Digitale Bildverarbeitung Einheit 11 Klassifikation

Lehrauftrag SS 2007 Fachbereich M+I der FH-Offenburg

Dr. Bernard Haasdonk

Albert-Ludwigs-Universität Freiburg

Ziele der Einheit

- Verstehen, dass basierend auf einer Repräsentation von Objekten durch Merkmalsvektoren mächtige Operationen möglich sind, z.B. die Klassifikation
- Grundlegende Begriffe wie Klassifikator, Klassenlabel, Trainingsdaten, Klassifikationsgebiete oder Entscheidungsgrenze werden eingeführt
- Die wichtigsten einfachen Klassifikatortypen und einige Anwendungen werden präsentiert: Grenzen und Möglichkeiten
- Allgemein wird lediglich ein Eindruck des Gebiets der "Klassifikation" vermittelt, da dieses sehr schnell sehr technisch wird
- Darstellung ist mehr anschaulich, enthält (fast) keine Formeln, soll das Gebiet "schmackhaft" machen

2.8.2007

B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

Motivation

Ein wichtiger Verarbeitungsschritt ist die Erkennung von einem Gesamtobjekt, was der Mensch prima beherrscht.

Hund"

(atze"

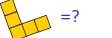
Maus"

- Die Frage der maschinellen Klassifikation wird auf dem Gebiet des Klassifikatorentwurfs behandelt
- Klassifikatorentwurf ist wie die Merkmalsextraktion ein wichtiges Teilgebiet der Mustererkennung
- Erkennung kann man als eine Art "Intelligente" Leistung oder Handlung sehen.
- Entsprechend machen auch die Felder der Künstlichen Intelligenz, des Maschinellen Lernens und des Datamining und Information Retrieval sich diese Techniken **ZUNUTZE**2.8.2007 B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

Grundbegriffe

- Klassifikationsproblem anschaulich:
 - Gegeben eine Menge von Objekten, die zu bekannten Kategorien gehören, den sogenannten Klassen
 - D.h. zu jedem Objekt ist eine Klassenzugehörigkeit, oder ein sogenanntes Label bekannt

Objekte: Buchstaben



Label:

Aufgabe: Finde einen Weg oder Verfahren, zukünftige Objekte ohne Label möglichst gut einer Klasse zuzuordnen.

- Dies heißt Klassifikation der neuen Objekte
- Die Zuordnungsvorschrift heißt Klassifikator

B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

Grundbegriffe

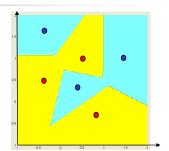
- Klassifikation im Merkmalsraum:
 - Die Wirkung eines Klassifikators läßt sich schön im Merkmalsraum darstellen
 - Der Klassifikator entscheidet für jedes Objekt, das heißt für jeden Merkmalsvektor eine Klasse.

Klassifikator: Klasse "L" falls Ecken<=7, sonst "S":

- Diese Entscheidungen kann man grafisch durch Klassengebiete und Entscheidungsgrenzen zusammenfassen
- 5": 0 0 6 8 12 Ecken

Merkmalsraum

Rot-Mittelwert


- Das Aufstellen der Klassifikationsvorschrift basiert oft auf die gegebenen Daten. Daher heißt dies auch Training des Klassifikators und die Daten heißen Trainingsdaten.
- Der Trainingsfehler ist ein Gütemaß eines Klassifikators ist (es gibt bessere!) ●="L" ●="S" ➡ Hier Trainingsfehler = 0

2.8.2007 B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

Nearest-Neighbour-Klassifikation

- Der Nächste-Nachbar (NN) Klassifikator
- Training: nicht notwendig einfach speichern der Trainingspunkte
- Klassifikation:
 - Der nächste Nachbar des zu klassifizierenden Punktes unter den Trainingspunkten wird gesucht
 - Dessen Klasse wird als Klassenzuordnung gewählt.
- Klassifikationsgebiete:
 - Sind begrenzt durch Mittelsenkrechten zwischen Trainingspunkten
- Vorteile:
 - Durch die nichtlineare Entscheidungsgrenze k\u00f6nnen sehr komplexe Probleme gel\u00f6st werden
 - Einfachheit: das Prinzip ist auf dieser einzelnen Folie erklärbar!
- Nachteile:
 - Leidet unter Überanpassung, sogenanntes "Overfitting", d.h. sogar Rausch-Punkte werden korrekt klassifiziert.
 - Klassifikationszeit und Speicheraufwand sind sehr hoch

