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Abstract

The high potential of Superquadrics as modeling elements for image segmentation tasks has been

pointed out since years in the computer vision community. In this work we employ superquadrics

as modeling elements for multiple object segmentation in range images. Segmentation is executed

in two stages. Firstly, a hypothesis about the values of the segmentation parameters is generated.

Secondly, the hypothesis is refined locally. In both stages, object boundary and region information

are considered. Boundary information is derived via model-based edge detection in the input range

image. Hypothesis generation uses boundary information to isolate image regions which can be

accurately described by superquadrics. Within hypothesis refinement, a game-theoretic framework

is used to fuse the two information sources by associating an objective function to each informa-

tion source. Iterative optimization of the two objective functions in succession, outputs a precise

description of all image objects. We demonstrate experimentally, that this approach substantially

improves the most established method in superquadric segmentation, in terms of accuracy and

computational efficiency. We demonstrate the applicability of our segmentation framework in real

world applications by constructing a novel robotic system for automatic unloading of jumbled box-

like objects from platforms.

Index Terms

I.4.8.g range data, I.4.8.j shape, I.4.9 applications, I.4.7.e size and shape, I.4.6.e region growing,

partitioning, I.4.6.a edge and feature detection, I.4.8.l surface fitting.

I. I NTRODUCTION

Image segmentation is admittedly a difficult problem in machine vision, and despite the

promising techniques already proposed, e.g., in [1], [2], [3], [4], we are still far from solving

the problem in its generality. Considerable improvement on the output of the segmentation

task regarding all robustness, accuracy, and computational efficiency can be achieved when

prior knowledge related to various properties of the objects in the image is utilized. Such

knowledge is incorporated in the segmentation task using modeling entities, or simplymod-

els, able to accurately express the object properties. This work contributes to segmentation

of three- dimensional objects. A variety of three- dimensional entities have already been

proposed for their modeling. Among them, generalized cylinders [5], implicit (fourth degree)

polynomials [6], geons [7], [8], spherical harmonic and Fourier surfaces [9], [10], symmetry

seeking models [11], blob models [12], hyperquadrics [13], and others. In this work we

employ Superquadrics[14], [15], [16], [17] as modeling entities. The reasons for selecting
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the particular models are the following: Firstly, superquadrics comprise a small number of

parameters with intuitive meaning, which makes their handling straightforward. Secondly,

they have a large expressive power, so that they can model a big number of artificial and

natural objects. Thirdly, their expressiveness can be easily further enhanced by the addition of

global and local shape deformations. Fourthly, closed form expressions exist for the models,

as well as for special curves on their surface, which makes both rendering and usage fast

and direct. Finally, fast and robust methods for superquadric fitting to three dimensional data

have been so far developed.

This work describes a new framework for segmenting images that contain multiple piled

objects, which are modeled by superquadric entities. Input is a range image of the object

configuration. Usage of range imagery is advantageous in our case, where three- dimensional

objects are dealt with, because object depth information is incorporated in the image. Using

intensity images from multiple cameras is an alternative, but in this case three dimensional

object information must be reconstructed from intensity images, which is known to be

strenuous and of questionable robustness, mainly due to illumination variability and camera

calibration errors. Our strategy improves the state-of-the-art in this domain by an order of

magnitude in speed and reduces the model fitting error to a factor of about3. In the remainder

of this section we describe how superquadric models have been employed up to now for

performing segmentation, we give a rough description of our approach, and discuss the

contributions of this work.

A. Related work on superquadric segmentation

Existing approaches attempting superquadric segmentation can be roughly divided in those

thatdecouplemodel parameter estimation from image segmentation, and those that interweave

them.

In the context of the former category (e.g., [18], [19], [20], [21], [22], [23]), an initial

segmentation of the image is provided. Then, superquadrics are used for representing the

already segmented image regions. In other words, given the segmentation the superquadric

fitting problem is primarily addressed. The models are elaborated with global and local de-

formations. Hence, these methods demonstrate superior results as far as object representation

is concerned: They are able to represent complicated single- and multi- part objects with

remarkable accuracy. These approaches are referred to assegment- then- fitmethods.

Approaches belonging to the latter category, e.g, [24], [25], [26], [27], [28], [29], [16],
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[17], [30] address both the segmentation and model fitting problem. Due to the fact that

the model is as well used as a means for segmentation, the ability of these methods to

represent complicated objects is reduced: They employ undeformed superquadrics, or at the

most superquadrics enhanced with simple global deformations for object modeling. Their

advantage however, is robustness [17] p.105. These approaches are referred to assegment-

and- fit methods. They belong to the generic category of model-based image segmentation

methods usingprobabilistic techniques: Assuming that the parameters of all models in the

input image, as well as their number comprise the parameter set of the segmentation task, the

probabilistic techniques estimate the segmentation parameters by maximizing theirposterior

probability in the image. Note, that this is theoptimal way to perform segmentation, since

it guarantees minimization of theaverage riskof failing to select the actual segmentation

parameters [31].

Due to the difficulties in directly optimizing the posterior [32], the segmentation task is

usually broken down into a parameter initialization stage, and a local optimization stage. The

parameter initialization stage is regarded as generation of ahypothesisabout the values of the

segmentation parameters. The optimization stagerefinesthe hypothesis, by locally optimizing

the posterior distribution. This is the reason why this two-stage segmentation framework will

be hereinafter referred to as thehypothesis generation and refinementstrategy.

The state-of-the-art for superquadric segmentation, theRecover-And-Select(RAS) paradigm,

[33], [16], [17], belongs to the latter category, and adheres to the hypothesis generation

and refinement strategy: In the hypothesis generation stage the segmentation parameters

are initialized. The hypothesis refinement stage updates the parameters by means of local

optimization. More specifically, the hypothesis generation stage involves a grid-like placement

of small models in the image. The hypothesis-refinement stage updates the parameters of

the initialized models, so that they more accurately express the corresponding data on one

hand, and rejects models judged to inaccurately express the data despite parameter updating

on the other. RAS is more robust and efficient than other approaches. Its main drawback

however, is the misclassification of image points in the neighborhood of object boundaries,

because the segmentation process uses the depth values of sets of image pixels only, that is,

region information, for performing segmentation. Our framework outperforms RAS by fusing

boundaryand region information within segmentation.
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B. Our approach- contributions

Our approach comprises two processing stages: hypothesis generation and refinement. In

both stages, in addition to region information,object boundaryinformation is incorporated,

which is acquired via edge detection in the input range image. In the hypothesis generation

stage, boundary information is used as a guide to the initialization of the segmentation

parameters. In hypothesis refinement agame theoreticframework is employed to fuse the

information sources in a balanced way.

