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Abstract

Traditional intensity imaging does not offer a general
approach for the perception of textureless and specular re-
flecting surfaces. Intensity based methods for shape recon-
struction of specular surfaces rely on virtual (i.e. mirrored)
features moving over the surface under viewer motion. We
present a novel method based on polarization imaging for
shape recovery of specular surfaces. This method over-
comes the limitations of the intensity based approach, be-
cause no virtual features are required. It recovers whole
surface patches and not only single curves on the surface.
The presented solution is general as it is independent of the
illumination. The polarization image encodes the projec-
tion of the surface normals onto the image and therefore
provides constraints on the surface geometry. Taking polar-
ization images from multiple views produces enough con-
straints to infer the complete surface shape. The reconstruc-
tion problem is solved by an optimization scheme where the
surface geometry is modelled by a set of hierarchical ba-
sis functions. The optimization algorithm proves to be well
converging, accurate and noise resistant. The work is sub-
stantiated by experiments on synthetic and real data.

1. Introduction

The problem of shape recovery for the class of specu-
lar reflection objects has attracted a lot of researchers in
the past. However, no general solution has been found so
far. This paper presents an approach based on polarization
imaging which overcomes previous restrictions.

An important contribution was the work by Oren and Na-
yar [8]; they tracked virtual features traveling along the sur-
face under viewer motion. From the known motion and the
trajectory of the virtual feature the corresponding surface
profile was computed. The main drawbacks are twofold.
First, this approach is highly illumination depending since
a virtual feature corresponding to a highlight on the surface

must be observed. A more diffuse or dynamic illumination
will corrupt the analysis. Secondly, the surface geometry
can only be computed at profiles, not on the whole surface
under inspection.
The aim of local shape analysis was pursued for example
in [2] and [4] based on stereo and reflectance modelling re-
spectively. Among the techniques using active illumination
we mention the work [18] where objects are rotated on a
turn table, and the work [9] where structured light was used.
There also were a lot of attempts to model the reflec-
tion properties incorporating specularities for photometric
stereo, e.g in [7], or stereo approaches as in [1].
An alternative approach is the reconstruction of objects us-
ing apparent contours which has been performed for exam-
ple in [3]; however, a necessary condition is the convexity
of the surface.
The first approach for shape analysis from multiple polar-
ization images has been achieved by Wolff in [16] where
the orientation of a plane was computed form two views.
This previous work is generalized by our contribution. Un-
der ideal lighting condition and a known refraction index of
the object, shape recovery from a single polarization image
was carried out in [11]. For the special case of a transparent
planar surface a method determining the orientation from a
single image is presented in [12]. The general problem of
highlight analysis using polarization is treated in [6].

This paper presents a novel approach for the reconstruc-
tion of specular surfaces. It is designed to determine the
depth of global surface regions. In this respect we claim,
that our method is superior to the method proposed in [8],
as no virtual features need to be present in the image and
the depth of whole surface regions instead of only surface
curves can be computed. The method is a passive one and
hence do not requires special or active lighting conditions.
It handles even modest concavities (as long as no inter-
reflection occurs) and therefore covers a broader range of
objects than approaches based on silhouettes, like for ex-
ample [3]. We stress that the presented approach does not
incorporate any additional intensity based information, such



as surface texture, surface edges or apparent contours. This
will be done in the future and it is to be expected that the
integration of intensity clues will encrease the performance
of the proposed method.

After presenting the relevant aspects of polarization
imaging we state the shape from polarization problem. We
summarize our previous work [10] where shape analysis
from a single polarization image was carried out. It is
shown, that a single polarization image provides not enough
constraints on the surface geometry for a complete recon-
struction. Then, the case of multiple polarization images
is tackled. It is motivated that an adequate framework for
shape recovery is a global optimization scheme. Using hi-
erarchical basis functions for the approximation of the sur-
face, guarantees good convergence in the optimization pro-
cess. Experiments on synthetic and real world data show
that a precise reconstruction is achieved.