2.8.2007 B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

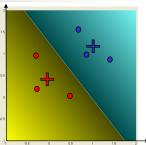
Nearest Mean Klassifikation

- Training:
 - Bestimmen der beiden Klassenmitten (Schwerpunkte)
- Klassifikation:
 - Abstand des neuen Punktes zu den Klassenmitten berechnen
 - Das Label der nächsten Klassenmitte wird als Klassenlabel gewählt.
- Klassifikationsgebiete
 - Sind Halbebenen, die durch die Mittelsenkrechte der beiden Klassenmitten getrennt sind
- Nachteil:
 - Ist ein linearer Klassifikator (bei einem Zweiklassenproblem):
 Komplizierte verschachtelte Probleme, können nicht gelöst werden.
- Vorteil:
 - Kein Overfitting
 - Sehr schnelle Klassifikation: Egal wieviele Trainingspunkte vorhanden sind, die Klassifikation besteht aus Berechnung von zwei Abständen.

2.8.2007

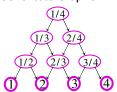
B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

Fortgeschrittene Klassifikator-Arten


- K-Nächste-Nachbar Klassifikator
 - Weiterentwiklung des NN-Klassifikators
- Polynomklassifikator [64]:
 - Statt einer linearen Grenzlinie gibt es quadratische Kurven: Kreise, Ellipsen, Hyperbeln
- Sehr wirkungsvoll in der Praxis:
 - Neuronale Netze [63], Support-Vektor-Maschinen [61, 62]
- Typisch für "fortgeschrittene" Klassifikatoren
 - Nichtlinearität: Voraussetzung für komplexe Probleme
 - Anpassbarkeit der Komplexität der Grenzlinie durch einfache Parameter, d.h. Abwägen von Overfitting und Underfitting

- Kombination von Klassifikatoren für verschiedene Zwecke:
 - Verbesserung der Klassifikation, Objekterkennung durch Teilerkennung, Multiklassen-Klassifikation

2.8.2007

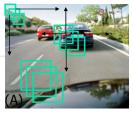

B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

Multiklassen-Klassifikation

- Bisher: Zwei Klassen erfordern einen sogenannten binären Klassifikator
- Bei einer Aufgabe mit mehr als zwei Klassen braucht man einen Multiklassen-Klassifikator
- Einige Ansätze funktionieren "natürlich" in diesem Fall, z.B. Nächste Nachbar
- Binäre Klassifikatoren können durch Kombination für ein Multiklassen-Problem verwendet werden

Gerichtete Graphen:

- Für jede Zweiklassen-Kombination wird ein binärer Klassifikator trainiert
- Diese werden in einem Graphen angeordnet
- Bei der Klassifikation wird ein Pfad im Graph abgelaufen
- Die unterste Ebene liefert die endgültige Klassenentscheidung


2.8.2007

B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

_

Objektdetektion

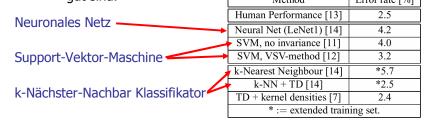
- Abgrenzung von Objektklassifikation
 - Bei Objektdetektion lautet die Aufgabe, dass ein bestimmter Objekttyp lokalisiert werden soll, z.B. Verkehrsschilder
- Es können mehrere Objekte in einem Bild vorhanden sein.
- Typische (teure) Vorgehensweise:
 - Es wird ein sehr schneller Klassifikator verwendet, der ein Objekt vom Hintergrund unterscheiden kann.
 - Ein Suchfenster wird in allen Positionen und in allen Größen über das Suchbild geschoben (A).
 - In jeder dieser zahlreichen überlappenden Positionen wird der Inhalt auf "Hintergrund" oder "Objekt" klassifiziert, Ergebnis ist (B).
 - Eventuelle überlappende erkannte Bereiche werden verschmolzen (C)

2.8.2007

B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

Anwendungen

- Webcam-Objekterkennung
 - Durch Subtraktion des Hintergrundes, Schwellwertbildung, Rausch-Filterung werden die Bilder segmentiert.
 - Jedes Segment wird als Merkmalsvektor repräsentiert, der aus zusammenfügen von rot, grün und blau-Histogramm entsteht (jeweils 8 Stufen)
 - Als Trainingsmenge werden Bilder von Objekten mit fester Kategorie gespeichert
 - Im Live-Bild wird der Nächste-Nachbar Klassifikator angewandt, um die beste Kategorie zu bestimmen (siehe Webseite für MATLAB-Programm-Code)



Maschinelle Schrifterkennung

- Benchmarkdatensatz der USPS-Ziffern:
 - 7191 Training-, 2007 Testbeispiele von handgeschriebenen Ziffern in Form von 16x16 Graubildern.
 - Beispiele: **6** 1 2 3 4 5 *(*
 - Wird verwendet um neue Klassifikatoren zu testen
 - Klassifikationsfehlerraten aus der Literatur [59]
 zeigen, dass die heute erwähnten Verfahren tatsächlich sehr gut sind.

