Subpixel accurate refinement of disparity maps using stereo correspondences

Matthias Demant

Lehrstuhl für Mustererkennung, Universität Freiburg

Outline

- 1 Introduction and Overview
- **2** Refining the Cost Volume
- **3** Patch Correlation Algorithm
- Experimental Validation Test Datasets Evaluation Methodology
- Experimental Results Parabolic Fitting Patch Correlation
- 6 Conclusion and Outlook

Outline

- 2 Refining the Cost Volume
- 3 Patch Correlation Algorithm
- Experimental Validation Test Datasets Evaluation Methodology
- Experimental Results Parabolic Fitting Patch Correlation

6 Conclusion and Outlook

Problem statement

(a) Original image

(b) Reference image

(c) Integer disparity map

(d) Subpixel accurate disparity map

Figure: A typical example for integer disparities. The disparity map is traversed by stripes, the **staircase effect**.

The standard stereo configuration

Figure: The standard stereo geometry system. Camera centers differ by a pure translation.

Standard stereo case

- Corresponding points have identical y-coordinates.
- Disparity = offset between corresponding points along scanline
- Depth is inverse proportional to disparity.

General approach with two steps

1 Pixel accurate disparity estimation

- Required: Cost Volume
- Search disparity with minimum costs
- \Rightarrow Disparity map (+- 2 pixel)
- ⇒ Occlusion handling

2 Subpixel refinement

Outline

1 Introduction and Overview

- **2** Refining the Cost Volume
- 3 Patch Correlation Algorithm
- 4 Experimental Validation Test Datasets Evaluation Methodology
- Experimental Results Parabolic Fitting Patch Correlation

6 Conclusion and Outlook

Disparity Space Image

Wanted:

Disparity map $\mathbf{d}(x, y)$ with $I_L(x, y) \approx I_R(x - \mathbf{d}(x, y), y)$

Cost Volume:

 $DSI(x, y, d) = (I_L - I_R(x - d, y))^2$

Aggregation: with block, Gaussian, .. in 2D or 3D reduce noise + environment informations

Start correspondence search Assumptions: ordering constraint smoothness constraint

Continuous Disparity Space Image

Image sensor	Integrates intensities over 1 Pixel
Sampling insensitive measure	Compare Intervals $[x - 0.5, x, x + 0.5]$ instead of Pixels
Wish:	Continuous DSI
Parabolic fitting	Continuous values after correspondence search
Sampling theorem	Samples of 0.5 pixel in x- and d-direction necessary to properly reconstruct the DSI

Parabolic Fitting Algorithm

Parabolic Fitting Algorithm

Parabolic Fitting Algorithm

Figure: Fitting a parabola to 5 or 11 points around a value in the estimated cost volume (DSI). The red point specifies the calculated minimum. The images at the bottom are examples for unrefined values. The values are out of range of the fitted points or maxima.

Outline

1 Introduction and Overview

- 2 Refining the Cost Volume
- **3** Patch Correlation Algorithm
- Experimental Validation Test Datasets Evaluation Methodology
- Experimental Results Parabolic Fitting Patch Correlation

6 Conclusion and Outlook

Patch Correlation Algorithm

Figure: Shifting the original patch over the reference patch.

- Pixel accurate disparity map \Rightarrow initial correspondence.
- Compare patch in left image with corresponding patch in right image.
- Shift and compare. The signals stay constant.

The Gabor Wavelet

- Gaussian multiplied with complex exponential
- Frequency domain: Gaussian at modulation frequency of complex exponential
- Acts like a bandpass filter
- Change modulation frequency \rightarrow change position in frequency domain
- Windowing + expansion in frequency domain

The Gabor Wavelet

- Gaussian multiplied with complex exponential
- Frequency domain: Gaussian at modulation frequency of complex exponential
- Acts like a bandpass filter
- Change modulation frequency \rightarrow change position in frequency domain
- Windowing + expansion in frequency domain

 $t \leftrightarrow t'$ corresponding points

- P_t Patch in Image I at position t,
- $Q_{t'}$ Patch in Image J at position t'
 - 1 Convolve images with a limited number of gabor filters
 - ⇒ Patches expanded in frequency domain

$$a_t(k) = \int P_t(x)e^{-ikx} dx = \int I(x-t) \underbrace{g(x)e^{-ikx}}_{\text{"gabor" wavelet}} dx$$

