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Challenge 2. Training CNNs requires millions of samples. However, 
acquiring millions of biomedical images is not feasible. Therefore, we adopt 
the data augmentation of u-net [1] which smoothly deforms the images 
on-the-fly to introduce infinitely many and biomedically plausible images.
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Use Case 1: Semi-Automated Segmentation Use Case 2: Fully-Automated Segmentation

Sparsity

The implementation of the 3D u-net (based on BVLC Caffe [6]) is 
available as open-source at: http://lmb.informatik.uni-freiburg.de/
resources/opensource/unet.en.html

Challenge 1. Deep learning approaches require rich data-sets annotated 
by experts. However, annotation of volumetric data is tedious since only 2D 
slice-wise annotations are possible. Annotating a volume slice-by-slice is 
also redundant considering the similarity between the neighboring slices. 

3D U-Net Architecture 
without Bottleneck [2] and Optionally with Batch Normalization (BN) [3]

which Extends U-Net [1] to 3D by Replacing Each Operation by Its 3D Counterpart.
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Learning from Sparse Annotation 
Using "Weighted Softmax Loss"

On-the-Fly Data Augmentation

  • cropping
  • rotation
  • smooth elastic deformation 
  • intensity transformation

Software

Abstract. We introduce a 3D convolutional neural network (CNN) for 
volumetric segmentation that learns from sparsely annotated volumetric 
images. We outline two attractive use cases of this method:  
(1) semi-automated segmentation, (2) fully-automated segmentation.
The proposed network  extends  the  previous u-net architecture from 
Ronneberger et al. [1] into 3D. We evaluate the proposed method on a 
complex 3D structure, Xenopus kidney, and achieve good results for both
use cases. 
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