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Introduction and Overview

C.Elegans

• C.elegans genome fully sequenced in December 1998

• 50-65 % of the currently known human genes have a homologue in
the model organism

• Model organism for drug treatment (Alzheimer)

• Green Fluorescent Protein
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Introduction and Overview

Problem Statement

Figure: C.elegans with fluorescent CAN neurons

• CAN neurons develop in the head

• Migrate to the vulva
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Introduction and Overview

COPAS Sorter

Figure: Workflow of the COPAS sorter
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Introduction and Overview

Problem Statement

Figure: Exemplary fluorescent profiles

• Readout of COPAS sorter

• Peaks in the head and in the center
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Introduction and Overview

Scope of Pattern Recognition

1 Compare individual worm sequences

2 Description of a population

3 Comparison of populations

4 Classification of individual worm sequences
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Registration and Similarity
DTW

Euclidean Distance

Figure: Euclidean distance measure

Euclidean distance Compare uniformly sampled elements

Disadvantage Small shift → completely different result
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Registration and Similarity
DTW

Dynamic Time Warping

Figure: DTW approach

DTW distance Compare signals at corresponding points

Advantage Small shift → small increment of distance
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Registration and Similarity
DTW

Dynamic Time Warping
1 Local cost measure: Normalized cross-correlation of patches si and

rj centered at i , j with regularization term

Dist(i , j) = 1−
〈
si − µsi , rj − µrj

〉
‖si − µsi‖ ·

∥∥rj − µrj

∥∥ + ε

2 Search path through cost matrix with minimal costs
Ordering, boundary constraint

Figure: Distance matrix between the patches of the signals
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Registration and Similarity
Time-Delayed DTW

DTW and Time-Delayed DTW
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Figure: One-to-many alignment

• DTW may align an element to a segment

• Viterbi algorithm can be extended on second order terms

or refined with an open snake.
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Registration and Similarity
Time-Delayed DTW

Time-delayed Dynamic Time Warping

Figure: Path search within a trellis with a time-delayed decision
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Registration and Similarity
Time-Delayed DTW

Time-delayed Dynamic Time Warping

Figure: DTW and refined DTW
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Registration and Similarity
Time-Delayed DTW

DTW and Time-Delayed DTW

• DTW extended on second order terms

⇒ Smooth alignment
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Registration and Similarity
Time-Delayed DTW

Distance measure and Noise

• Accumulated costs along warp path

• Problem:

• Deformation as similarity measure.

• Low variance as indicator for noise.

⇒ Weighting and penalizing of correlation results.
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Registration and Similarity
Time-Delayed DTW

• Penalize pathes with little signal to signal matches

• Weight deformation with minimum signal level

Figure: Signals and the expected noise value along the warp path.
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Registration and Similarity
Time-Delayed DTW

Speeding up DTW
• Runtime DTW: O(n2)
• Evaluate less cells

• Compute path at lower resolution and project onto finer resolution.

• Multiscale DTW
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Feature Based Comparison
Gabor Wavelet Features

Gabor Wavelets

• Multiplication of Gaussian with a complex exponential

f (x) = exp(−iµ0(x − x0))︸ ︷︷ ︸
complex exponential

exp(− (x − x0)
2

2σ2
)︸ ︷︷ ︸

Gaussian

• Expand patches in frequency domain.

• Resolution in spatial and frequency domain.

• Multiresolution analysis with self-similar family of Gabor wavelets.

Figure: Gabor filter in spatial and frequency domain.
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Feature Based Comparison
Gabor Wavelet Features

Phase Shift and Gabor Wavelets
• Displacement between signals ⇒ phase shift
• Increase displacement:

Smooth phase shift
• Different effect on different Gabor features

(c) Signals expanded (lower frq)

(e) Gabor filter (lower frq)
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Feature Based Comparison
Gabor Wavelet Features

Phase Shift and Gabor Wavelets
• Displacement between signals ⇒ phase shift
• Increase displacement:

Smooth phase shift
• Different effect on different Gabor features

(e) Signals expanded (lower frq) (f) Signals expanded (higher frq)

Figure: Gabor wavelets and phase shifts
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Feature Based Comparison
Gabor Wavelet Features

Distance Measure in Gabor Feature Space
• Encoding and demodulation of signal s at scale k

hk
{Re,Im}(t) = sgn{Re,Im}

∫
x

s(x − t)e−i(kω)(x−t)e
−(x−t)2

2(σ/k)2 dx

= sgn{Re,Im}(s ∗ fk)(t)

• hk
{Re,Im} is a complex valued bit sequence.