2. Polarization Analysis

Unpolarized light becomes partially linear polarized
upon reflection on both dielectrics and metals. Since com-
mon light sources emit unpolarized light, the analysis of
partial linear polarization of the reflected light covers all
materials. The cases of multiple interreflection, like in [15],
or polarized light sources, are not treated in this context.

Polarization analysis is the determination of the com-
plete state of polarization of the light. For the analysis of
partial linear polarized light, the polarization image is a set
of three images encoding the intensity (that is what a normal
camera would see), the degree of polarization and the orien-
tation of polarization (figure 5). The orientation of polariza-
tion is encoded in the so called phase image (the intensity
encodes the angle of orientation).

The two basic assumptions for a geometric scene inter-
pretation using polarization imaging are that first the object
under investigation exhibits a smooth surface structure and
secondly the light illuminating the scene is not polarized. A
smooth surface has no micro-structure and as a consequence
the geometry of specular reflection, which is the plane of
reflection, is only defined by the ray of observation and the
corresponding surface normal. Assuming the lighting to be
unpolarized results in the fact that the phase image is in-
variant concerning the intensity of the illumination and a
characteristic entity of the object’s shape, which is clearly
shown in figure 5(b).

The physics of the electromagnetic theory tells us, that
upon specular or surface reflection, which is a reflection in
a proper physical sense, unpolarized light becomes partial
linear polarized with an orientation orthogonal to the plane
of reflection. On the other hand, diffuse or body reflected
light, which is, physically spoken, a refraction, is partial
linear polarized parallel to the plane of reflection. There-

fore, the difference between a phase image produced by a
specular and a diffuse reflecting object is just � � . To get a
unique phase image, independent of the type of reflection,
we just add � � to phase values corresponding to specular re-
flection and keep the values corresponding to diffuse reflec-
tion. Then the phase values will correspond to the orienta-
tion of the surface normals projected onto the image plane.
Notice that the phase images are defined modulo � ; in order
to formulate addition and subtraction of phase values in a
convenient way, phase values are defined over the interval��� � ��� � � � .

Commonly the analysis of specular surfaces concen-
trates on highlights, that are surface regions mirroring
strong light sources. But, it is understood that even specular
surfaces can emit light resulting from diffuse or body reflec-
tion. The only object exhibiting only surface and no body
reflection is the perfect mirror. Therefore, it is necessary to
conceive a polarization based framework which covers both
types of reflection. This can be performed based for exam-
ple on the work in [17], where a method is proposed infer-
ring the reflection type directly from the polarization image.
Adding � � to phase values resulting from surface reflection
and keeping phase values resulting from body reflection will
lead to a phase image unequivocal in a geometric sense and
invariant of the lighting conditions.

Even if our method can be applied to both types of reflec-
tion, surface reflection is the target application as the degree
of polarization is in general much higher than for the case
of body reflection. In most cases the degree of polarization
is sufficient for reflection angles typically lying between 30
and 85 degrees. So, even if the phase image is illumination
invariant the degree of polarization depends on the lighting
conditions. Thus the crucial constraint for the employment
of a shape from polarization approach is that the degree of
polarization must be high enough for an accurate measure-
ment of the orientation of polarization.

Finally, we want to note that the appropriate camera
model is the scaled orthographic projection, because light
has to project orthographically onto the polarizer filter for a
correct polarization measurement.

3. The problem of shape from polarization

3.1. A single polarization image

To get into the shape from polarization problem we start
with the analysis of a single image, summarizing the pre-
vious work in [10]. In the previous section it was stated
that the phase image encodes the direction of the reflec-
tion plane. The reflection plane is spanned by the ray of
observation and the surface normal of the observed surface
point. Furthermore, the reflection plane intersects the image
plane in the line defined by the image point and the orienta-
tion represented by the phase value � . Hence, the reflection



plane can be spanned by the projecting ray and the vector� generated by the phase value as ���������
	�� �
� � 	������ ������� .
So, we can say that the phase value induces one constraint
on the surface normal, as it has to lie within the reflec-
tion plane. Conversely, the phase value vector is the pro-
jection of the normal onto the image plane. Let � be a
world point projecting under orthographic projection onto
the image point � with ��� ��� ��� ��� � . The correspond-
ing surface normal � can be parameterized as follows:
� ����� � � � ��� � �"!$# % , where � is the above defined phase
value vector. So, the key observation is:

The phase image encodes the direction of the surface
normals projecting onto the image plane.

