
Subpixel accurate refinement of disparity maps
using stereo correspondences

Matthias Demant

Lehrstuhl für Mustererkennung,
Universität Freiburg



Outline

1 Introduction and Overview

2 Refining the Cost Volume

3 Patch Correlation Algorithm

4 Experimental Validation
Test Datasets
Evaluation Methodology

5 Experimental Results
Parabolic Fitting
Patch Correlation

6 Conclusion and Outlook

2 von 43



Outline

1 Introduction and Overview

2 Refining the Cost Volume

3 Patch Correlation Algorithm

4 Experimental Validation
Test Datasets
Evaluation Methodology

5 Experimental Results
Parabolic Fitting
Patch Correlation

6 Conclusion and Outlook



Introduction and Overview

Problem statement

(a) Original image (b) Reference image

(c) Integer disparity
map

(d) Subpixel accurate
disparity map

Figure: A typical example for integer disparities. The disparity map is traversed
by stripes, the staircase effect.
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Introduction and Overview

The standard stereo configuration

Figure: The standard stereo geometry system. Camera centers differ by a pure
translation.

Standard stereo case

- Corresponding points have identical y-coordinates.

- Disparity = offset between corresponding points along
scanline

- Depth is inverse proportional to disparity.
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Introduction and Overview

General approach with two steps

1 Pixel accurate disparity estimation
• Required: Cost Volume
• Search disparity with minimum costs
⇒ Disparity map (+- 2 pixel)

⇒ Occlusion handling

2 Subpixel refinement
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Refining the Cost Volume

Disparity Space Image

Wanted: Disparity map d(x , y)
with IL(x , y) ≈ IR(x − d(x , y), y)

Cost Volume: DSI(x , y , d) = (IL − IR(x − d , y))2

Aggregation: with block, Gaussian, .. in 2D or 3D
reduce noise + environment informations

Start correspondence search
Assumptions: ordering constraint

smoothness constraint
...
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Refining the Cost Volume

Continuous Disparity Space Image

Image sensor Integrates intensities over 1 Pixel
↓

Sampling insensitive Compare Intervals [x − 0.5, x , x + 0.5]
measure instead of Pixels

Wish: Continuous DSI

Parabolic fitting Continuous values after correspondence search

Sampling theorem Samples of 0.5 pixel in x- and d-direction
necessary to properly reconstruct the DSI
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Refining the Cost Volume

Parabolic Fitting Algorithm

10 von 43



Refining the Cost Volume

Parabolic Fitting Algorithm
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Refining the Cost Volume

Parabolic Fitting Algorithm

Figure: Fitting a parabola to 5 or 11 points around a value in the estimated
cost volume (DSI). The red point specifies the calculated minimum. The
images at the bottom are examples for unrefined values. The values are out of
range of the fitted points or maxima. 11 von 43
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Patch Correlation Algorithm

Patch Correlation Algorithm

(a) 1D patch (b) 2D patch

Figure: Shifting the original patch over the reference patch.

• Pixel accurate disparity map ⇒ initial correspondence.

• Compare patch in left image with corresponding patch in right
image.

• Shift and compare. The signals stay constant.
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Patch Correlation Algorithm

The Gabor Wavelet

• Gaussian multiplied with complex exponential
• Frequency domain: Gaussian at modulation frequency of complex

exponential
• Acts like a bandpass filter
• Change modulation frequency → change position in frequency

domain
• Windowing + expansion in frequency domain
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Patch Correlation Algorithm

t ↔ t ′ corresponding points
Pt Patch in Image I at position t,
Qt′ Patch in Image J at position t’

1 Convolve images with a limited number of gabor filters

⇒ Patches expanded in frequency domain

at(k) =

∫
Pt(x)e−ikxdx =

∫
I (x − t) g(x)e−ikx︸ ︷︷ ︸

“gabor” wavelet

dx

2 Correlate and shift patches according to shift theorem

〈Pt−δt ,Qt′〉 ≈
∑

k

at(k)e−ikδtbt′(k) =
∑

k

ct(k)e−ikδt

3 Find maximum of the correlation function

4 Confidence estimation with normalized correlation
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Patch Correlation Algorithm

Maximum Detection

Correlation Function

〈Pt−δt ,Qt′〉 ≈
∑

k

at(k)e−ikδtbt′(k) =
∑

k

ct(k)e−ikδt

1 Discrete Fourier Transform
+ Parabolic Refinement

2 Iterative Techniques
• Gradient Ascent
• Newton Rhapson
• Modified Newton Rhapson
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Patch Correlation Algorithm

Overview

Figure: The Patch Correlation Algorithm
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Experimental Validation
Test Datasets

Real Data

(a) Original image (b) Reference image (c) Ground truth

(d) Original image (e) Reference image (f) Ground truth

Figure: The ’Cones’ and ’Teddy’ images with disparity map.
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Experimental Validation
Test Datasets

Starting Point

Figure: The integer disparity map (left) with added Gaussian noise (right). Our
starting point of the refinement process.