Our approach considerably outperforms the state-of-the-art in segmentation of superquadrics

in terms of speed and accuracy. In addition, we show how a game theoretic framework can

be used for segmenting multiple objects in range images. The key to success of our approach

lies in three aspects: (i) The consideration of model information from the very early steps

of all algorithm stages. (ii ) The adjustment of the data provided by each source in order

to explicitly represent domain specific information. (iii ) The adjustment of the model to

represent more accurately the data provided by each information source.

Superquadric segmentation could be applied in a variety of occasions. Representative ex-

amples are object categorization and recognition,3D image representation, image registration

and merging, next viewpoint planning guidance, image compression, and others [17]. In this

work, our segmentation framework is applied for robotic grasping. We developed a novel

robotic system, which automatically unloads piled box-like objects from platforms in real-

time. This system combines advantages like flexibility, computational efficiency, accuracy

and robustness, the combination of which cannot be found in existing applications.

C. Paper structure

The remainder of this article is organized as follows: In section II, we present some

background information related to our modeling elements, which is used by the subsequent

sections. In section III we focus on RAS, and point out its problems. In section IV we

present our segmentation approach in detail: We present the components of our approach:

object boundary information acquisition, the way in which a hypothesis about the values of the

segmentation parameters is obtained, and how the hypothesis is refined by fusing information

sources. In section V we evaluate our framework experimentally, and we demonstrate its

superiority through its quantitative comparison to the Recover-And-Select framework. In

section VI we prove the applicability of our framework in an application of high commercial
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interest, the robotic unloading of piled objects from platforms. Finally, section VII concludes

this work.

II. SUPERQUADRICS AND SOMEGEOMETRIC PROPERTIES

The term Superquadrics, was firstly used in [14] to define a family of shapes that includes

superellipsoids, superhyperboloidsof one sheet andsuperhyperboloidsof two sheets, as well

assupertoroids. In the computer vision literature however, the term superquadrics is used to

refer to superellipsoid objects. In this work, we will also use the term superquadrics as a

synonym for superellipsoids.

The explicit form of a superquadric model delivers three- dimensional points on the model

surface, and is given by the following equation:

Sp(η, ω) =




x(p; η, ω)

y(p; η, ω)

z(p; η, ω)




=




a1 cos(η)ε1 cos(ω)ε2

a2 cos(η)ε1 sin(ω)ε2

a3 sin(η)ε1




(1)

In the preceding equation,η andω lie in the range[−π/2, π/2] and [−π, π] respectively.

The vectorp = (a1, a2, a3, ε1, ε2), incorporates the superquadric parameters. More specif-

ically, ε1, ε2 control the shape of the model, anda1, a2, a3 express the size of the model

along itsX,Y,Z axes of the model coordinate system respectively. Fig. 1(a) shows various

superquadric models which are rendered using (1). Each of these models corresponds to a

different value of the shape parameters, within the range[0.1, 2].

The implicit superquadric equation can be derived by the explicit form of (1), by simple

manipulations of the latter:
((

x

a1

) 2
ε2

+
(

y

a2

) 2
ε2

) ε2
ε1

+
(

z

a3

) 2
ε1

= 1 (2)

In order to be able to express the model translation and rotation, six additional pose

parameters are incorporated in the parameter vector, which now looks like:

p = (a1, a2, a3, ε1, ε2, px, py, pz, φ, θ, ψ) (3)

We adopt the standard approach of [15] to fit a model to the set of three- dimensional points

Xi, i = 1 . . . N , according to which the functionLr, shown in (4), which is proportional to

the likelihood of the data given the parameter vector and expresses the sum of squares of

algebraic distances of the points to the model, is maximized:
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Fig. 1. Properties of Superquadric models

Lr(p) = −
n∑

i=1

(
√

a1a2a3(F
ε1(p;Xi)− 1))

2
, (4)

where the functionF , equals the left part of (2).

In this work we need to model the boundary of a Superquadric model. The ideal modeling

element for this purpose is the superquadric RIM, which is defined as the three- dimensional

curve on the model surface, that separates its visible from its invisible part. Figure 1(b) shows

a model and its RIM for a particular viewpoint. A detailed discussion about the definition of

the RIM and its properties is presented in [34]. In general, given that theZ axis (or depth

axis) of the sensor coordinate system is the viewing point, three- dimensional points on the

RIM of the model with parametersp are derived as follows:

Rp(ω) = Sp(η(ω), ω), (5)

whereSp are points on the superquadric surface obtained via (2),ω ranges in[−π, π], and

η(ω) amounts to:

η(ω) = arctan

{
−a3

ay

(
ny

a1

cos(ω)2−ε2 +
oz

a2

sin(ω)2−ε2

) 1
2−ε1

}
(6)

Note, that a uniform (equal-distance) sampling ofω in the range[−π, π] does not produce

uniformly sampled points along the RIM of a model. As we will see in section IV-C.1, uniform

point sampling along the RIM is required for accurate boundary recovery. Our method for
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RIM sampling is based on [35]: equal- distance sampling of points on the RIM is produced

using spherical products of proper equal-distance sampled superellipses.

III. R ECOVER-AND-SELECT FORSUPERQUADRICSEGMENTATION

The Recover-And-Select (RAS) paradigm performs the segmentation task in two stages:

Firstly a rough approximation, a hypothesis, about the number and the parameters of the

models in the input range image is generated. Secondly, the hypothesis is locally refined

using image information.

A. Hypothesis generation

This involves an initial placement of the models to the image, by generating a grid-

like subdivision of the input range image in numerous uniform rectangular windows each

containing a few range points. The set of points contained in each window is assumed to be a

regionof points corresponding to a superquadric model. Subsequently, the model parameters

are determined by fitting a model to each point region. Models with large fitting errors

probably cross object boundaries, and thus are rejected from further consideration. The term

seedsis used to refer to the remaining models, to express both their limited expressive ability,

as well as their small size. Hence, the termseed generationor seed placementalternatively

stands for the hypothesis generation stage. The fig. 2(c) depicts seed placement using RAS

given the range image of fig.2(b), which was acquired by a laser sensor from the object

configuration of fig. 2(a).

B. Hypothesis refinement

The hypothesis refinement stage comprises1) seed region growing and2) model selection.

1) Region growing:Due to model rejection by the filtering step of the seed generation

procedure, image points exist which are not assigned to models. The iterative region growing

[36] aims to classify these points to existing regions and to refine the model parameters so that

the newly classified points are taken into consideration. Within the region growing process,

model parameter estimation through fitting is interwoven with image point classification to

models, and therefore in [16], [17] it is referred to as theclassify-and-fitprocess.
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(a) Intensity image (b) Range image with object number-

ing

(c) Grid-like seed placement

(d) Output of RAS (e) Edge image (f) Edge map

(g) Image regions corresponding to

the generated seeds, superimposed on

the edge map

(h) Generated seeds, superimposed to

the range image

(i) Seed boundaries on the edge map

(j) Recovered boundaries on the edge

map

(k) Recovered models on the range

image

Fig. 2. A configuration of piled bags used for qualitatively comparing our approach with RAS
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2) Model selection:This process selects the models which represent the underlying points

accurately. The initialization of many seeds and their independent growing, may cause rep-

resentation of points by multiple models, which is manifested as model overlapping in the

image. Model selection rejects redundant models by applying theminimum description length

(MDL) criterion: The model configuration in which the fewest possible models describe the

largest number of image points with low deviation is preferred. The criterion is realized via

a greedy optimization algorithm, which as such is fast but may deliver sub-optimal solutions.