We just mention, that this observation is not new, as it is
used already in [16] and [11]. Instead of a point based in-
terpretation of the phase values a global interpretation can
be deduced as well. This leads to a complete new insight
in the geometrical analysis of polarization imaging. Each
phase image point encodes a direction �&� ��� which is the
projection of the cooresponding surface normal. Then, the
image ��'(� ��� encodes a direction perpendicular to the sur-
face normal. Going from one pixel to the next in the direc-
tion of � ' � ��� we end up with a curve ) . Mathematically
more precisely, we can think of � ' � ��� as a normalized vec-
tor field defined on the image domain by the phase image
as � ' � ��� �+*-, ./ .0,21 �3� ��� . Then, the curves ) are the field
lines of the vector field � ' � ��� . Field lines are the envelopes
of the flow vectors or, in other words, flow vectors are the
tangent vectors to the field lines. In the sequel we will call
the field lines of �4'5� ��� level curves, which is due to the
following fact proven in [10]:

Level curves are the (orthographic) projection of sur-
face profiles parallel to the image plane (Iso-depth pro-
files).

The phenomenon is depicted in figure 1. From image
measurements, i.e. the phase image, level curves can be
computed. As outlined above, points on a single level curve
are the projection of surface points on a profile, denoted6

, all having constant depth. Surface points with constant
depth are surface profiles, where the cutting plane is paral-
lel to the image plane. Since the actual depth of the surface
profiles is unknown the complete surface shape can be pa-
rameterized by the set of profile depth values. A very inter-
esting aspect is that by the use of level curves the problem of
reconstructing 7�8"7 depth values is reduced to the prob-
lem of finding the depth of only 7 level curves representing
the complete surface.

3.2. The correspondence problem for multiple im-
ages

The classical approach for depth recovery is the trian-
gulation of corresponding features seen in two or more im-
ages. Textureless and specular reflecting surfaces do not

PSfrag replacements

Orthographic
projection

Level curves

Surface profiles

Figure 1. Level curves are images of surface
profiles

provide this type of features. As the phase image is the rep-
resentation of a geometric feature, i.e. the projection of the
surface normals onto the image plane, we have to investi-
gate whether the correspondence problem can be solved on
the basis of the phase image information. Then point-wise
reconstruction via triangulation would be possible.

It is very straightforward to perceive that two polariza-
tion images do not provide enough constraints for a direct
point-wise reconstruction algorithm: A given point in the
first phase image provides one constraint on the surface nor-
mal: the normal has to lie in the reflection plane spanned by
the ray of observation and the projection of the surface nor-
mal onto the image plane [10]. The corresponding point
in the second image has to lie on the epipolar line and in-
duces a second constraint on the surface normal. Both con-
strains uniquely determine the normal. Since the normal
is not known any point on the epipolar line will generate a
valid solution for the normal. Hence, a point-wise interpre-
tation from only two polarization images is not sufficient
for a solution of the correspondence problem and no recon-
struction can be achieved.

Three images can offer a solution to the correspon-
dence problem: The unknown depth parameterizes the cor-
responding points lying on the epipolar line in the second
and the third image. The points in the first and second image
determine the surface normals. Hence, for the correct depth
the surface normal has to satisfy the constraint in the third
image as well. In other words: the three reflection planes
spanned by the three phase image points have to intersect
in the same space line in order for them to correspond to
the same surface point. Hence, three phase images provide
a necessary set of constraints for finding correspondences.
Therefore, we can state that:

In principle, three polarization views are sufficient
for surface reconstruction.