2 Correlate and shift patches according to shift theorem

$$\langle P_{t-\delta t}, Q_{t'} \rangle \approx \sum_{k} a_t(k) e^{-ik\delta t} \overline{b_{t'}(k)} = \sum_{k} c_t(k) e^{-ik\delta t}$$

- 3 Find maximum of the correlation function
- 4 Confidence estimation with normalized correlation

Maximum Detection

Correlation Function

$$\langle P_{t-\delta t}, Q_{t'} \rangle \approx \sum_{k} a_t(k) e^{-ik\delta t} \overline{b_{t'}(k)} = \sum_{k} c_t(k) e^{-ik\delta t}$$

Discrete Fourier Transform
 + Parabolic Refinement

- Gradient Ascent
- Newton Rhapson
- Modified Newton Rhapson

Maximum Detection

Correlation Function

$$\langle P_{t-\delta t}, Q_{t'} \rangle \approx \sum_{k} a_t(k) e^{-ik\delta t} \overline{b_{t'}(k)} = \sum_{k} c_t(k) e^{-ik\delta t}$$

Discrete Fourier Transform + Parabolic Refinement

2 Iterative Techniques

- Gradient Ascent
- Newton Rhapson
- Modified Newton Rhapson

Overview

Figure: The Patch Correlation Algorithm

Outline

1 Introduction and Overview

2 Refining the Cost Volume

3 Patch Correlation Algorithm

 Experimental Validation Test Datasets Evaluation Methodology

5 Experimental Results Parabolic Fitting Patch Correlation

6 Conclusion and Outlook

Real Data

(a) Original image

(b) Reference image

(d) Original image

(e) Reference image

(f) Ground truth

Figure: The 'Cones' and 'Teddy' images with disparity map.

Starting Point

Figure: The integer disparity map (left) with added Gaussian noise (right). Our starting point of the refinement process.

- Integer disparity map + Gaussian noise $\sigma = 0.7$: Values in [-2, +2]
- Range [+0.5, +1.5] with little Gaussian noise
- Middlebury stereo benchmark: Far behind last place.

PovRay Scenes

Figure: A povray scene with 3×256 depth values. Due to unpredictable discontinuities in the depth map the synthesized view in figure 8(d) is not correct (red box).

21 von 43

Quality Metrics

- **1 RMS** (root-mean-square) error between the computed disparity map and the ground truth map
- **2 BMP** Percentage of bad matching pixels
- **3 RMS** error between synthetic views

(a) Original image

image

(b) Forward warped (c) Reference image

Figure: Using the disparity map to create different views. 9(b) The reference image in coordinates of the original image.

(a) Ground truth disparity map

(b) Occluded regions (black)

(c) Textureless regions (white)

(d) Discontinuity regions (white)

Outline

1 Introduction and Overview

- 2 Refining the Cost Volume
- 3 Patch Correlation Algorithm
- ④ Experimental Validation Test Datasets Evaluation Methodology
- Experimental Results Parabolic Fitting Patch Correlation

6 Conclusion and Outlook

Parabolic Fitting

- Best results with Interval Matching
- Gaussian 2D aggregation (size 3,5 Pixel)
- Parabola fitted through 9 points

Figure: A complex scene, the refined line was achieved with a parabolic fitting to 9 points. The DSI was aggregated with a Gaussian 2D window using interval differences ID.

Results in different image regions

(a) Initial disp.map

(b) Result

(c) Result (Gradient)

Results in different image regions

(f) Initial disp.map

(g) Result

(h) Result (Gradient)

Experimental Results Patch Correlation

Results - "Cones" line profile

Figure: The refined line with the patch correlation algorithm.

Results - "Cones" line profile

Figure: The refined line with the patch correlation algorithm.

Results in different image regions

(a) $\overline{\mathcal{O}}$ Not occluded regions

(b) ${\mathcal T}$ Textureless regions

Figure: Percentage of bad matching pixels with an error threshold of 0.7 pixel.

Patch Correlation - confidence and window size

Figure: Changed Confidence and window size. Initial disparity map with gaussian noise: $\sigma=0.7$

Iterative Techniques

Figure: Bad matching pixels and iterations. The convergence of the different iterative techniques. The gradient ascent method converges in most cases in the global maximum.