The hypothesis refinement is performed by iteratively invoking1) followed by 2), until

a satisfactory data representation is achieved. Invoking model selection after all seeds are

fully grown (recover-then-selectapproach [17]), is inefficient, owing to the big number

of initialized models. Computational costs are reduced byinterweaving 1)and 2). Early

invocation of model selection may lead to unreliable data representations and therefore in

[17], computational efficiency and reliability are balanced by interrupting the region growing

procedure when at least one growing model reaches twice its original size or when there are

no models left to grow.

C. Discussion

The RAS paradigm is the state-of-the-art in multiple superquadric segmentation. The itera-

tive region growing process is robust against gross measurement errors, but points belonging

to neighboring objects are often erroneously included in the model’s region: Due to its

inherent locality the region growing process has no mechanism to detect that the model has

reached the boundaries of the object it represents (over-growing). This problem isimplicitly

addressed within RAS, by placing numerous seeds in the image and by invoking the model

selection procedure after region growing, to get rid of the seeds with large deviation from

the data, which probably cross object boundaries.

We have extensively evaluated the recover-and-select paradigm and we present here some

qualitative results by applying the framework to the range image of fig. 2(b). Fig. 2(d) shows

the final result. The region over-growing problem persists, despite the invocations of the

model selection process: The recovered models corresponding to the objectsA, E in fig. 2(b)

are overgrown: The greedy model selection process does not possess capability tooptimally

arrange the models in a piecewise description. Hence, in many cases either overgrown models

are favored, or an overgrown model describing a superset of a data set is selected in addition

to the model optimally describing the particular data set, as for the objectC.
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The execution time required for running the paradigm, was about15 minutes in a Pentium

4 PC, with 1.6 Ghz: Initialization of numerous seeds as a means for addressing the region

over-growing problem, in combination with the frequent invocations of the model selection

process, renders the framework inappropriate for real time implementation.

To conclude, model overgrowing is the primary cause of problems of the RAS strategy.

Our approachexplicitly addresses region over-growing by incorporating object boundary

information in the segmentation process.

IV. I NFORMATION FUSION FORRECOVERINGMULTIPLE SUPERQUADRICS

The mechanism guiding the segmentation task in RAS is the region-growing process,

which is perhaps the most famous representative of the so calledregion-basedapproaches

for image segmentation. Fusion of region- andboundary based approachesare known to

deliver superior segmentation results ( [37] ch.5 section 2).

While region-based approaches use the input range imageI directly for deriving region

information, boundary- based approaches use a boundary imageIb for deriving object bound-

ary information. This is usually obtained by applying an edge detector. The problem that

arises now is how to integrate the information residing in bothI, andIb in a segmentation

framework. In general, there is a different set of segmentation parameters related to each

of the information sources. Givenpr, andpb the segmentation parameters related toI and

Ib respectively, segmentation of each source separately within a probabilistic framework for

image segmentation, involves the computation of the likelihoodsP (I|pr), and P (Ib|pb)

[37]. Equal consideration of both information sources requires the computation of thejoint

likelihoodP (I, Ib|pr,pb). Since the parameter spaces related to each source are not related in

general, this is not an easy task. For this reason the majority of methods attempting to integrate

region- and boundary- based information, ( [2], [4], [38]), usually form a giant objective

function by constructing aweighted sumof the two likelihood functions. Subsequently,

they simultaneously estimate both region- and boundary- related parameters by maximizing

this function. In this way computation of the joint likelihood is avoided. Such techniques,

namedsingle objectivetechniques, have the problem of inadequate analytic and computational

tractability. Furthermore, they are of questionable robustness as shown in [37], [39], [40],

[41].

The flow diagram of our approach is illustrated in Fig. 3, and comprises two stages:

Firstly, edge detection is performed in the input range imageI, by means of the scan line
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Fig. 3. Our approach for multiple superquadric recovery

approximation technique [42]. Output of the edge detection is the edge mapIb. Secondly,

the main part of the segmentation is initiated, bounded by the dashed box in fig. 3. BothI

and Ib are employed by this stage. Output of the hypothesis generation process is a set of

superquadric models in the range image. IfP denotes a vector containing the parameters of

all these models, the hypothesis refinement stage updatesP to obtain the set of modelsP∗,

the final output of our segmentation process.

In hypothesis refinement, boundary information is integrated in a way inspired by the

game theoretic framework, of [40], which is here adapted to processing range images:

Parameter refinement is realized by means of iterative invocations of two independent para-

metric modules in succession. Each module is related to an information source. A benefit

function is associated to each module: The region module, fits superquadric models to image

regions assumed they belong to unique objects, and associates range points with objects. The

boundary module fits the RIM of the superquadric models to the edge points in the boundary

image. Hence, each module acts on its own information domain, or in other words, dealing

with boundary- related information isdecoupledfrom region information and vice versa.

Information integration is achieved by simply letting each module pass its corresponding

parameters to the other, after its execution. The hypothesis refinement process ends when no

significant change in the model parameters can be performed.

Performing integration of region- and boundary-based information within a game-theoretic

framework, shows a variety of advantages: Firstly, both information sources are equally
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taken into consideration by the segmentation process, without computing the joint likelihood

function. Secondly, the benefit of adopting a decoupled scheme for information integration

results to computational efficiency, since each module deals with the subset of the entire

parameter set, which is related to the corresponding information domain. Finally, robustness

is achieved even when the quality of one of the sources is not high, since each module tends

to pull the other away from noise and local maxima on one hand, while pushing itself toward

the global optimum on the other.

Our approach is described in detail in the paragraphs that follow: We firstly show how

boundary detection is performed. Then, we discuss the hypothesis generation and refinement

stages. Finally, we point out the innovations of our strategy.

A. Edge detection

We adopt a model-based approach for edge detection in the input range images, which is

inspired by [42]. Edge detection is performed via approximation of the rows and the columns

of the image with 2D geometric parametric models. In its original form, the technique involves

the following steps: Firstly, an input scan line is split into smaller segments, which can be

approximated by the modeling elements with a low deviation. A top-down recursive procedure

is employed for this purpose [43]. Candidate edge points are the end points of the neighboring

segments produced by the splitting process. The parameters of two neighboring segments,

are used to compute theedge strengthof each candidate edge point, which is a proportional

to the probability of a candidate edge point being a real edge point. Since two kinds of

edges can be found in range images,jump edges (discontinuities in depth) andcreaseedges

(discontinuities in normals), two strength values are associated to each candidate edge point.

