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Efficient Nonlocal Means for
Denoising of Textural Patterns

Thomas Brox, Oliver Kleinschmidt, and Daniel Cremers

Abstract—The present paper contributes two novel techniques
in the context of image restoration by nonlocal filtering. Firstly,
we introduce an efficient implementation of the nonlocal means
filter based on arranging the data in a cluster tree. The structur-
ing of data allows for a fast and accurate preselection of similar
patches. In contrast to previous approaches, the preselection
is based on the same distance measure as used by the filter
itself. It allows for large speedups, especially when the search for
similar patches covers the whole image domain, i.e., when the
filter is truly nonlocal. However, also in the windowed version
of the filter, the cluster tree approach compares favorably to
previous techniques in respect of quality versus computational
cost. Secondly, we suggest an iterative version of the filter that
is derived from a variational principle and is designed to yield
non-trivial steady states. It reveals to be particularly useful in
order to restore regular, textured patterns.

Index Terms—RST-DNOI

I. INTRODUCTION AND RELATED WORK

IN the past two decades, we have seen the development of
increasingly sophisticated filtering techniques for removing

noise from a given input image I : (Ω ⊂ R2) → R. While
linear filtering

u(x) = Gρ ∗ I(x) =
∫

Gρ(x′)I(x− x′) dx′, (1)

with a Gaussian Gρ of width ρ > 0, is known to blur rel-
evant image structures, more sophisticated nonlinear filtering
techniques were developed, such as the total variation filter
[35], also known as the ROF model, which minimizes the
cost functional:

E(u) =
∫

(I − u)2 dx + λ

∫
|∇u| dx. (2)

The ROF model is closely related to nonlinear diffusion filters
[32], in particular to the total variation flow [1]

u(x, 0) = I(x)

∂tu(x, t) = div
(
∇u(x,t)
|∇u(x,t)|

)
.

(3)

For the space-discrete, one-dimensional setting, the solution
of (3) was shown to be the minimizer of (2) with λ = t [37].
Also wavelet soft shrinkage can be made equivalent to (3).

Despite an enormous success in image enhancement and
noise removal applications, approaches like the ROF filter
remain spatially local, in the sense that at each location x ∈ Ω
the update of u is determined only by derivatives of u at that
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same location x – see equation (3). A class of image filters
which adaptively takes into account intensity information from
more distant locations are the Yaroslavsky neighborhood filters
[41]:

u(x) =
∫

K(x, y)I(y) dy∫
K(x, y) dy

. (4)

They state a smoothed image u(x) as the weighted average
of pixels of the original image I(x). K is a nonnegative
kernel function which decays with the distance d2(x, y) =
γ|x − y|2 + |I(x) − I(y)|2. A typical choice is the Gaussian
kernel K(x, y) = 1

(2πh2)D/2 exp
(
−d2(x,y)

2h2

)
with kernel width

h and data dimensionality D. Application of this filter amounts
to assigning large weights to pixels y and their intensities
I(y) which are similar in the sense that they are close to
(x, I(x)) in space and in intensity. The parameter γ allows to
adjust the relative importance of spatial and tonal similarity.
Such filters are also known as local M-smoothers [13], [40].
A similar, but iterative, filter is the bilateral filter [36], [38].
Relations between such neighborhood filters and nonlinear
diffusion filters have been investigated in [5], [28], [11].

Although these semi-local filters1 substantially increase
the number of candidate pixels for averaging compared to
diffusion filters, they reveal a similar qualitative denoising
behavior as nonlinear diffusion: whereas they preserve large
scale structures, small scale structures are regarded as noise
and are removed. Particularly in textured images, small-scale
structures are not necessarily equivalent to noise. As a conse-
quence, these filters tend to degrade textured areas.