 Method

 Error rate [%]

2.8.2007 B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

Maschinelle Schrifterkennung

- Blockschrift, Handschrift kann erkannt werden, ist bereits vielseitig im Einsatz: PDA mit Stifteingabe, Scanner mit Texterkennungsfunktion
- Beispiel dafür was (noch) nicht möglich ist: Verzerrte überlagerte Schrift
- Anwendung bei Internet Zugangskontrollen: Captchas
 - Der Benutzer bekommt auf einer Webseite ein Bild vorgesetzt, muss die enthaltene Wörter erkennen und in Textform eingeben
 - Ziel: Zugriff/Einloggen von automatisierten Skripten verhindern

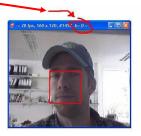
2.8.2007

B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

13

Maschinelle Gesichtsdetektion

- Beispiel dafür, was möglich ist:
- Gesichtsdetektion: Personenunspezifische Ortung von Gesichtern (im Gegensatz zu Gesichtserkennung, d.h. Identifikation von Individuen)
- Kommerzielle Anwendung:
 - Autofokus-Assistent in Kameras:


2.8.2007

B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

Maschinelle Gesichtsdetektion

- <u>Demo</u> basierend auf Support-Vektor-Maschinen (SVM)
 - Echtzeit, verschiedene Skalierungen, personenunabhängig, robust
 - Hardware-Voraussetzung: Windows-PC und Webcam
 - Einstellung der Entscheidungsschwelle durch Mausrad

 Download und weitere Informationen in [60] bzw. unter www.kyb.mpq.de/bs/people/kienzle/facedemo/facedemo.htm

2.8.2007

B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

15

Zusammenfassung

- Basierend auf der Merkmalsextraktion sind komplexere Operationen möglich, z.B. können Objekte klassifiziert werden
- Klassifikatoren unterteilen den Merkmalsraum in Gebiete, die den verschiedenen Klassen gehören. Die Klassifikationsgebiete sind durch eine Entscheidungsgrenze getrennt
- Klassifikatoren unterscheiden sich in verschiedenen Aspekten wie Linearität, Nichtlinearität, Aufwand für Training und Test, etc. Einige anschauliche Vertreter sind der nearest neighbour und der nearest mean Klassifikator
- Aus Zweiklassen-Klassifikatoren können durch Kombination größere Aufgaben gelöst werden, z.B. Multiklassen-Probleme oder Detektion von Objekten in Bildern
- Wichtige Anwendungsfelder für Klassifikatoren sind Zeichenerkennung, Objekterkennung, Gesichtsdetektion, etc.

2.8.2007

B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11

Referenzen

- Weiterführende Literatur
 - [53] R.O. Duda, P.E. hart und D.G. Stork: "Pattern Classification". Wiley Interscience, 2nd edition, 2001.
 [54] S. Theodoridis und K. Koutroumbas: "Pattern Recognition", Academic Press Inc.(London) Ltd, 2nd edition, 2003.
 [61] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,

 - Regularization, Optimization and Beyond. MIT Press, 2002.
 [63] C. Bishop. "Neural Networks for Pattern Recognition", Oxford University Press, 1996.
 - [62] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.

 - University Press, 2004.

 [64] J. Schürmann. "Pattern classification: a unified view of statistical and neural approaches", John Wiley & Sons, Inc, 1996.

 [60] W. Kienzle, G.H. Bakir, M.O. Franz and B. Schölkopf: "Face Detection Efficient and Rank Deficient". Advances in Neural Information Processing Systems 17, 673-680. MIT Press, 2005.
 - [56] H. Burkhardt und B. Haasdonk: "Mustererkennung WS 02/03, ein multimedialer Grundlagenkurs im Hauptstudium Informatik". Institut für Informatik, Universität Freiburg, 2003. (CDs werden verkauft), Online unter http://lmb.informatik.uni-freiburg.de/lectures/mustererkennung/WS0304/material.html
- Bildreferenzen

2.8.2007

- [58] Siemens VDO, http://www.siemensvdo.com/topics/adas/traffic-sign-recognition/ [59] Haasdonk, B., Keysers, D., "Tangent Distance Kernels for Support Vector Machines." ICPR 2002, International Conference on Pattern Recognition, 2002.

B. Haasdonk, Digitale Bildverarbeitung, FH Offenburg SS 2007, Einheit 11