The real edge points are the candidates for which one of the two strength values exceeds a

user- defined threshold.

We have selected this edge detection approach because it exhibits many advantages: Com-

putational efficiency, which is the outcome of the fast scan line splitting process. Robustness

and accuracy in the localization of the edge points, which is the outcome of incorporating

global shape information in the process: The classification of a range point as edge point, does

not depend on local information, as is the case for the mainstream edge detection approaches

for both intensity and range images, but on the parameters of neighboring approximating

models, the estimation of which is influenced by a big number of range points. We introduced

some additional operations, to further increase the robustness of [42]: a model- based segment-
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merging step after the splitting operation, as well as a procedure for fine localization of the

edge points. In [44], we show how these operation considerably improve the output of [42]

in our data set. Our detector employs the two-dimensional analog of the superquadrics, the

superellipses, for approximating the scan-lines of the image for our purposes.

The output of the edge detection operation for the range image of fig. 2(b) is theedge

image, which comprises three- dimensional edge points. This image, superimposed on the

range image fig.2(b), is illustrated in fig. 2(e). Fig. 2(f) illustrates theedge mapIb. The

edge map is a two- dimensional binary image, a pixel’s valuex = (x, y) of which is 1, that

is Ib(x) = 1, only if the corresponding range pointI(x) = (x, y, z) is an edge point. In

short, the edge map incorporates the orthogonal projections of the boundaries of the objects’

visible surfaces on the image plane. Thus, the difference in the information contained in the

edge image and the edge map is that the former incorporates thedepthof the edge points

in addition. Since depth information can be derived by the range image, depth information

in the edge image is redundant. Therefore, we employ the edge map instead of the edge

image for deriving boundary information. In this way we end up dealing with two- instead

of tree- dimensional boundary information, which, as we will see, considerably increases the

computational efficiency of the subsequent boundary related operations, without hampering

their robustness.

B. Hypothesis generation

Target of the hypothesis generation (or seed placement) stage is an initial estimation of the

segmentation parameters. The most widespread strategies for seed placement [45], [46], [47],

[48] determine the sought parameters by model- fitting to image regions corresponding to the

objects’ interior. For determining these regions the edge map is employed. More specifically,

a distance transformis applied to the edge map. The contours in the transformed edge map,

along which the distance to the objects’ edges has a constant value (iso-distance contours),

enclose image areas in the interior of the objects by definition. The main problem that these

approaches face is how to robustly determine the appropriate distance value. This is not easy

to do since the objects have different dimensions, and the edge map is usually noisy.

Our approach for seed placement is inspired by [49], where the regions inside the objects

are determined byadaptive closureof the edge map. The strategy of [49], is based on the

observation that any contour in the edge map can be closed bydilating the edge map. Contour
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closure is performed iteratively, and involves connected component labeling, model fitting

to the connected regions, and morphologicaldilation of the regions’ boundaries, for which

a large fitting error occurred. In [37], we show that using this approach the boundary of

each seed region corresponds to the iso-distance contour of the minimum distance from the

boundaries in the edge map, whose interior can be satisfactorily modeled by a superquadric

entity. Instead of using an iso-distance contour threshold for determining seed regions, we

use a threshold for the maximum acceptable fitting error, which is easier to define since it

depends on sensor noise and not on the object dimensions in the image.

The seeds created by the application of the adaptive contour closure approach in the edge

map of fig. 2(f) are presented in fig. 2(g), 2(h). More specifically, fig. 2(g), shows the region

map of the seeds. Fig. 2(h) shows the superquadrics fitted to the range points corresponding

to each region in the map. A number of conclusions can be drawn by inspecting these images:

Each region corresponds to a different object, and the parameters of the initialized models are

sufficiently close to the actual object parameters. Furthermore, the boundaries of the regions

are very close to the actual object contours and their shape is similar to the latter. Our

seed placement procedure manages to produce an accurate initialization of the segmentation

parameters for the particular image.

C. Hypothesis refinement

The hypothesis refinement stage consists of a classify-and-fit process which performs local

refinement of model parameters, and of a post- processing step, which rejects models that

describe the data inaccurately.

Inputs of the classify-and-fit process are the seed parameter vectorp related to a seed,

as well as the region of points associated to the seed. The seed corresponds to an object in

the image, which will be hereinafter referred to as theobject of interestof the process. The

goal of the process is to accurately segment the object of interest. This is done iteratively as

shown in the flow diagram of fig.4(a).

The process, firstly initializes a2D image, which partly incorporates region information

by identifying pixels corresponding to the object of interest. This image, will be hereinafter

referred to as theregion imageand will be denoted asIr. Its dimensions are equal to those

of the range image. A pixel of this image has the value1, if the corresponding pixel of

the range image belongs to the object of interest. Initially, the pixels ofIr set to 1, are

the pixels comprising the seed’s region. Subsequently, the core of the process starts. Each
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(a) The classify-and-fit process for hypothesis re-

finement

(b) The invocation of the boundary and the region

module in thekth iteration

Fig. 4. The iterative hypothesis refinement process, where (b) analyses the dashed process in (a)

iteration, involves a sequential invocation of two modules: (a) Theboundary moduleemploys

the superquadric RIM to model object boundary information. This is allowable, since object

boundaries separate the visible from the invisible part of the object, just like the RIM does to

the model describing the object, given a particular viewpoint. The module updates the seed

parameter vector by fitting the RIM of the model to the edge mapIb. (b) The region module

updates the superquadric parameters by fitting the model to the range imageI. In addition,

it updates the region imageIr. Each module recovers the model parameters byinterweaving

point classification with model parameter estimation. In other words, each of the modules

acts as the standard classify-and-fit process on its own information domain.

The process stops after itskth iteration, when two conditions hold simultaneously: The

difference between the newly obtained value of the parameter vectorpk+1 to the vector

obtained by the previous iterationpk is smaller than a user- defined thresholdε, and the new

pixels that the current iteration assigns to the object of interest, or the difference in number

of pixels set to1 between the new region imageIrk+1 and the one obtained by the previous

iterationIrk is smaller than a user defined thresholdν. In this case, the current model vector
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is delivered as the outputp∗ of the process.

After parameter refinement of all the models in the image has been performed, a post-

processing step is invoked to reject objects with large fitting errors to the models, that is

objects which can not be satisfactory modeled by superquadric entities. In the following

paragraphs we come to a detailed description of the two modules of the classify-and-fit

process.

1) Boundary module: Boundary finding influenced by region information:The boundary

module refines the model parameter vector of the object of interest, using two- dimensional

boundary information. Assume that the boundary module is about to be invoked for thekth

time. Inputs of the module are the edge mapIb, and the parameter vectorpk, which is output

of the (k− 1)th invocation of the module, as well as the region imageIrk. Output of thekth

invocation of the module is the model parameter vectorpk+ (see fig. 4(b)).