A drastic improvement in this respect has been achieved by
a small but decisive extension of the Yaroslavsky filter. Rather
than considering only the center pixel in the similarity of two
points, we can regard local balls (patches) around these points.
This idea is inspired by works on texture synthesis [33], [17],
[39] and has been proposed simultaneously with the nonlocal
means filter [9] and the UINTA filter [2]. Both filters use a
distance that considers not only the similarity of the central
pixel, but also the similarity of its neighborhood:

d2(x, y) =
∫

Gρ(x′)
(
I(x− x′)− I(y − x′)

)2
dx′. (5)

The Gaussian kernel Gρ, which is not to be confused with
the kernel K, acts as a weighted neighborhood of size ρ. One
could as well choose, for instance, a uniformly weighted box
function. Since the above similarity measure takes into account
complete patches instead of single pixel intensities, the filter
is able to remove noise from textured images while preserving

1semi-local due to the spatial distance that plays a role in the similarity
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the fine structures of the texture. Smoothing of 3D surfaces
with this filter has been proven to be feasible as well [42].

Apart from ρ, the filter contains another important parame-
ter, namely the width h of the kernel K. It quantifies how fast
the weights decay with increasing dissimilarity of respective
patches. The statistical reasoning in [3] allows to determine
h automatically. Also the statistical derivation in [24] enables
the automatic choice of h once the noise variance is estimated
or known a priori.

Regarding the computational complexity of nonlocal filters
reveals that a price must be payed for the astonishing results.
At each pixel, weights to all other pixels have to be computed.
This yields a computational complexity of O(DN2), where
N is the number of pixels in the image, and D is the patch
size. For larger images, this complexity is quite a burden.
Hence, several approximations have been suggested. The most
popular way is to restrict the search to patches in a local
neighborhood [9], thus, turning the initially nonlocal filter into
a semi-local one. This reduces the computational complexity
to O(DN). Similarly, we can apply random sampling, where
samples from the vicinity of the reference patch are preferred
[2]. Both strategies assume that the most similar patches are
in the vicinity of the reference patch. Usually, this locality
assumption works fine – remember that diffusion filters already
work with a 4-neighborhood. However, it revokes the initial
idea and properties of nonlocal filtering.

Speedups without necessarily abandoning the idea of non-
local filtering have been achieved in [10], [27], [14], [20],
[24]. In [10], patch comparison is performed only for a subset
of reference patches and these weights are then used for
restoring a whole block of pixels. In [27], [14], [20], [24]
it was suggested to preselect patches for comparison that have
similar means and gradients, or similar means and variances.
[14] further proposed a parallelized implementation on 8 Xeon
processors.

In Section II, we suggest to reduce the computational
complexity to O(DN log N) by employing cluster trees. Like
in [27], [14], [20], [24], the idea is to quickly discard a large
amount of dissimilar patches. However, whereas these works
base the preselection on some heuristic similarity criteria, the
cluster tree structure selects the set of similar patches by
means of the distance measure (5) itself, thus being consistent
with the filter. The cluster tree arrangement thereby exploits
concepts from data retrieval. Tree structures are well known
for their eligibility to conduct huge amounts of data. In the
context of nearest neighbor search, so-called kd-trees [6] have
been very popular. Other indexing or tree structures have been
suggested in [12], [29], [26], [30]. Very related are also works
on randomized approximate nearest neighbor search, such as
locality sensitive hashing [21], [16].

The nonlocal means filter as presented in [9] is a non-
iterative filter. However, like the bilateral filter is an iterative
version of the Yaroslavsky filter, we can as well iterate
nonlocal means. In fact, the entropy minimization framework
of the UINTA filter [2] exactly leads to such an iteration of
the filter in [9]. Other iterative versions have been proposed
in [25], [20], [19], [4]. In Section III, we introduce a varia-
tional formulation that leads to an iterative nonlocal filtering

Fig. 1. Schematic illustration of a cluster tree. Leafs contain a relatively
small set of similar patches.

designed to yield non-trivial steady states. We presented a
preliminary version of this iterative filter at a conference
[7]. It turns out that this formulation is particularly practical
to restore regular textural patterns, but it also improves the
restoration of standard test images.

