3D U-Net:

Learning Dense Volumetric Segmentation from Sparse Annotation

Özgün Cicek^{1,2}, Ahmed Abdulkadir^{1,4}, Soeren S. Lienkamp^{2,3}, Thomas Brox^{1,2}, and Olaf Ronneberger^{1,2,5}

[O] Vision

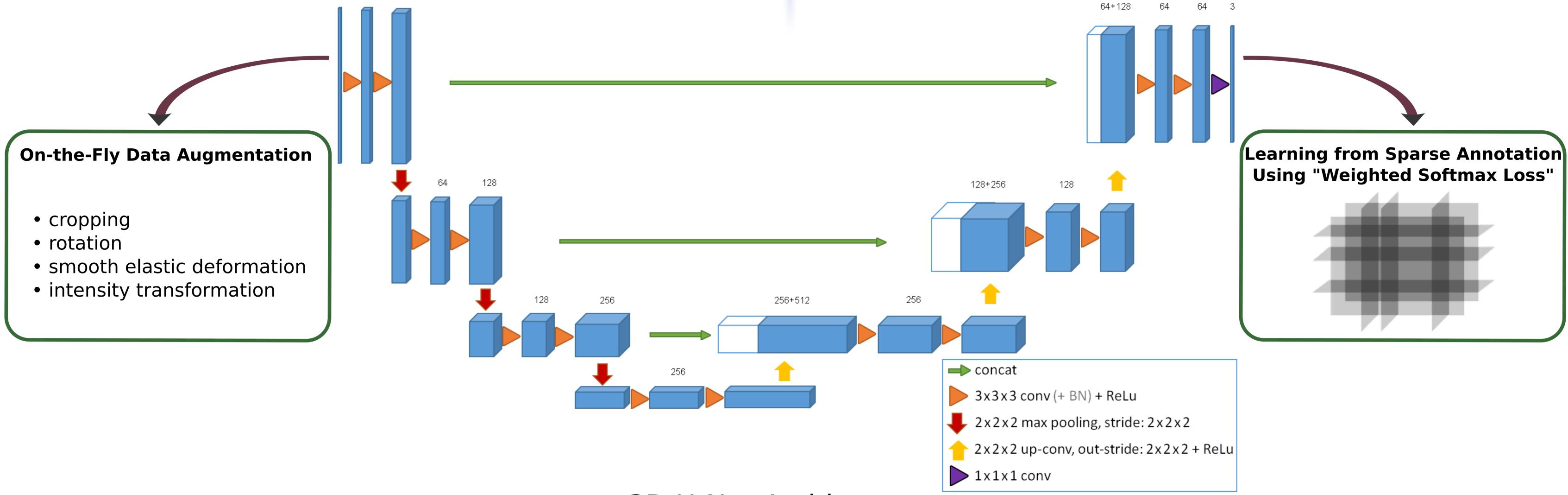
COMPUTER VISION University of Freiburg

¹ Computer Science Department, University of Freiburg, Germany ² BIOSS Centre for Biological Signaling Studies, Freiburg, Germany ³ University Hospital Freiburg, Renal Division, Faculty of Medicine, University of Freiburg, Germany ⁴ Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Germany ⁵ Google DeepMind, London, UK

Abstract. We introduce a 3D convolutional neural network (CNN) for volumetric segmentation that learns from sparsely annotated volumetric images. We outline two attractive use cases of this method: (1) semi-automated segmentation, (2) fully-automated segmentation. The proposed network extends the previous u-net architecture from Ronneberger et al. [1] into 3D. We evaluate the proposed method on a complex 3D structure, *Xenopus* kidney, and achieve good results for both use cases.

Challenge 1. Deep learning approaches require rich data-sets annotated by experts. However, annotation of volumetric data is tedious since only 2D slice-wise annotations are possible. Annotating a volume slice-by-slice is also redundant considering the similarity between the neighboring slices.

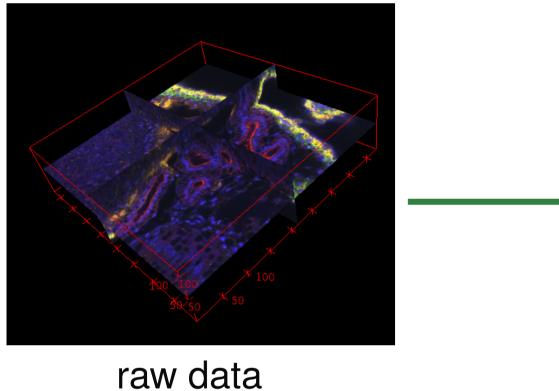
Challenge 2. Training CNNs requires millions of samples. However, acquiring millions of biomedical images is not feasible. Therefore, we adopt the data augmentation of u-net [1] which smoothly deforms the images on-the-fly to introduce infinitely many and biomedically plausible images.