The refinement ofp is implemented via maximization of its posterior probability, given

both Ib, andIr. The way this is implemented is inspired by [50], [10]. This is described as:

pk+ = arg max
pk

L(pk, Ib, Irk)

= arg max
pk

[µ1Lb(pk, Ib) + µ2Lr(pk, Irk)] , (7)

where the user defined constantsµ1, andµ2 express the relative significance of the terms

Lb, andLr respectively.

To better illustrate the following, we use the termeRIM to refer to the orthogonal

projection of the RIM of the evolving model, to the image plane. To clarify, assuming

(x, y, z) a three- dimensional point on the RIM obtained by (5), (6),(x, y) will be the

corresponding point of the eRIM on the image plane. Now the termLb of the benefit function

L, is proportional to the log-likelihood of the edge map: Maximization ofLb results into fitting

the model’s eRIM to the edge pixels of the object of interest in the edge map.Lb amounts

to:

Lb(pk, Ib) = log P (Ib|pk) ∝ −
M∑

i=1

Ibd(x(pk; ωi), y(pk; ωi))
2 (8)

In the preceding expression,Ibd is the Euclidean distance-transformed image of the edge

map,x, y the image plane coordinates ofM three- dimensional points(x, y, z) on the RIM

of the model being refined, andωi = 2iπ
M

, i = 0 . . .M − 1. Note that the need for a uniform

RIM sampling (discussed in section II) emerges here: The more uniform the sampling is, the
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more accurately the likelihood function will express the similarity of the model’s eRIM to

the object’s eRIM in the edge map, and the more accurate the fitting operation will be. The

reader is referred to supplementary material2 for details on the fitting operation.

We now denote asrRIM the boundary of the region in the region imageIrk. If so, we

define the second termLr of the benefit functionL to be proportional to the log-likelihood of

the region image. This is maximized when fitting the model’s eRIM to rRIM. Its incorporation

in the benefit function integrates region information within the boundary module. In short:

Lr(pk, Irk) = log P (Irk|pk) ∝ −
M∑

i=1

Irkbd(x(pk; ωi), y(pk; ωi))
2 (9)

In the preceding equation,Irkbd is the Euclidean distance-transformed image of the binary

image containing the rRIM.

2) Region module: Region growing influenced by boundary information:The region mod-

ule refines the model parameter vector corresponding to the object of interest, using three-

dimensional range information. Thekth invocation of the region module, succeeds thekth

invocation of the boundary module. At this time point, inputs of the module are the range

imageI, the region imageIrk obtained in the previous iteration, and the output of thekth

invocation of the boundary module, that is the vectorpk+. Outputs of the module are the

pk+1, andIrk+1 (see fig. 4(b)).

The region module is realized by means of the standard region growing process [36]. It

performs parameter refinement by the iterative succession of a model fitting step, followed by

a pixel classification step. In the model- fitting step it is assumed that the image coordinates

of range points corresponding to the object of interest, will be enclosed by the eRIM of

the evolving model. In this way boundary information is integrated in the region module. If

xb the set of the enclosed pixels, then this step fits the model to all 3D points with image

coordinates inxb. This is equivalent to an image likelihood maximization and is expressed

by the following expression:

pk+1 = arg max
pk+

[log P (I|pk+)] (10)

= arg min
pk+

∑
x∈xb

√
a1a2a3(F

ε1(pk+; I(x))− 1)2 (11)

The superquadric model with parameterspk+1 generated by the fitting step of the region

module, and the region imageIrk are used to generate the updated region imageIrk+1

within the context of the classification step of the region module. More specifically, the pixel

classification step examines the set of pixels in the neighborhood of the rRIM. The pixels of
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this set which have a small radial euclidean distance from the modelpk+1, are added in the

region ofIrk to obtainIrk+1.

D. Discussion

The game- theoretic framework for information integration was proposed in [51], and ap-

plied to segmentation of intensity images in [40], containing a couple of non occluded objects.

The contribution of the approach presented here lies in the application of the framework for

range images containing multiple piled objects, usingthree-dimensionalentities as models.

This advances significantly the state-of-the-art, as we will show in section V.

More specifically, the novelty of our system lies in the exploitation of decoupling in model

recovery, offered by the game-theoretic framework: (i) Although target of both domains,

boundary and region, involved in the recovery is the estimation of the model’s parameter

vector, the model is used only in the region domain in data representation. Using the same

model in boundary domain, would complicate the fitting process since the constraint that data

correspond to model boundaries should be encoded. Using a curve on the model’s surface (the

model’s RIM) for fitting in boundary domain is advantageous since it corresponds exactly to

the boundary data, and depends exactly on the same parameters as the superquadric model.

(ii ) Since depth information is employed in the region domain for model recovery, it does

not have again to be taken into consideration in the boundary domain calculations. For this

reason fitting in the boundary domain is performed in two dimensions, which considerably

accelerates the computational efficiency of all operations without accuracy losses. (iii ) In

cases where additional knowledge about the shape of the target objects is available, (e.g.,

when the objects are box-like), decoupled handling of boundary and region domains leads into

a decomposition in the parameter recovery. This increases the efficiency of our strategy even

more. The principle was applied in our robotic system for object unloading with excellent

results (see section VI).

V. EXPERIMENTS

We present three sets of experiments to demonstrate the efficiency of our approach. We

used images acquired from three different range sensors for this purpose. The goal of the

first set is to point out the problems of using region and boundary information sources for

object segmentation separately, and to show the superiority of the result when fusing the two

information sources. We used a commercial range finder, the SICK LMS-200 [52], which is
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Recovery results under various fusion modes, as illustrated in section V-A. 5(a), 5(b): seed on 3D and image

plane. 5(c), 5(d): region- based recovery result. 5(e), 5(f): boundary- based recovery result. 5(g), 5(h): Result with fusion

of region-boundary information sources.

a laser radar based on the time-of-flight measurement technique for acquiring images for this

purpose. The acquired images are relatively noisy: The advantages gained by fusing multiple

information sources are more clearly illustrated when noisy images are dealt with. The

second set compares our approach with the recover-and-select framework, and demonstrates

the improvements it introduces with respect to computational efficiency and accuracy. We

experimented with images acquired using the prototype structured light range scanner [53],

[17]. The same images were used in [17] for assessing the RAS framework. Finally, we

performed a third set of experiments in order to illustrate the behavior of our approach when

segmenting multi- part objects. The images used here were taken from the popular OSU

range image database, and the MSU’s Technical Arts 100X range scanner was used for their

acquisition. A Pentium4, 1.6 GHz PC was employed in all experiments.

A. Robustness of information fusion

We demonstrate the advantages gained when fusing multiple sources of information in

image segmentation, using the object configuration shown in fig. 2(a). In particular, we dealt

with recovering one object in the configuration, starting from the small seed shown in fig. 5(a),

5(b). More specifically, fig. 5(a) depicts the seed superimposed on the range image. Fig. 5(b)

shows the edge map along with the eRIM of the seed, as well as the region associated to
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the seed.