Middlebury Ranking

	Error Threshold =	Sort by nenoce				Sort by all					Sort by disc				
	Error Threshold	V				V					•				
			Taukabe			Verus Teddy						Cenes			
	Algorithm	Awg.	1	0.000		4	good toto			97612.212			2005240		
		Rank	teness	ali.	tisc	022255	ы	disc	1000055	ati	tisc	022255	AL.	disc	
	SatExDoubleEP.1303	2.9	4.91 1	5.621	11.01	0.22 1	0.571	3.03 2	5.46.1	11.1 3	13.63	4.627	10.67	11.0 6	
	C-Semi@ab.[19]	4.3	<u>521</u> 0	6.90 1	12.94	9.45	0.85 4	4.42 11	5.224	13.0 7	16.04	2.22 1	9.21 3	9.30 2	
	AdaptOv/SeptP1331	5.4	5.951	6.561	9.091	0.44 2	0.583	2.531	<u>8.76</u> 9	13.7.6	19.3.9	<u>5.34</u> D	10.9 10	11.37	
	Adapting@P.[17]	7.8	14.0 16	14.41	13.5 6	1.16 12	1.36 ×	4.349	2.166	10.6 2	16.66	3.45)	9.343	9.191	
	ImanoveSubPtx1253	8.1	5.584	6.69.5	13.43	1.53 18	2.39.1	9.60 15	8.43+	14.611	19.3 8	3.42.2	8.981	9.553	
	QuerGeornilP (26)	8.2	<u>7.25</u> ==	8.17 4	13.01	0.85	1.11	6.03 14	<u>9.89</u> 20	14.6 12	29.5 10	4.02 1	9.97 1	10.4 4	
	Destin0P2 (35)	8.8	<u>187</u> 22	19.1 H	35.811	0.82.5	1.184	3.65 5	5.621	11.24	13.4.1	4.761	10.8 9	11.5 1	
	Double 6P [15]	9.9	18.7 23	19.1 22	15.8 12	0.81	1.34 \$	3.84 5	5.77 2	11.45	13,41	4.00 10		11.6 30	
	Seam twists 143	12.2	12.2 14	12.912	15.8 15	2.69.14	3.66 23	10.2 21	2.043	8.711	16.33	4,851	9.864	12.2 13	
	SemiSiob (6)	12.5	2.24 *	8.37 •	18.4 11	1.96 17	2.60 ×	12.8 3	2.421	14.4 9	19.6 11	2614	10.7	10.4 1	
	PlaneFittP [32]	14.1	12.7 15	13.6 15	16.2 16	0.82 *	1.267	3.243	2.40 15	15.3 15	19.21	<u>6.97</u> 15	13.8 12	15.2.33	
	Distact5M1271	145	<u>135</u> 17	14.3 12	16.2 15	0.22	1.31	4.38 18	<u>2.42</u> ×	15.716	22.0 15	<u>6.78</u> 22	12.4 19	12.1 12	
	Sam8P+occ.121	15.3	20.2 31	21.6 %	19.5.14	0.41 4	0.703	3,44.4	2.0211	14.0 8	22.3 22	5,8517	12.1 16	12.8 15	
	50+berlets (29)	17.4	1917	19.5 23	20.035	162.11	2.65 2	4.63 13	9.28 14	15.214	20.212	5.6213	11.8 1	13.1 17	
	AdaptWieight [12]	18.0	101 22	10.0 20	18.6 11	1.32 11	1.90 M	0.27 11	<u>101</u> ×	16.3 1	23.5 11	6.17 10	12.1 17	12.1 11	
	GenHodel [21]	18.3	5.261	3,476	15.814	2.04 12	3.45.3	17.7 ×	<u>2.19</u> 11	17.4 22	23.1 22	5.97 II	16.317	13.4 19	
	InteriorPILP [34]	18.6	<u>19.2</u> ×	19.6 24	18.1.19	1.55 22	2.21 3	14.5 27	2.26 17	14.5 1	22.6 11	2,2414	11.6 D	12.7 14	
	Segmeeu#1221	19.0	24	26.0 14	24.6 14	1.2913	1.531	4.217	12.1 ×	18.4.3	22.01	4.24.9	10.1 *	11.4	
	RESIGNITIONSPILLES	19.0	21.2 0	21.1 10	10.3 35	1.021	1571	4.21.7	1016.20	15.11	20.011	2.00 1	1558	10.1 25	
	SegmentSupport Life	19.0	108.0	20.2 1	20.211	1.5215	1.92 1	4.8111	10.6.11	10.1.0	11.2.10	2.0215	12.1 15	13.2 11	
	56,1000.12	19.0	2.10.2	7.115	14.00	2.62 0	3.80 2	0.49 18	142.0	21.50	24,410	2.01 0	14.0 14	13.0.24	
	Tensing the line	19.6	10.8 10	225.0	19.2 9	1.00 //	2.35 1	1040	0.04	16.4.0	20.0 10	2.10 12	12.0	14.2	
	Balling and Composition	22.0	414.1	1.00	10.7.1	4.004 **	4.74		2.13	22.2.2	20.0	State of			
	PUPLICIA IS	21.2	2.10	7551	15.710	5.22 11	0.15.0	6.67 15	122.0	11.7.0	76.0 1	6.22 A	13.3 11	14.0.11	
	SALANDARIAN		ALL I			1000			ZAE -	10.4		2.41	12.0	10.00	
N	include the second seco	24.2	12.0.0	125.0	16.7	4.73	())	10.6 m	12.6.0	17.0	22.7.0	0.17.00	11.2.0	14.2	
	00.014	25.6	2.11.5	9.82.11	17.4.12	1.95 1	5.60 1	11.1.1	21.3.11	19.4	29.3.0	9.04	21.1	14.3.11	
	E HETHOD	22.1	0.5411	2	0	11.1	20	211	16.1 2	2	0	12.5.1	21.5.1	23.5.2	
	And the second second	19.0	14.2.1	4	2	1 10 1			10.3 *	9	2		16.7.2	10.6 10	
1	Bellahills/OP (13)	28.2	19.0 11	20.7 20	17.5 :=	2.98.29	5.20 2	15.9 29	14.7 28	21.6 28	25.1 2	15.7 n	22.6 M	22.5 m	
	TreeDR 101	30.6	22.4	211.0	22.1	2.86 1	160.0	10.2 10	21.3	28.9 1	33.7 0	117.0	21.7	23.3	
	Phone Beard (21)	31.0	11.2 12	13.4 10	23.9 32	7.83.34	9.25 >	27.9 16	20.4 15	28.5 15	32.7 H	15.9 ×	25.2 31	27.5 24	
	DP 1191	32.0	12.6 12	20.6 21	22.8 ×	13.6 7	14.5	24.1 33	19.2 12	26.3 12	25.6 27	13.8 10	22.1 22	25.7 12	
	PasseOff1231	32.8	21.5 11	13.6 1	24.5 11	9.48 1	10.9	27.6 m	24.9 =	32.5 1	34.9 m	211 10	32.4 10	32.9 17	
	50.134	33.0	17.9 10	19.0 23	23.4 n	111.1	14.5	25.2 H	25.6	33.3 m	31.3 11	16.0 11	25.6 1	26.8 11	
	550+Nf [1e]	34.6	28.5 20	30.0 W	35.1 3	4.96 11	6.43 2	14.5 18	19.8 10	27.5 H	35.2 11	13.6 M	22.8 25	31.2 ×	
	STICALL6	35.2	24.3 17	26.1 3	44.8 25	2.65 ×	11.0 ×	42.6 39	15.2 X	25.6 11	42.8 X	11.6 ×	19.6 29	33.1 ×	
	Infection (10)	35.6	21.9 10	23.3 M	37.0 31	6.50 33	7.67 33	33.6 18	20.1 14	27.3 33	49.2 39	16.5 18	23.9 M	42.1 39	