However, local reconstruction using explicit correspon-
dences does not seem to be the best choice for the following
two reasons: first, it is expected to be susceptible to noise
and second two redundant entities are computed which are
the two parameters of the surface normal. In a global recon-



struction approach this would be redundant since the sur-
face normals can be computed from the depth function. In
the experimental section we show that a global scheme is
adequate, because even on the basis of only two polariza-
tion images correct reconstruction is achieved.

4. Optimization approach for shape from po-
larization

Inspired by variational approaches used for solving the
shape from shading problem, like for example in [5], we
choose a similar way for the shape from polarization prob-
lem. Unlike the shape from shading problem, no addi-
tional constraints are required since the problem is over-
determined. We employ the idea of modelling the surface
by hierarchical basis functions, which performed well in the
case of the shape from shading problem [14] too. An im-
plementation using an explicit formulation of the Jacobian
results in a fast and well converging algorithm.

4.1. A functional for optimization

An object surface � observed by a camera
6

will pro-
duce a phase image � � � � � � 6 � . Let � be the unknown
real surface and

�� the reconstructed surface. The surface
��

best approximates the real surface � if the squared differ-
ences between the phase images

�� and � are minimal over
all cameras � . Hence, the functional � to be minimized by
the surface

�� is:

� �����
	�� �� � �� � 6 � � � � ��
 � � (1)

where the integral is evaluated over the image plane of
the corresponding camera. Nevertheless, a formulation
of the functional in world coordinates is more appropri-
ate. In world coordinates the object surface � is mod-
elled as a depth function � ��� ��� � over some discrete lat-
tice ��� ��� � !�����# % �

. The surface normals are defined
as � ��� ��� � � � � ��� ��� ��� � � � ��� ��� ��� � ��� � � , with the
partial derivatives ����� �! #" � � ���$� �% #" � . World points
� � ��� ��� � � � � project onto image points �

� � ��& � ��' � ���
as �

� �)( � * .0, ,, .0, 1�* � �,+.- � , where ( is the scaling factor,* the rotation matrix between world and camera coordinate
system and - a vector incorporating camera translation and
the principal point. The surface

�� will generate a phase
image

�� � as a function of the surface normals and the pro-
jection matrix / � , more explicitly:

�� � � �� � � � � � � � / � � .
The real phase image � � in terms of world coordinates is� � � � � � � � � � � ��� �0� ��� � / � � . Now, the functional � can
be defined over the definition domain � of the surface � :

� � � �
	213� �� � � �4� � ��� � / � � � � � ��� ��� � � � / � � 
 �65 � 5 �
(2)

4.2. Optimization based on hierarchical basis func-
tions and a least squares algorithm

A standard strategy for minimizing the above functional
would be to formulate the corresponding Euler-Lagrange
equation. This would result in a partial differential equation
in � � ��� � ��� . But, as the partial derivatives of � depend
on � itself, we prefer a formulation where the functional� is function of only the depth � . Then we have a classi-
cal least squares optimization problem to solve and standard
techniques can be applied.

Using the functional as defined in equation (2) will result
in an optimization algorithm which converges very slowly
or even not at all depending on the initial solution. The
reason for that can be seen in the local nature of the formu-
lation: changing the depth at one point will change the error
difference

�� � � at only five points given by the 4-connected
neighborhood since the depth value itself and the first order
partial derivatives occur in the formula 2. In a numerical
context this is called the computational molecule or five-
point star. In this scheme global errors have to be reduced
through local interactions.

To overcome these problems, hierarchical basis func-
tions are used and we follow the work in [13], [14], where
the reader is referred for more details. The key idea is to set
up a multiresolution pyramid where the entries at each level
are the coefficients of the basis functions. Going up in this
pyramid from fine to coarse corresponds to basis functions
with a larger support. Assuming that the dimensions 7 8 7
of the definition domain are a power of two ( 7 �87:9 ), it
follows that the pyramid has ;3+ � levels. At the finest
level < � � the basis functions have a support of two, which
means that the corresponding coefficient changes the depth
of the center point and the derivatives of the direct neigh-
bors. The basis functions at general level < have a support
of 7>= 8 7?= changing depth and derivatives likewise. The top
most level < � ;@+ � acts as a depth offset. To complete
the scheme, a bilinear interpolation operator A = is selected
which defines how each level is interpolated to the finest
resolution. The operator A = acts on the coefficients � = of the
basis function and we get the formula for the actual depth
function � :