We firstly tried to recover the object using a region-based only approach, namely the

standard region- growing process. The result is presented in fig. 5(c), 5(d). The former

figure depicts the recovered model in three dimensions, while the latter shows the region

of points associated to the model, superimposed on the edge map. Note, that the seed has

been placed inside the object of interest and in a relatively big distance from its boundaries.

Seed placement in this position increases the robustness of the region growing approach [17]

p.157. Despite this, the result of region segmentation is discouraging: Pixels belonging to

neighboring points have been erroneously included in the region of the evolving model. The

model is over- grown. The process needed 30 iterations to produce the result shown.

We then attempted object recovery using our approach. In the first case, model recovery

is driven by boundary information only. Hence, we usedµ1 = 1, andµ2 = 0 in the benefit

function of the boundary module (see (7)). The result of boundary- guided recovery is

illustrated in fig. 5(e), 5(f). The problem of using boundary information only for object

segmentation, is that noisy edge points on the exposed surface of the object of interest attract

the eRIM curve, so that the model does not grow as it should. Hence, in comparison to

the region growing- based segmentation, the boundary- based segmentation suffers from the

inverse problem: model under-growing. Note, that in this case the system executed5 iterations

in order to converge.

Finally, we considered that both boundary and region based information guide the recovery

of the object of interest, that is we setµ1 = µ2 = 0.5 in (7). The result is illustrated in fig. 5(g),

5(h), of superior accuracy compared to the previous ones, and this is due to the combination

of a regionforce which is responsible for continued model growing along noisy edge points,

with the boundary force which prohibits object growing beyond real boundaries. The recovery

results for all objects in fig. 2(a) is shown in figures 2(j), 2(k). In this case the system

converged after12 iterations. There is a considerable improvement in terms of robustness

and accuracy with respect to the results delivered by recover-and-select (fig. 2(d)). In general,

the values of the weightsµ1, µ2, depend on a-priori knowledge on the relative quality of the

boundary and region information respectively. High quality boundary information suggests a

big value forµ1. Similarly, high quality region information suggests a big value forµ2. In

the experiments with all our data sets,µ1 = µ2 = 0.5 produced substantially better results.
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Fig. 6. Configurations of rounded superquadrics. In a, d, g are displayed the intensity images; in b, e, h the edge map

(dark points) superimposed to the range image; in c, f, i show results on the image plane: the recovered eRIMs, the regions

corresponding to the seeds (light areas) and the regions added to the seed regions after object recovery (dark areas).

B. Comparison to RAS

We tested our approach on the same images on which RAS was evaluated in [17]. The

results are shown in figures 6(a)-6(i), 7(a)- 7(o).

We performed a comparison of our approach with the RAS paradigm in terms of accuracy.

This comparison is based on aground truthsegmentation of the images: For each range image

we manuallysegmented the range points corresponding to each object. We denote the set

of points belonging to an objecti in the figure asR̂i. Now, given a recovered model with

parameterspi which corresponds to the objecti, the quantityd3D amounts to the average

radial Euclidean distance of the points in̂Ri to the modelpi, and expresses a measure of

recovery accuracy in three dimensions. That is:
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Fig. 7. Configurations of various superquadrics. In a, d, g, j, m are displayed the intensity images; in b, e, h, k, n, the

edge map (dark points) superimposed to the range image; in c, f, i, l, o show results on the image plane: the recovered

eRIMs, the regions corresponding to the seeds (light areas) and the regions added to the seed regions after object recovery

(dark areas).
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d3Di(R̂i,pi) =
1

|R̂i|
∑

X∈R̂i

d(X,pi) (12)

In addition, we assessed the reconstruction of the objects’ boundary. We regarded the image

plane coordinates of all points in̂Ri and then extracted the boundaryŜi of this region. This

two- dimensional curve corresponds to the eRIM of the objecti. The metricd2D measures

the average distance between the eRIM of the recovered objectpi (denoted asCpi), to the

points onŜi and expresses the accuracy in the recovery of the objects boundary that is:

d2Di(Ŝi,Cpi) =
1

|Ŝi|
∑

x∈Ŝi

d(x,Cpi) (13)

The accuracy results of both our approach and RAS, are illustrated in table V-B. For

each examined image, the average values ofd2D and d3D for all the objects in the image

are denoted as¯d2D, and ¯d3D respectively. Given this, the second and third column of table

V-B, show the ¯d3D, ¯d2D, when our approach is used for segmentation. The fourth and fifth

column illustrate the corresponding values when RAS is used. For every image, our approach

performs better than RAS. The last row of the table shows the averaged results along all

the rows. The averagēd3D for all images examined is0.612 using our approach and1.196

using RAS. Given this metric our approach delivered about two times more accurate results.

The corresponding results for̄d2D is 0.747 and 2.422 respectively. As fas as this metric is

concerned, our approach introduces an improvement of a factor around3. Worth- noticing

is, that from79 objects examined, RAS delivered better reconstruction accuracy results in

only 6 cases. The primary reason for the failure of our approach in these cases, is the low

quality of both region and boundary based information.

Moreover, we compared our approach to RAS, with respect to computational efficiency.

As discussed, our approach recovers each object independently from the others. In this way it

offers the potential of parallelization, if within a parallel processing framework, each object

is recovered by one processor. Given8 images containing79 objects in total (see figures

6(a)-7(o)), we measured the average time needed for the recovery of a unique object. This

was found to be25.29 seconds per object. RAS cannot be parallelized. The corresponding

time RAS needed for object recovery was about300 seconds. In this respect our approach

introduces an improvement of a factor of about12 regarding efficiency. Note, that our

approach was implemented in MATLAB, while RAS in C. An improvement on the efficiency
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Image id ¯d3D
¯d2D

¯d3D(RAS) ¯d2D(RAS)

fig. 7(a) 0.867 0.431 1.424 2.739

fig. 7(d) 0.363 1.009 0.881 1.705

fig. 7(g) 0.822 1.153 1.318 3.822

fig. 7(j) 0.752 0.199 0.930 0.644

fig. 7(m) 0.449 0.093 0.777 0.364

fig. 6(a) 0.672 1.090 1.038 2.602

fig. 6(d) 0.378 0.363 1.251 2.726

fig. 6(g) 0.593 1.642 1.947 4.773

average 0.612 0.747 1.196 2.422

TABLE I

ACCURACY OF RECONSTRUCTION IN3D AND 2D BETWEEN OUR APPROACH ANDRAS

of our method is expected to arise if our approach is ported to C. The reader is referred to

supplementary material 3 for a more detailed analysis of these experiments.