Figure: A screenshot of the Middlebury ranking with an error threshold of 0.75.

Outline

1 Introduction and Overview

- 2 Refining the Cost Volume
- **3** Patch Correlation Algorithm
- ④ Experimental Validation Test Datasets Evaluation Methodology
- 5 Experimental Results Parabolic Fitting Patch Correlation

6 Conclusion and Outlook

Conclusion and Outlook

Initial estimation should be replaced by real results.

Synthetic data showed unpredictable errors. Applicable with small disparity ranges

 $\begin{array}{l} \mbox{Parabolic fitting to DSI} \ \mbox{is appropriated for small errors} < 1 \ \mbox{pixel}. \\ \mbox{Intervall Matching better} \end{array}$

Patch correlation: 75% closer than 0.5 Pixels Errors in discontinuity regions.

Scene information: Add semi-global character using informations about

- sharp areas or
- scene geometry.

Blurring

Assumption: Well-known scene geometry Question: How can we emphasize small structures?

Figure: With a well known scene setup blurred image regions can be detected (blue). In sharp areas the high frequencies can be emphasized applying the Laplacian of Gaussian. The Patch Correlation algorithm (green) can be extended with little additional costs.

Dilation between patches

The Patch Correlation algorithm (green) extracts both patches. One of the extracted patches can be scaled according to the dilation.

Thank you for your attention.