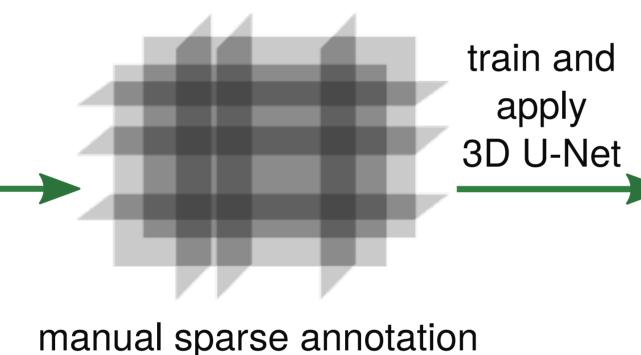


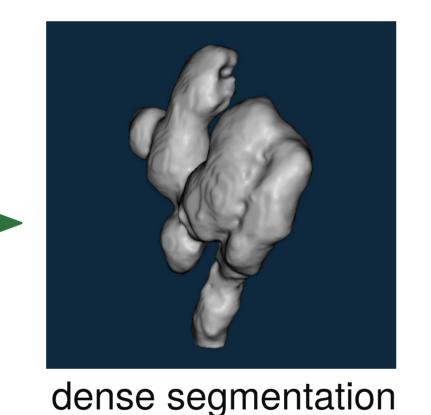
3D U-Net Architecture

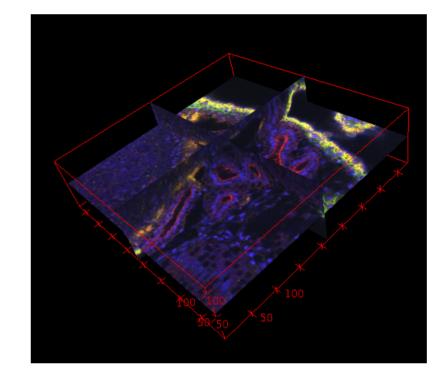
without Bottleneck [2] and Optionally with Batch Normalization (BN) [3] which Extends U-Net [1] to 3D by Replacing Each Operation by Its 3D Counterpart.

Use Case 1: Semi-Automated Segmentation







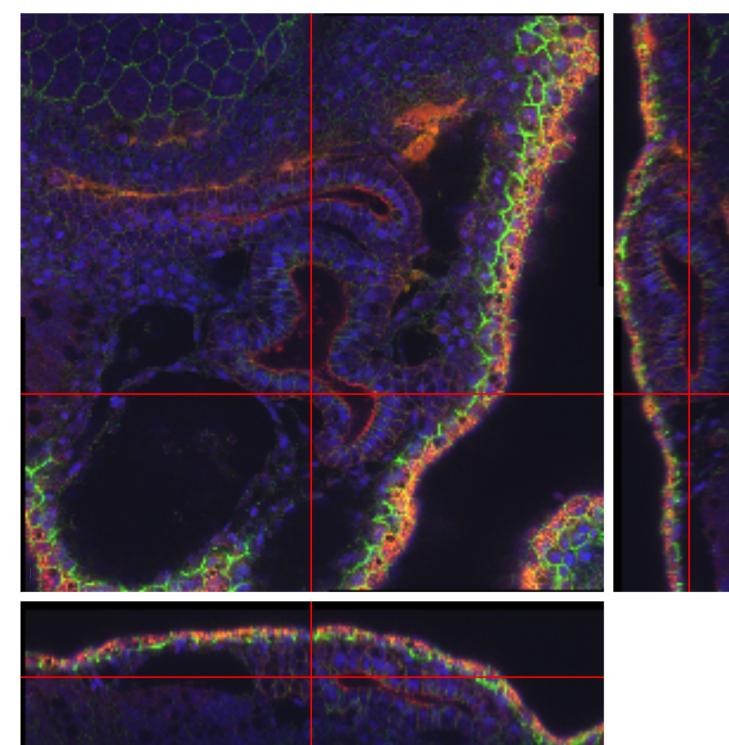


apply trained 3D U-Net

Use Case 2: Fully-Automated Segmentation

by Slicer3D [4,5]