• Bit sequences at different scale ⇒ Code to describe a worm
• Compare sequence codes using the Hamming distance:

HDworm = ‖(codeA⊗ codeB)‖

(a) Quadrant Demodula-
tion Code 23 von 54
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−(x−t)2
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= sgn{Re,Im}(s ∗ fk)(t)

• hk
{Re,Im} is a complex valued bit sequence.

• Bit sequences at different scale ⇒ Code to describe a worm
• Compare sequence codes using the Hamming distance:

HDworm = ‖(codeA⊗ codeB)‖

(g) Quadrant Demodu-
lation Code

(h) Cosine difference
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Feature Based Comparison
Gabor Wavelet Features

Comparing Bit Sequences with Noise Handling

• Exclude noise patches

⇒ Fractional Hamming distance

HDworm =
‖(codeA⊗ codeB)

⋂
(maskA

⋃
maskB)‖

‖maskA
⋃

maskB‖
(1)

(i) Two masks created with the assumed noise model.
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Unsupervised Learning
Hierarchical Clustering

Hierarchical Clustering

• Group sequences in a tree structure

• Initialization: Each sequence is a cluster

• Merge sequences with the distances of the DTW and a linkage
function:

Nearest neighbor, average distance, Ward’s variance criteria

Figure: By merging two groups the centroid changes. Ward’s linkage merges
clusters with the lowest increment of variance.
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Unsupervised Learning
SOM

Self-Organizing Maps - Motivation

Goal Quantitative description of population

• Population consist of different subgroups

• Continuous transitions between subgroups

⇒ Self-Organizing Maps
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Unsupervised Learning
SOM

Self-Organizing Maps - Structure
• SOM consists of neurons nk .
• Connected to model vectors mk and to input vectors.
• During the matching process the BMU is detected.
• Activation of neuron depends on distance to the BMU.
• Update model vector according to activation of connected neuron.

Figure: Model of a Self Organizing map.
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Unsupervised Learning
SOM

Self-Organizing Maps - Learning
Initialization Model vectors = random sequences

Matching Compute position of BMU nb: rb = (x , y)T

rb = argminrk {dist (xi ,mk)} (2)

Update

m
(t+1)
k ← m

(t)
k + hbk(t)

∥∥∥xi −m
(t)
k

∥∥∥ (3)

hbk(t) is the “neighborhood” function.

Activation

hbk(t) = α(t) · exp

(
−‖rb − rk‖

2σ2(t)

)
︸ ︷︷ ︸
Gaussian centered at BMU

(4)

α(t) returns a learning rate α(t) ∈ [0, 1] at time step t.
σ(t) implies the width of the Gaussian kernel.
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Unsupervised Learning
SOM

SOMs and DTW
• Update process requires weighted average.
• Registration between s and r: six ↔ rjx
⇒ Morphed model vector.

wx = (1− λ) · six + λ · rjx
tx = (1− λ) · ix + λ · jx

• λ ∈ [0, 1] warping factor
• t are sampling instances of the weighted average w.

f (ti ) := wi describes the morphed signal. Interpolate f at uniformly
scaled sampling points.
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Unsupervised Learning
SOM

Comparing Populations

1 Learn SOM on all worm sequences of all populations

⇒ Prototypes

2 Quantification of each population by histogram over SOM codebook

3 Comparison of histograms:

D(i , j) =
histpopA(i , j)∑
i,j histpopA(i , j)

− histpopB(i , j)∑
i,j histpopB(i , j)

⇒ Typical differences
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Experimental Validation
Test Datasets

Exemplary Color Assignment

Figure: An example for the color assignment of a worm sequence to its image
illustration.
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Experimental Validation
Test Datasets

COPAS Data

Figure: Wild type (82 worms)

34 von 54



Experimental Validation
Test Datasets

COPAS Data

Figure: Mutants (41 worms)
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Experimental Validation
Test Datasets

Microscopic Data

(a) Control worm (b) Control worm

(c) Toxin treated worm (d) Toxin treated worm

Figure: Toxin treated and control worms
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Experimental Validation
Test Datasets

Microscopic Data

(a) 41 Control worms

(b) 56 Toxin treated worms

Figure: Toxin treated worms and control worms
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Experimental Validation
Test Datasets

Microscopic and COPAS Data

Figure: Top-down: original image, images of segmented and aligned worm, the
extracted GFP sequence and the corresponding COPAS sorter result.
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Experimental Results

MSDTW and DTW
Quality metric: Deformation difference

(a) Most of the deformation models differ insignificantly.