Model of the Point-spread function

Assumption: Well-known scene geometry Question: How and when can we emphasize small structures?

Point spread function: The brightness of the blurred area can be approximated by a two dimensional Gaussian distribution.

- Brightness distribution depends on distance.
- A high σ value affects like a low-pass filter.
- Emphasize small stuctures in sharp areas: LoG
- Easy extandable to patch correlation algorithm

Figure: With a well known scene setup blurred image regions can be detected (blue). In sharp areas the high frequencies can be emphasized applying the Laplacian of Gaussian. The Patch Correlation algorithm (green) can be extended with little additional costs.

Assumption: Standard stereo configuration Question: How can we classify transformations between corresponding points on same world plane?

 $\mathbf{x}_J = \mathbf{H}_{JI}(\pi)\mathbf{x}_I$

- Back-trace ray ${f C} o {f x}$ via ${f P}_I^+$ to ${f \pi}$
- Project \mathbf{x}_{π} via \mathbf{P}_{J} to J $\mathbf{H}_{JI}(\pi) = \mathbf{K}_{J} \left(I + \mathbf{c'p}^{T} \right) \mathbf{K}_{I}^{-1}$. with $\mathbf{c'} = \begin{pmatrix} c_{x} & c_{y} & c_{z} \end{pmatrix}^{T}$ and $\pi = \begin{pmatrix} \mathbf{p} & 1 \end{pmatrix}^{T}$

The calibration matrices $\mathbf{K}_I, \mathbf{K}_I^{-1}$ and \mathbf{K}_J are affine transformations. The center part $(I + \mathbf{c}\mathbf{p}^T)$ is affine, if $c_z = 0$.

Assumption: Standard stereo configuration Question: How can we classify transformations between corresponding points on same world plane?

 $\mathbf{x}_J = \mathbf{H}_{JI}(\pi)\mathbf{x}_I$

- Back-trace ray ${f C}
 ightarrow {f x}$ via ${f P}_I^+$ to ${m \pi}$
- Project \mathbf{x}_{π} via \mathbf{P}_{J} to J $\mathbf{H}_{JI}(\pi) = \mathbf{K}_{J} \left(I + \mathbf{c'p}^{T} \right) \mathbf{K}_{I}^{-1}$. with $\mathbf{c'} = \begin{pmatrix} c_{x} & c_{y} & c_{z} \end{pmatrix}^{T}$ and $\pi = \begin{pmatrix} \mathbf{p} & 1 \end{pmatrix}^{T}$

The calibration matrices $\mathbf{K}_I, \mathbf{K}_I^{-1}$ and \mathbf{K}_J are affine transformations. The center part $(I + \mathbf{c}\mathbf{p}^T)$ is affine, if $c_z = 0$.

Assumption: Standard stereo configuration Question: How can we classify transformations between corresponding points on same world plane?

 $\mathbf{x}_J = \mathbf{H}_{JI}(\pi)\mathbf{x}_I$

- Back-trace ray ${f C}
 ightarrow {f x}$ via ${f P}_I^+$ to ${m \pi}$
- Project \mathbf{x}_{π} via \mathbf{P}_{J} to J $\mathbf{H}_{JI}(\pi) = \mathbf{K}_{J} \left(l + \mathbf{c}' \mathbf{p}^{T} \right) \mathbf{K}_{I}^{-1}$. with $\mathbf{c}' = \left(\begin{array}{cc} c_{x} & c_{y} & c_{z} \end{array} \right)^{T}$ and $\pi = \left(\begin{array}{cc} \mathbf{p} & 1 \end{array} \right)^{T}$

The calibration matrices $\mathbf{K}_I, \mathbf{K}_I^{-1}$ and \mathbf{K}_J are affine transformations. The center part $(I + \mathbf{c}\mathbf{p}^T)$ is affine, if $c_z = 0$.

Assumption: Standard stereo configuration Question: How can we classify transformations between corresponding points on same world plane?

- $\mathbf{x}_J = \mathbf{H}_{JI}(\pi)\mathbf{x}_I$
- Back-trace ray ${f C}
 ightarrow {f x}$ via ${f P}_I^+$ to ${m \pi}$
- Project \mathbf{x}_{π} via \mathbf{P}_{J} to J $\mathbf{H}_{JI}(\pi) = \mathbf{K}_{J} \left(I + \mathbf{c'p}^{T} \right) \mathbf{K}_{I}^{-1}$. with $\mathbf{c'} = \begin{pmatrix} c_{x} & c_{y} & c_{z} \end{pmatrix}^{T}$ and $\pi = \begin{pmatrix} \mathbf{p} & 1 \end{pmatrix}^{T}$

The calibration matrices $\mathbf{K}_I, \mathbf{K}_I^{-1}$ and \mathbf{K}_J are affine transformations. The center part $(I + \mathbf{c}\mathbf{p}^T)$ is affine, if $c_z = 0$.