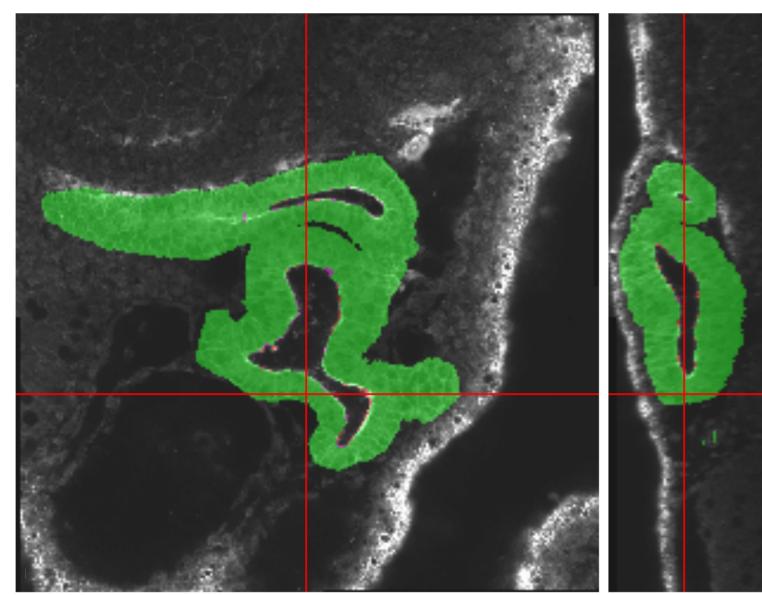
Qualitative Results: (left) raw image - (right) segmentation

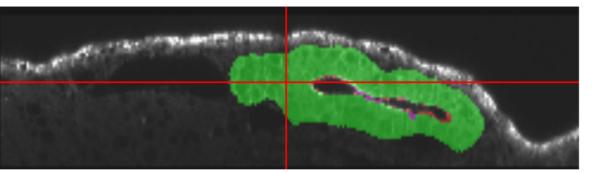


channel0: Tomato-Lectin channel1: DAPI channel2: Beta-Catenin

Quantitative Results

Table 1: Cross validation results for \cdot (T TT)

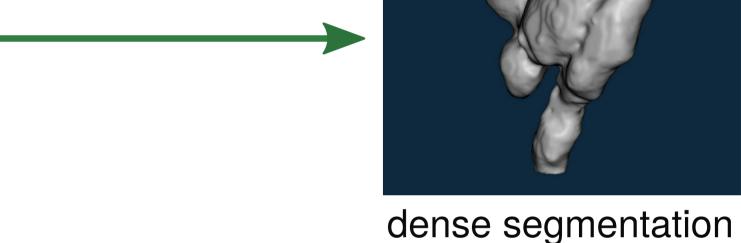




true positives false negatives false positives

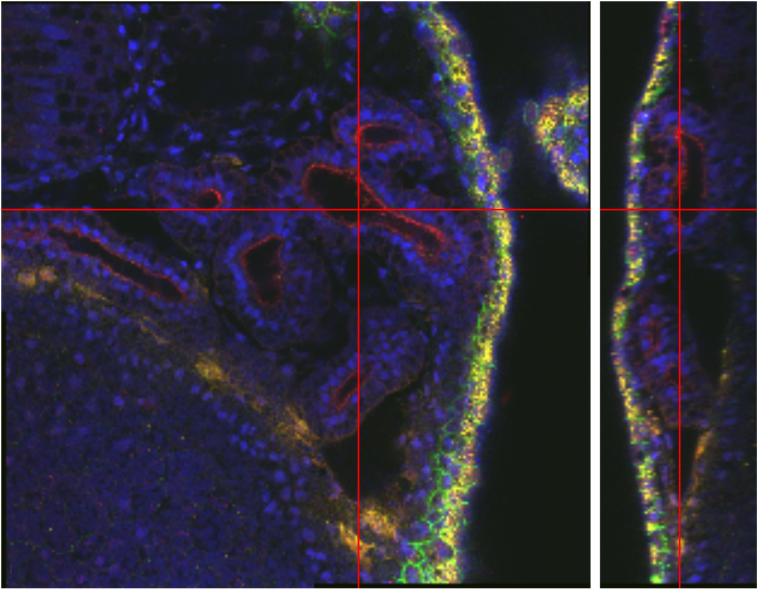
Sparsity

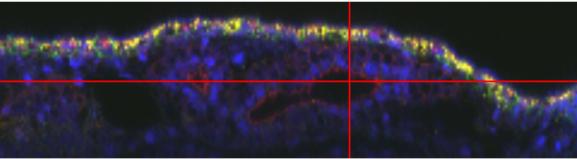
Table 2: Effect of # of slices for • • • •