C. Experiments with multi- part objects

We performed experiments with multi- part objects. Two range images of multi- part objects

from the OSU (MSU/WSU) range image database where used for this purpose. The images

along the recovery results are shown in figures 8(a)- 8(f). Not all objects in those images

can be well modeled by superquadrics. Despite this, in the majority of the cases our model-

based edge detector is able to capture the intersections between the parts, and to provide

relatively accurate boundary information. The adaptive boundary closure operation delivers

a satisfactory seed placement. Finally the hypothesis refinement framework delivers in the

majority of these images encouraging segmentation results. Note, that the triangular part of

the planar object in the first figure set cannot be expressed via the model. The same is the

case for the left part of the planar object of the second figure set. Results on the the recovery

of the objects for these figures have been as well published in [26]. Despite the problems of

our approach in some cases, the overall results are considerably better than in [26].

Furthermore, we performed an experiment with a range image of a wooden doll. The image

appears in [17], p. 171. The results appear in figures 9(a)- 9(d). All parts of the doll have

been recovered. Again, the result shown here is better than the result delivered by RAS: The

upper parts of the left and right hands of the doll, that is, the parts connected to the torso
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Fig. 8. Recovery results on multi- part objects. In a, d, are displayed the intensity images; in b, e, the recovered RIMs

(dark points) superimposed to the edge image (light points); Finally, in c, f we show the recovered three dimensional

models. The recovery results are not satisfactory in some cases. The reason is that some object parts cannot be modeled

with superquadric models. The reader is referred to section V-C for details.

are represented in [17] with two superquadric models. In our case one model expresses each

part, as it should. Note, that in this case some object parts are not perfectly modeled with

superquadics. The difference of this parts to superquadric models is not big. The majority

of the boundary points are detected by the edge detector, and the obtained segmentation is

reasonable.

We performed a final experiment in order to quantify the behavior of our algorithm against

occlusion. In order to perform viewpoint invariant experiments, we considered a spherical

superquadric with radius30mm, that is:ε1 = ε2 = 1 and α1 = α2 = α3 = 30. We then

created range points on the surface of the model, and embedded the points on its hemisphere

in a synthetic range image, with inter pixel distance of 1 mm. The RIM of this model is a

circle, on which we considered M = 100 points for our experiments. In this experiment we

varied independently the amount of bounding contour occlusion and the amount of region

occlusion.

When the missing percentage of bounding contour information is lower than 55 per-cent,
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Fig. 9. We performed experiments with the image of a wooden mannequin, originally presented in [17], p. 171. a, shows

the range image. b the recovered RIMS (dark points) superimposed to the edge image (light points). c shows the recovered

models in three dimensions. Finally, e shows an additional three- dimensional view of the recovered superquadrics.

our approach manages to recover the object of interest with an accuracy of0.5 pixels for

d2D (see (12)) and1 mm for d3D (13). For missing boundary information in the range 40-55

per-cent the size of the seed generated by the hypothesis generation stage is small. Despite

this, the region module gradually increases the size of the seed due to the incorporated

region growing operation. Due to the fact that no noisy boundary points inhibit the growth

of the model, the model manages to reach its actual size. For more than 55 per-cent missing

boundary information, the generated seed is very small, due to the multiple invocations of

the boundary closure operation. In this case less than 10 range points are assigned to the

initialized model. Hence, the superquadric fitting function delivers very unreliable results and

the system breaks down.

In addition we performed experiments by varying the amount of region information. For
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missing region information up to60 per-cent our approach delivers a satisfactory result.

The accuracy in recovering boundary information expressed byd2D is up to3.5 pixels. The

accuracy in recovering region information expressed byd3D is up to 5 mm. For missing

region information in the range70 − 90 per-cent, the size of the initialized seed is small.

The object’s boundary points are far away from the seed, so they attraction forces they exert

to the seed are low. In addition, there is no available region information which will be used

by the region module to grow the seed. As a result the result of our system deteriorates

considerably. Note, that for more than90 per-cent missing region information, our system

breaks down, since the number of range points are not enough to produce a reliable model

via the model fitting operation.

Finally, we measured the reconstruction accuracy of the visible surface of the model as

well. In this case for missing boundary information up to70 per cent, the recovery accuracy

values were less than5 pixels for d2D and 7 mm for d3D. For missing region information

up to 78 per-cent, the recovery accuracy values were less than 4 pixels ford2D and 9 mm

for d3D. The overall results shown in this section are encouraging and they demonstrate that

our system is robust against occlusion.

VI. A PPLICATION: ROBOTIC UNLOADING OF PILED BOX-LIKE OBJECTS

We applied our segmentation framework to a novel robotic system (a description of which

appears also in [54], [37], [55]), for automatic unloading of piled box-like objects, as those

in figures fig. 2(a), as well as in figures VI-14 . The driving force for the implementation of

the particular system, is mainly the industrial requirement for the reduction of costs in the

logistic processes.

In the context of our system a six degrees of freedom industrial robotic manipulator is

employed for object unloading. A laser sensor (SICK LMS-200), is mounted on the hand

of the robot for acquiring images of the top side of the pallet. Besides, a vacuum gripper

is as well mounted on the hand of the robot for object grasping and placement. Our system

operates as follows: Firstly, a range image of the object configuration is acquired. This is

done by a linear movement of the robotic hand across the two ends of the pallet. Secondly,

the image is analyzed and a number of upper objects on the pile are recovered. Thirdly, the

recovered objects are grasped by the robotic hand and placed at positions defined by the

user. This process continues iteratively, until no objects lie on the pallet. Fig. 10 illustrates

instances of the unloading process.
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(a) Starting scanning (b) Ending scanning (c) Approaching object (d) Before grasping object

Fig. 10. Our robotic system in operation: The start and end positions of the scanning process are shown in 10(a) and

10(b), respectively. 10(c), shows the robotic hand while approaching an object. Finally, 10(d) illustrates the robot, just before

grasping the object.

Given the input range image, our superquadric recovery framework is applied to determine

the parameters of the graspable objects in the pile. The framework is adapted to the application

as follows: Firstly, box-like superquadrics are only used for modeling. This means that the

shapeε1, ε2 parameters of the models are set in the value0.2 and are kept constant within the

recovery process. Secondly, four additional parameters expressing global parabolic deforma-

tions are introduced in the parameter vector of (3). These allow for modeling of the slight

occuring on some non-rigid objects (e.g., bags or pillows). Furthermore, a decomposition in

the recovery of the parameter vector of the model is realized: According to our framework,

superquadric parameter recovery is performed by two modules each dealing with its own

domain of information. However, given the box-like geometry of the objects, not all the

superquadric parameters are related to the domains on which each of the two modules acts.

Decomposing the recovery of the model parameter vector results into a search for the optimal

parameters in lower dimensional parameter spaces. As a consequence both the robustness

and computational efficiency of the recovery process increase. The reader is referred to

supplementary material1 for details on this issue.