• Integer disparity map + Gaussian noise σ = 0.7: Values in [−2,+2]

• Range [+0.5,+1.5] with little Gaussian noise

• Middlebury stereo benchmark: Far behind last place.
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Experimental Validation
Test Datasets

PovRay Scenes

(a) Original image (b) Reference image

(c) Depth map with 3×256
values

(d) Synthesized View

Figure: A povray scene with 3× 256 depth values. Due to unpredictable
discontinuities in the depth map the synthesized view in figure 8(d) is not
correct (red box).
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Experimental Validation
Evaluation Methodology

Quality Metrics

1 RMS (root-mean-square) error between the computed disparity map
and the ground truth map

2 BMP Percentage of bad matching pixels

3 RMS error between synthetic views

(a) Original image (b) Forward warped
image

(c) Reference image

Figure: Using the disparity map to create different views. 9(b) The
reference image in coordinates of the original image.
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Experimental Validation
Evaluation Methodology

(a) Ground truth disparity
map

(b) Occluded regions (black)

(c) Textureless regions (white) (d) Discontinuity regions
(white)

Figure: The ’Cones’ images and its discontinuity and textureless regions.
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Experimental Results
Parabolic Fitting

Parabolic Fitting

• Best results with Interval Matching

• Gaussian 2D aggregation (size 3,5 Pixel)

• Parabola fitted through 9 points

Figure: A complex scene, the refined line was achieved with a parabolic fitting
to 9 points. The DSI was aggregated with a Gaussian 2D window using interval
differences ID.
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Experimental Results
Patch Correlation

Results in different image regions

(a) Initial disp.map (b) Result

(c) Result (Gradient)
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Experimental Results
Patch Correlation

Results in different image regions

(f) Initial disp.map (g) Result

(h) Result (Gradient)
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Experimental Results
Patch Correlation

Results - ”Cones“ line profile

Figure: The refined line with the patch correlation algorithm.
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Experimental Results
Patch Correlation

Results - ”Cones“ line profile

Figure: The refined line with the patch correlation algorithm.
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Experimental Results
Patch Correlation

Results in different image regions

(a) O Not occluded regions (b) T Textureless regions

(c) D Discontinuity regions (d) D Non-discontinuity re-
gions

Figure: Percentage of bad matching pixels with an error threshold of 0.7 pixel.
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Experimental Results
Patch Correlation

Patch Correlation - confidence and window size

(a) RMS (b) %BMP, Threshold 0.5 Pixel

Figure: Changed Confidence and window size. Initial disparity map with
gaussian noise: σ = 0.7
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Experimental Results
Patch Correlation

Iterative Techniques

Figure: Bad matching pixels and iterations. The convergence of the different
iterative techniques. The gradient ascent method converges in most cases in
the global maximum.
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Experimental Results
Patch Correlation

Middlebury Ranking

Figure: A screenshot of the Middlebury ranking with an error threshold of 0.75.
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Conclusion and Outlook

Conclusion and Outlook

Initial estimation should be replaced by real results.

Synthetic data showed unpredictable errors. Applicable with small
disparity ranges

Parabolic fitting to DSI is appropriated for small errors < 1 pixel.
Intervall Matching better

Patch correlation: 75% closer than 0.5 Pixels
Errors in discontinuity regions.

Scene information: Add semi-global character using informations about

• sharp areas or
• scene geometry.
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Conclusion and Outlook

Blurring
Assumption: Well-known scene geometry
Question: How can we emphasize small structures?

Figure: With a well known scene setup blurred image regions can be detected
(blue). In sharp areas the high frequencies can be emphasized applying the
Laplacian of Gaussian. The Patch Correlation algorithm (green) can be
extended with little additional costs.
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Dilation between patches

Points on planes + camera shift + plane orientation
⇒
dilation between pairs of corresponding points (blue)

The Patch Correlation algorithm (green) extracts both patches. One of
the extracted patches can be scaled according to the dilation.



Thank you for your attention.



Conclusion and Outlook

Model of the Point-spread function
Assumption: Well-known scene geometry
Question: How and when can we emphasize small structures?

Point spread function: The brightness of the blurred area can be
approximated by a two dimensional Gaussian distribution.

• Brightness distribution depends on distance.

• A high σ value affects like a low-pass filter.

• Emphasize small stuctures in sharp areas: LoG

• Easy extandable to patch correlation algorithm
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Conclusion and Outlook

Figure: With a well known scene setup blurred image regions can be detected
(blue). In sharp areas the high frequencies can be emphasized applying the
Laplacian of Gaussian. The Patch Correlation algorithm (green) can be
extended with little additional costs.
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Conclusion and Outlook

Homography induced by a plane

Assumption: Standard stereo configuration
Question: How can we classify transformations between corresponding
points on same world plane?

xJ = HJI (π)xI

• Back-trace ray C → x via P+
I to π

• Project xπ via PJ to J

HJI (π) = KJ

(
I + c′pT

)
K−1

I .

with c′ =
(

cx cy cz

)T

and π =
(

p 1
)T

The calibration matrices KI ,K
−1
I and KJ are affine transformations.

The center part
(
I + cpT

)
is affine, if cz = 0.

In the standard stereo case HJI (π) is an affine transformation
(cy = cz = 0).
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Conclusion and Outlook

Scene planes, disparities and patches
Definition: Iso-disparity surfaces have identical size in both images.
Assumption: Points on same world plane, simplified calibration matrices
Question: How does texture change, depending on plane orientation?

xJ = HJI (π)xI

xJ − x′J = HJI (π) (xI − x′I )

For corresponding points:

xJ − x ′J = (1 + cxpx)(xI − x ′I )

Iso-disparity
surfaces are fronto parallel planes.

All patches on these surfaces
keep the same patch size in both images.
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Conclusion and Outlook

The viewable window on fronto-parallel planes

(a) Two cameras and iso-
disparity surfaces

(b) Relation between disparity and the
size of the viewable window.

Figure: The viewable window decreases with increasing disparity.
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Conclusion and Outlook

Isodisparity surfaces and focal length

Figure: Iso-disparity surfaces in the standard stereo configuration with different
focal length. The center figure represents equal focal length.
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Conclusion and Outlook

Applicability in a well-known camera setup

Figure: With a known camera shift and the initial disparity map a dilation
between patches can be corrected (blue). The Patch Correlation algorithm
(green) extracts both patches. One of the extracted patches can be scaled
according to the dilation.
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