raw data

Qualitative Results: (left) raw image - (right) segmentation

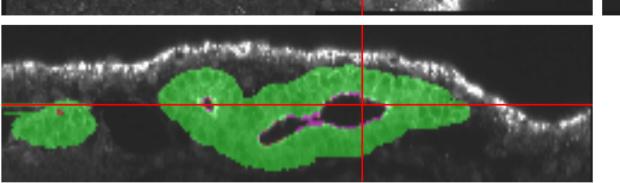


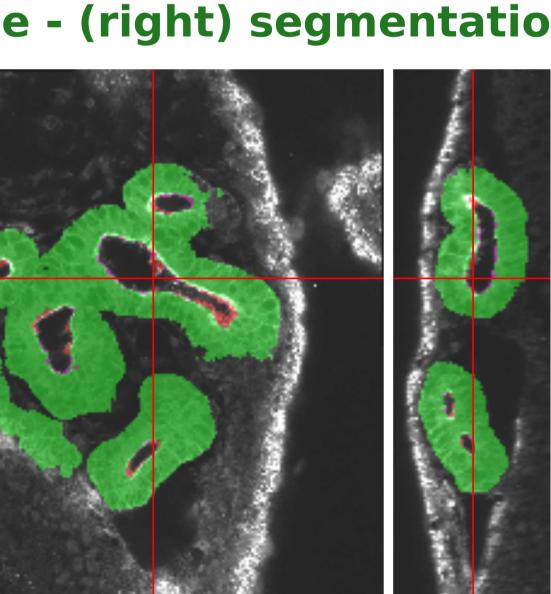


channel0: Tomato-Lectin channel1: DAPI channel2: Beta-Catenin

Quantitative Results

Table 3: Cross validation results for fully-automated segmentation (IoU)





semi-automated segmentation (IoU)					S
test	3D	3D	2D		
slices	w/o BN	with BN	with BN		
subset 1	0.822	0.855	0.785		
subset 2	0.857	0.871	0.820		
subset 3	0.846	0.863	0.782		
average	0.842	0.863	0.796		

se	semi-automated segmentation (IoU)								
	GT	GT	IoU	IoU	IoU				
	slices	voxels	S1	S2	S3				
	$1,\!1,\!1$	2.5%	0.331	0.483	0.475				
	$2,\!2,\!1$	3.3%	0.676	0.579	0.738				
	$3,\!3,\!2$	5.7%	0.761	0.808	0.835				
	$5,\!5,\!3$	8.9%	0.856	0.849	0.872				

References

- [1] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: MICCAI. LNCS, vol. 9351, pp. 234-241. Springer (2015).
- [2] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. To appear in: CVPR (2016).
- [3] loffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448-456 (2015).
- [4] Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., et al.: 3D slicer as an image computing platform for the quantitative imaging network. J. Magn Reson Imaging 30(9), 1323-1341 (2012).
- [5] https://www.slicer.org
- [6] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proc. ACMMM. pp. 675-678 (2014).

test	3D	3D	2D
volume	w/o BN	with BN	with BN
1	0.655	0.761	0.619
2	0.734	0.798	0.698
3	0.779	0.554	0.325
average	0.723	0.704	0.547

Software

The implementation of the 3D u-net (based on BVLC Caffe [6]) is available as open-source at: http://lmb.informatik.uni-freiburg.de/ resources/opensource/unet.en.html

Acknowledgement

We thank the DFG (EXC 294 and CRC-1140 KIDGEM Project Z02 and B07) for supporting this work. AA acknowledges funding by the grant KF3223201LW3 of the ZIM (Zentrales Innovationsprogramm Mittelstand). SSL acknowledges funding from DFG (Emmy Noether-Programm). We also thank Elitsa Goykovka for the useful annotations and Alena Sammarco for the excellent assistance in imaging.