(b) An outlier with strong deformation differences.

Figure: The deformation models are plotted in red and green.

• Deformation and deformation difference between the MSDTW and
the DTW.

• Black area indicates the absolute difference.
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Experimental Results

MSDTW and DTW

• Deformation distance between the MSDTW and DTW matrix of 80
worms

• Black points: 85 outliers with an average deformation ≥ 2.5 pixel

42 von 54



Experimental Results

Clustering

(a) Correlation along the warp path. (b) Penalizing pathes with a low signal to
signal relation

Left Clustering with summed up correlation along warp path

Right Penalizing pathes with little signal elements

⇒ Distance of the clusters increases
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Experimental Results

Clustering - Example

Figure: Wild type and mutant signals
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Experimental Results

Fast Comparison - Clustering
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Experimental Results

Self-Organizing Maps

Figure: 5× 5 SOM

• SOM after 500 iterations

• Cylindric objects represent the model vectors

• Ground plot → How often BMU.
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Experimental Results

Comparing Populations

(a) Histogram of wild type
population

(b) Histogram of mutant
population

(c) Histogram differences

• Quantification of the populations according to the SOM codebook.

• Each element of a population is assigned to its best matching unit
(BMU) on the SOM.

• Difference of normalized histograms (right).

• Preferred areas are visible.
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Experimental Results

Comparing Populations

(d) Prototypical sequences of the wild type population

(e) Prototypical sequences of the mutant population

Figure: The model vectors with the highest and lowest values of the difference
histogram. The wild type class population is modeled like expected.
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Conclusion and Outlook

Conclusion

DTW Considers shape of the profiles and alignment
Time-delayed DTW ⇒ excellent registration and similarity
results

MSDTW MSDTW yields nearly same results.
Adequate: Long sequences with weak deformations.

Cluster Grouping from coarse to fine structure differences
DTW distance measure ⇒ intuitive groups

SOM SOM combined with DTW to model a sparse
representation of all populations
Trying to enforce a global topological order ⇒ Quality of
prototypes decreased

SOM could partially model the two worm populations

DTW Runtime O(n2), 0.8 seconds with n = 512

Gabor 80 Worms n = 1024
Quadrant: 9 sec Cosine: 22 sec Noise: 43 sec
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Conclusion and Outlook

Outlook

SOM Incorrect registration leads to artefacts

Evaluation on huge datasets

COPAS Improve quality of sorter data.
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Conclusion and Outlook

Self-Organizing Maps - Example

Figure: The SOM was initialized with random data values. It appears like a
’haystack’

A bell-shape was formed with 20000 data points. Some of them are
illustrated in the red points. They were added with Gaussian noise. The
blue lines indicate a SOM with its neighborhood relation. The SOM was
created with 12× 12 neurons and an Euclidean distance measure.
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Self-Organizing Maps - Example

Figure: After 100 Iterations. The SOM learns fast within a huge neighborhood.

A bell-shape was formed with 20000 data points. Some of them are
illustrated in the red points. They were added with Gaussian noise. The
blue lines indicate a SOM with its neighborhood relation. The SOM was
created with 12× 12 neurons and an Euclidean distance measure.

53 von 54



Conclusion and Outlook

Self-Organizing Maps - Example

Figure: After 500 Iterations. The topology of the data gets visible.

A bell-shape was formed with 20000 data points. Some of them are
illustrated in the red points. They were added with Gaussian noise. The
blue lines indicate a SOM with its neighborhood relation. The SOM was
created with 12× 12 neurons and an Euclidean distance measure.
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Conclusion and Outlook

Self-Organizing Maps - Example

Figure: After 106 iterations the SOM is in the refinement stage. The topology
of the bell was nearly reconstructed.

A bell-shape was formed with 20000 data points. Some of them are
illustrated in the red points. They were added with Gaussian noise. The
blue lines indicate a SOM with its neighborhood relation. The SOM was
created with 12× 12 neurons and an Euclidean distance measure.
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Conclusion and Outlook

Fast Comparison - Shift invariance

(a) Average Feature (b) Haar Feature (c) Gabor Feature (Cosine
Difference)

Figure: Applying the feature based methods onto a shifted delta impulse. The
illustrated similarity matrices show that only the results of the Gabor feature
comparisons (c and d) are invariant to a shift of the signals.
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