� � 92BDC� =FEDC A = � � = �HG (3)

Rearranging the depth functions � and � = in vector form the
interpolation operators can be written in a matrix form with
sparse structure. In [13] the multiresolution pyramid is only
partially populated such that the total number of populated
nodes in the complete pyramid is equal to the number of
grid points at the finest resolution, which is 7 �

. In contrast,
we chose the pyramid to be completely populated resulting
in I J � 7 � � � � nodes or coefficients. This does not lead to an



ill-posed problem like in the shape from shading case, since
the shape from polarization formulation provides ���57 �
data points, where � is the number of images. Now, the
formulation has more degrees of freedom (over parameteri-
zation) than the original problem, but the complexity of the
problem remains the same and the final algorithm still con-
verges very well.

The optimization itself is implemented within
MATLAB, which provides a least squares optimiza-
tion procedure. MATLAB offers an algorithm specially
tuned for large-scale problems, incorporating the sparsity
structure of the problem and the explicit use of derivative
information in the form of the Jacobian. The actual opti-
mization procedure is of the type “trust-region reflective
Newton”. Using the derivative information explicitly
results in a more accurate and faster implementation. The
Jacobian can be derived directly from the formulation of
the functional � .

5. Experiments

5.1. Simulated data

In order to prove the convergence of our algorithm and
to assess the accuracy of the reconstruction result we test
our method on a synthetically generated object, like the one
shown in figure 2. In a previous section we stated that, in
principle, three polarization views are sufficient for surface
reconstruction. Below we show that even two views can be
sufficient for a complete reconstruction. To do so, two phase
images of the synthetic surface were generated, see figure
3. These two images are used as input for our algorithm.
As initial guess for the optimization routine we computed
a plane, minimizing the error functional � , see figure 4(a).
The evolution of the surface is shown in the images 4(a)
to 4(d). After 20 iterations convergence is almost reached.
The reconstruction result is identical to the original object,
within an error � of less than �2G���� � . The error � is a relative
error defined as � ���
	"�� "9 � , where

�� is the reconstructed
and � the ground-truth depth; ; is the maximal length of
the reconstruction area.

Additionally, we tested the influence of the noise level
on the resulting reconstruction as well. It turned out that
the reconstruction error is proportional to the noise level.
The root mean square error is always less than one fifth
of the noise in the phase image. That means for a noise
level of � G ��
 the rms-error in the reconstruction is less than
�2G�� � ; The dependency on the number of images is negli-
gible. Only in the case of two images the error increases
slightly. This shows the strength of a global optimization
process, which inherently smooths the reconstruction thus
eliminating the influence of the noise.
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Figure 2. The synthetically generated surface
used for simulations. From this object phase
images are generated from viewing directions
orthogonal to the axis of rotation which is in-
dicated by the line. The two viewing direc-
tions are represented by the arrows.

Figure 3. Left and right phase image of the
synthetic object taken from the two viewing
directions corresponding to the arrows in fig-
ure 2.

5.2. Real world experiment

In figure 5 a polarization image of a billiard ball is
shown, comprising its three components: the intensity im-
age, the phase image and the degree of polarization image.
Since the ball is specular reflecting the surrounding illumi-
nation is mirrored on the surface, see figure 5(a). As the
illumination does not produce any salient intensity features,
the method proposed in [8] could not be applied in this situ-
ation. However, the problem can be solved by our polariza-
tion based method.

A sequence of five polarization images was taken from
the ball by rotating it on a turntable. Then the third cam-
era is chosen as reference coordinate system and a squared
surface patch in the third image, as marked in figure 5(d),
is chosen as reconstruction domain. The optimization pro-
cedure is initialized with a plane minimizing the error func-
tional. The final reconstruction result can be seen in 6(a).

