Golgi 86 86.1% 88.4% 96.5%
ER 46 91.3% 95.7% 97.8%

Table 1. Results of our method after 1, 2 and 3 iterations.

method to the results that could be achieved with the ITK segmentation tool
ITK-SNAP (3], which is based on 3D geodesic active contours. The internal
forces are based on the gradient magnitude in the dataset. The preprocessing
as well as the active contour parameters have to be manually adjusted for each
dataset, which is why we performed this segmentation only for three datasets.
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Fig. 4. Segmentation results in three orthogonal views. We have displayed two exam-
ples for every stained pattern.

The ITK-SNAP preprocessig parameters are: the scale of the Gaussian blurring
o, which we set to 0.56um, the edge contrast s, which we set to 0.1 and the
edge mapping exponent, which we set to 1.6. For the geodesic active surfaces,
some parameters have to be adjusted as well. Here, we could not use the same
parameters for all three cells. We manually initialized the contours from outside,
because the internal structures of the cells made an initialization from inside
impossible. The balloon force was set to a value between —0.7 and —0.9, the
curvature force, that ranges from 0 (detailed) to 1 (spherical) was set to 0.8 and
the advection force, that pushes the boundary back as it tries to cross edges, was
set to 4.0. Additionally, the iteration has to be stopped manually. We needed
between 461 and 791 steps to get the results displayed in fig. 5. As it can be
seen, this segmentation tool can, despite all manual interaction, not handle the
heterogeneous boundary and the absorption in z-direction.

4 Conclusion

We have presented a semi-supervised segmentation method for volumetric data-
sets, that can handle heterogeneous edge appearances. In our framework, edge
models are learned from user input, while the user interaction is limited to very
simple and intuitive operations and no further low-level parameters have to be
adjusted. Although current 3D confocal recordings of single plant cells pose
numerous challenges, such as inhomogeneous object boundaries, strong gray-
value attenuations and noise, the segmentation of the datasets using the proposed
method resulted in a highly reliable identification of cell boundaries.
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Fig. 5. Segmentation results with ITK-SNAP for the same cells as in fig. 4, second

Trow.

5

Acknowledgments

This study was supported by the Excellence Initiative of the German Federal
and State Governments (EXC 294).

References

1.

2.

o

11.

12.

Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. on
PAMI 23/6 (2001) 681-685

Vehkomaki, T., Gerig, G., Szkely, G.: A user-guided tool for efficient segmentation
of medical image data. LNCS, Springer, vol. 1205 (1997) 685-694

Yushkevich, P.A., Piven, J., Hazlett, C., H., S., Smith, G., Ho, R., Ho, S., Gee, J.C.,
Gerig, G.: User-guided 3D active contour segmentation of anatomical structures:
Significantly improved efficiency and reliability. Neuroimage 31/3 (2006)

Schulz, J., Schmidt, T., Ronneberger, O., Burkhardt, H., Pasternak, T.,
Dovzhenko, A., Palme, K.: Fast scalar and vectorial grayscale based invariant
features for 3d cell nuclei localization and classification, LNCS, Springer, vol. 4174
(2006)

Xu, R., Wunsch, D.C.: Clustering. Wiley (2008)

Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow. IEEE Trans. Imag.
Proc. 7/3 (1998) 321-345

Keuper, M., Padeken, J., Heun, P., Burkhardt, H., Ronneberger, O.: A 3d active
surface model for the accurate segmentation of drosophila schneider cell nuclei and
nucleoli, LNCS, Springer, vol. 5875 (2009) 865-874

Khairy, K., Howard, J.: Spherical harmonics-based parametric deconvolution of
3d surface images using bending energy minimization. Medical Image Analysis 12
(2008) 217227

Ballard, D.H., Brown, C.M.: Computer vision. Prentice-Hall, NJ (1981)
Brechbiihler, C., Gerig, G., Kiibler, O.: Parametrization of closed surfaces for 3-d
shape description. Comput. Vis. Image Underst. 61(2) (1995) 154-170

Aguet, F., Jacob, M., Unser, M.: Three-dimensional feature detection using optimal
steerable filters. In: Proc. of the ICIP. (2005) 1158-61

Dovzhenko, A., Bergen, U., Koop, H.U.: Thin alginate layer (tal)-technique for
protoplast culture of tobacco leaf protoplasts: Shoot formation in less than two
weeks. Protoplasma 204 (1998) 114-118