Assumption: Standard stereo configuration Question: How can we classify transformations between corresponding points on same world plane?

- $\mathbf{x}_J = \mathbf{H}_{JI}(\pi)\mathbf{x}_I$
- Back-trace ray ${f C}
 ightarrow {f x}$ via ${f P}_I^+$ to ${m \pi}$
- Project \mathbf{x}_{π} via \mathbf{P}_{J} to J $\mathbf{H}_{JI}(\pi) = \mathbf{K}_{J} \left(I + \mathbf{c'p}^{T} \right) \mathbf{K}_{I}^{-1}$. with $\mathbf{c'} = \begin{pmatrix} c_{x} & c_{y} & c_{z} \end{pmatrix}^{T}$ and $\pi = \begin{pmatrix} \mathbf{p} & 1 \end{pmatrix}^{T}$

The calibration matrices $\mathbf{K}_I, \mathbf{K}_I^{-1}$ and \mathbf{K}_J are affine transformations. The center part $(I + \mathbf{c}\mathbf{p}^T)$ is affine, if $c_z = 0$.

Assumption: Standard stereo configuration Question: How can we classify transformations between corresponding points on same world plane?

- $\mathbf{x}_J = \mathbf{H}_{JI}(\pi)\mathbf{x}_I$
- Back-trace ray ${f C} o {f x}$ via ${f P}_I^+$ to ${f \pi}$
- Project \mathbf{x}_{π} via \mathbf{P}_{J} to J $\mathbf{H}_{JI}(\pi) = \mathbf{K}_{J} \left(I + \mathbf{c}' \mathbf{p}^{T} \right) \mathbf{K}_{I}^{-1}$. with $\mathbf{c}' = \left(\begin{array}{cc} c_{x} & c_{y} & c_{z} \end{array} \right)^{T}$ and $\pi = \left(\begin{array}{cc} \mathbf{p} & 1 \end{array} \right)^{T}$

The calibration matrices $\mathbf{K}_{I}, \mathbf{K}_{I}^{-1}$ and \mathbf{K}_{J} are affine transformations. The center part $(I + \mathbf{c}\mathbf{p}^{T})$ is affine, if $c_{z} = 0$.

Scene planes, disparities and patches

Definition: Iso-disparity surfaces have identical size in both images. Assumption: Points on same world plane, simplified calibration matrices Question: How does texture change, depending on plane orientation?

 $\mathbf{x}_J = \mathbf{H}_{JI}(\pi)\mathbf{x}_I$ $\mathbf{x}_J - \mathbf{x}'_J = \mathbf{H}_{JI}(\pi) (\mathbf{x}_I - \mathbf{x}'_I)$

For corresponding points:

$$x_J - x'_J = (1 + c_x p_x)(x_I - x'_I)$$

lso-disparity surfaces are fronto parallel planes. All patches on these surfaces keep the same patch size in both images.

Scene planes, disparities and patches

Definition: Iso-disparity surfaces have identical size in both images. Assumption: Points on same world plane, simplified calibration matrices Question: How does texture change, depending on plane orientation?

 $\mathbf{x}_J = \mathbf{H}_{JI}(\pi)\mathbf{x}_I$ $\mathbf{x}_J - \mathbf{x}'_J = \mathbf{H}_{JI}(\pi) (\mathbf{x}_I - \mathbf{x}'_I)$

For corresponding points:

$$x_J - x'_J = (1 + c_x p_x)(x_I - x'_I)$$

Iso-disparity surfaces are fronto parallel planes. All patches on these surfaces keep the same patch size in both images.

The viewable window on fronto-parallel planes

(a) Two cameras and iso- (b) Relation between disparity and the disparity surfaces size of the viewable window.

Figure: The viewable window decreases with increasing disparity.

Isodisparity surfaces and focal length

Figure: Iso-disparity surfaces in the standard stereo configuration with different focal length. The center figure represents equal focal length.

Applicability in a well-known camera setup

Figure: With a known camera shift and the initial disparity map a dilation between patches can be corrected (blue). The Patch Correlation algorithm (green) extracts both patches. One of the extracted patches can be scaled according to the dilation.