The marked square as shown in figure 5(d) is chosen
as reconstruction domain, because the underlying surface
patch projects in all five images onto regions, where the de-
gree of polarization is higher than � G � , like the depicted grey
region in figure 5(d). Nevertheless we like to stress that the



1 

  

16

  

32

1 

  

16

  

32
  

−2

0 

 2

  

(a)

1 

  

16

  

32

1 

  

16

  

32
  

−2

0 

 2

  

(b)

1 

  

16

  

32

1 

  

16

  

32
  

−2

0 

 2

  

(c)

1 

  

16

  

32

1 

  

16

  

32
  

−2

0 

 2

  

(d)

Figure 4. The evolution of the surface during
the optimization process: initial surface(a),
after 2 (b), 5 (c) and 20 (d) iterations. The re-
construction result is identical to the original
surface, like in figure 2.

proposed method works even if not the whole surface patch
does produce enough polarization in all images. Parts of the
surface patch, which produce enough polarization in only
one image, can be reconstructed equally; this is based on
the ideas presented in section 3.1.

As we know that the object is a sphere, we can assess the
accuracy of the reconstruction by comparing it to ground
truth data. From the intensity images we can compute the
coordinates of the center of the real sphere. In the case of a
rotational symmetric object like the sphere the shape can be
recoverd only up to scale. This means that all the spheres
with different radius, but centered at the same point, will
produce the identical sequence of phase images. This is
true, apart from the fact that smaller spheres will result in
a smaller support of valid phase values in the phase image.
Therefore, from the reconstruction result we have to deter-
mine the radius of the reference sphere, such that it best
fits the reconstructed data. This can be done by using for
example a nonlinear optimization method. Then, the differ-
ence between the reconstructed surface and the ground truth
sphere is the reconstruction error, as shown in figure 6(b).
The error � is the unsigned error relative to the radius *
of the sphere: � � � 	" � "� � . It is remarkable that the overall
root-mean-square error is only �2G���� ��� and the maximum er-
ror � G � 7�� . These results agree well with the results obtained
in the previous experiment based on simulated data.

Experiments based on only three phase images give sim-
ilar results.

(a) (b)

(c) (d)

Figure 5. Polarization image of a billiard ball:
intensity image (a), phase image (b) and de-
gree of polarization (c). In (d) the grey region
labels the points, where the degree of polar-
ization is higher than 0.1. The area of recon-
struction for the experiment in section 5.2 is
the white square in (d).

6. Discussion and future work

We have presented a novel approach for the reconstruc-
tion of specular reflecting objects based on polarization
imaging. The projection of the surface normals is directly
provided by the polarization image. This geometric infor-
mation is then employed for shape recovery. In a single
image curves corresponding to surface profiles parallel to
the image plane and with unknown depth can be computed.
It is shown that in principle three polarization images are
sufficient for reconstruction. Subsequently, the problem of
shape recovery is stated in an optimization context. The ob-
ject surface is modelled using hierarchical basis functions
which guarantees good convergence properties and an ac-
curate reconstruction. Results on simulated data prove that
for a asymmetrical object a correct reconstruction can be
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Figure 6. The reconstruction resulting from
the analysis of a sequence of 5 phase im-
ages; one image out of this sequence is the
one in figure 5(b). Figure (a) shows the re-
construction result for the labeled region in
5(d). Figure (b) depicts the reconstruction er-
ror, relative to the radius of the sphere. The
maximum error is smaller than 0.03.

achieved even based on only two views. For a simple, sym-
metrical object like a sphere reconstruction based on three
or more views can be achieved up to a scale factor. The
algorithm performs well also on a real world experiment.

Since the theoretical proof for the fact that global recon-
struction is possible from only two views is not yet given,
further analysis has to be done on this issue. In the future
the performance of the method will be enhanced by incor-
porating additional intensity based information like surface
texture, surface boundaries or apparent contours. A more
general surface model has to be used in order to describe
arbitrary 3D objects.
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