Finally, a post-processing step is included in the framework. The process succeeds the

hypothesis refinement stage, and determines if the refined model corresponds to agraspable

object. A graspable object is by definition an object which is not occluded by another object.

This implies that edge points along the entire RIM of the object are captured by the boundary

detection process, and are thus present in the boundary image. Therefore, for the graspable

objects in the image, the fitting error residual of the model’s RIM is expected to be low. In

addition, since such objects can be well modeled by superquadrics, the fitting error residual

of a superquadric model to the range points of the image belonging to the object is as well
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Avg. Distance measures ¯d3D (mm) ¯d2D (pixels)

Values 8.68 1.01

Measures Values

Graspable objects 174

True positives 159

False positives 6

False negatives 15

TABLE II

ACCURACY AND ROBUSTNESS OF ROBOTIC OBJECT UNLOADING SYSTEM

Modules Avg. Duration (sec)

Hypothesis generation per object 3.13

Hypothesis refinement per object 15.5

Hypothesis refinement per scene 91.75

TABLE III

EFFICIENCY OF ROBOTIC OBJECT UNLOADING SYSTEM

expected to be low. In short, the post processing method examines both model fitting error

residuals to the range image and the boundary image, and decides that the object of interest is

graspable if both are smaller than user-defined thresholds. The model parameters determined

to correspond to graspable objects can now be forwarded to a robotic system for performing

grasping operations.

We tested the performance of our system on about40 box-like object configurations.

Representative results are shown in fig.11-15. The first image of each row shows an object

configuration. The second, the range image on which the edge image is superimposed. The

edge map with the recovered object boundaries (in bold), follow. The last image shows the

recovered models in3D, superimposed on the range image. Note than in some occasions,

for example in figures 12, 13, 14, there are objects to which no model corresponds. These

objects are determined to be non-graspable by the post processing step, and the corresponding

models are rejected. The same holds for the recovery output of fig. 2(k).

Accuracy results are shown in table II. The table shows averaged results along all images

for the metricsd2D, d3D, extracted as in section V. Note, that the recovery accuracy in3D

is about9mm, that is in the order of the sensor’s resolution, which is about10mm. As well,

we achieved almost sub-pixel reconstruction accuracy in2D.
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(a) (b) (c) (d)

Fig. 11. Bags configuration

(a) (b) (c) (d)

Fig. 12. Pillows configuration

(a) (b) (c) (d)

Fig. 13. Box-like object configuration

(a) (b) (c) (d)

Fig. 14. Cardboard boxes configuration

(a) (b) (c) (d)

Fig. 15. Configuration of various types of objects
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We assessed the robustness of our system by comparing the number of graspable objects

in all box-like object configurations against the one determined by a human. Results are

shown in table III: In the40 examined images,174 objects exist in total,159 of which have

been successfully recovered. That is, the percentage of true positive responses was more than

91 per-cent. Note, that the system gave false negative responses in only6 cases. Note as

well, that using the Recover-and-Select framework one is not in the position to decide on

the graspability of objects. This feature is offered by our approach due to the consideration

of boundary information.

Finally, our system is fast: The average object recovery time was15.5sec (hypothesis

refinement) plus3.13 sec (hypothesis generation), that is about18 seconds in a Pentium4 PC,

with 1.6Ghz. The combination of the advantages of our system, that is, flexibility, robustness,

accuracy, computational efficiency, low-cost, cannot be found in any other existing work, to

the best of our knowledge [37].

VII. C ONCLUSIONS

We presented a strategy for multiple superquadric segmentation in range images. The

segmentation task is performed within two stages. Firstly, a hypothesis about the number

of objects in the image and the parameters of the models representing them is generated.

Secondly this hypothesis is refined by means of iterative fitting of the models to the data.

Within our approach two aspects of information a range image can provide are considered:

region and object boundary information. The former is provided directly by the input range

image. The latter by a two-dimensional edge map, obtained via edge detection on the range

image. Hypothesis generation is realized via adaptive closure of the edge map, which indicates

range point regions belonging to the object’s interior, on which seed models are fitted. The

hypothesis refinement stage improves the result delivered by the latter stage. A game-theoretic

framework is applied, to perform refinement while simultaneously fusing the two information

sources. This is done via iterative invocations of two modules in succession: The region

module, refines the model parameters by model fitting in the range image. The boundary

module fits the model’s boundary to the edge map. This takes place until the model parameters

do not change significantly.

We demonstrated experimentally, that our strategy outperforms the Recover-And-Select

(RAS) framework [16], [17], the state-of-the-art in multiple superquadric segmentation, in

terms of accuracy and computational efficiency. More specifically, our approach reduced
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about 2 times the error metric for3D model reconstruction and about3 times the error

metric for reconstructing the boundaries of the objects in the two-dimensional image plane.

Additionally, it proved to be more than12 times faster than RAS.

The considerable improvements in accuracy introduced by our approach, are due to the

consideration of boundary information within segmentation, in addition to region information.

In detail, using boundary information in the hypothesis generation stage produces a set of

segmentation parameters which are much closer to the actual parameters than those delivered

by the corresponding stage of RAS. Furthermore, consideration of boundary information

within hypothesis refinement, solves the region over-growing problem, which is the main

source of low accuracy within RAS. Finally, high accuracy is the outcome of incorporation

of model information from the early steps and during all stages of the process.

Regarding computational efficiency, consideration of boundary information in the hy-

pothesis generation process, results into a smaller number of initialized seeds, and thus in

lower overall processing time. Besides, using boundary information for parameter recovery

accelerates the growing of the models: Except for the standard region growing, models now

grow as a result of the attraction forces exerted by the boundary points. In the beginning of

the growing operation, when the model is small, these forces are responsible for fast growing

of the models toward the real object boundaries. Note finally that recovery in all domains is

performed using parametric models of closed form which considerably facilitates the fitting

processes.

The novelty of our approach lies in the adjustment of a game-theoretic framework of

[51], [40] to the segmentation of range images. More specifically, we exploit the feature

of decoupling model recovery between the two information domains so as to enhance the

descriptive ability of the data, and ease the model fitting process. The former is due to letting

boundary operations occur in two- instead of three- dimensions. The latter is due to using the

model’s boundary curve instead of the model itself for model fitting in the boundary domain.

Last but not least, we built a novel robotic system for automatic piled box-like object

unloading. The system is based on our segmentation framework. A detailed experimental

evaluation of the system showed that it is accurate, robust and fast. We showed that the

average time for the recovery of an objects was15.5 seconds on the target platform. Ad-

ditional knowledge on the shape of the objects in the configuration, e.g., knowledge that

the configuration consists of rigid boxes only for example, can further reduce the execution

time of our system to5 seconds per object. Given that the robotic grasping and placement
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operations do not last more than 4 seconds for an industrial robot in its full speed, our system

has the potential to perform unloading operations faster than human workers. The advantages

exhibited by this system, cannot be found in any other application of this kind, up to our

knowledge.
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