II. FAST NONLOCAL MEANS VIA CLUSTER TREES

A. Accelerating nonlocal means by preselecting patches

In the nonlocal means filter, almost all computation time
is spent on computing distances between patches. However,
only a relatively small part of all patches is sufficiently similar
for their kernel weights K(x, y) playing any role in the
averaging. Hence, in order to speed up the filter, the basic
idea of the approaches in [27], [14] has been to compute
distances only for a reduced set of patches. Preselection of
patches is performed by some alternative distances, which
can be computed very quickly, such as the difference of the
patches’ means or variances. Indeed, this strategy leads to a
significant speedup, particularly in case of large patches and
large search windows. The disadvantage of this approach is
that the preselection criterion is hardly related to the distance
of patches. For instance, two patches with same means and
variances usually comprise vastly different textural structures.
Although this does little harm to the filtering outcome - for
each patch in the preselected set the exact distance is computed
- it reduces the efficiency of the method, as the preselected
set still contains a large number of dissimilar patches. In
some cases it has been observed that preselection techniques
not only improve the speed but even increase the quality
of the results [20], [24]. This is because they correspond to
additional a-priori assumptions that are satisfied in some data
sets. However, ideally such prior assumptions should be part
of the distance and not part of the preselection technique; see
Section II-C.

B. Cluster trees

As a remedy to this problem, we propose a different way
to create sets of potentially similar patches. In particular, we
propose a method that preselects patches by means of the
same distance measure that is used in the filtering. In order to
accomplish this, the basic idea is to arrange all image patches
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Fig. 2. Left: (a) Arrangement of data by a cluster tree allows to quickly
access a small set of points whose similarity is measured in patch space.
Right: (b) In order to increase accuracy, patches that are within w distance
of a decision boundary are assigned to both sets.

in a binary tree; see Fig. 1 for an illustration. The root node
of this tree contains all patches in the image. Performing a k-
means clustering with k = 2 splits the patches into two clusters
represented by the cluster means. These clusters represent the
tree nodes at the first level. Each of these nodes can again
be separated via k-means. This way, we can recursively build
up the cluster tree. The separation is stopped as soon as the
maximum distance of a member to the cluster center is smaller
than the kernel width h or the number of patches in a node
falls below a certain threshold Nmin = 30. So each leaf node
comprises at least Nmin patches. Finding a local optimum
with k-means takes linear time. It has to be applied at each
level of the tree, and there are log N levels. Thus, building the
tree runs in O(DN log N).

Once the tree is built up, we have immediate access to a
set of similar patches in constant time. This is achieved by
saving for each image patch its corresponding cluster in an
index table. One can now apply the typical weighted averaging
efficiently on this subset. In contrast to previous preselection
techniques, usage of the same distance for clustering and for
filtering ensures preselection and filtering by means of one
consistent criterion. Fig. 2(a) illustrates this preselection in
patch space.

It is clear, though, that the preselected set of patches is
only an approximation of the exact set of nearest neighbors.
Neighbors close to the reference patch could be part of a
neighboring cluster. Such situations appear especially when
the reference patch is close to a decision boundary in the
tree. One could compute the exact set of nearest neighbors by
considering additional branches in the tree that may contain
nearest neighbor candidates. However, this so-called back-
tracking decreases the efficiency of the approach considerably.
In many cases, the approximation is sufficient for nonlocal
filtering, as one typically deals with a sufficiently large set
of similar patches and it is not necessary to have access to
the optimum set of nearest neighbors in order to achieve a
reasonable averaging of intensities.

Nonetheless, we might be interested in increasing the accu-
racy of the nearest neighbor sets. This is feasible at the cost
of some additional memory. Since the problematic areas are
along the decision boundaries, we can assign patches close
to such a boundary to both subsets. This is the idea of so-
called spill trees [26]. In particular, a patch x is assigned to

both subsets, if d2(x, c1) < d2(x, c2) + w2 or, vice-versa,
if d2(x, c2) < d2(x, c1) + w2, where c1 and c2 denote the
cluster centers of the two subsets; see Fig. 2(b). In case the
overlap area w is as large as the support of the kernel, we
could ensure the exact set of relevant nearest neighbors. For
the Gaussian kernel with infinite support this is not feasible
and having large overlap areas also increases the number of
patches considered for averaging, which reduces the speedup
of cluster trees. However, already choosing small w yields
almost the same accuracy as the exact nonlocal means filter
and does not demand much more memory than the version
with w = 0. We will come back to this issue in Section IV.

C. Semi-local filtering and cluster trees

Empirical studies reveal that the nonlocal means filter
often performs better when the search for similar patches
is restricted to a local subdomain. This corresponds to the
prior knowledge that best fitting patches are spatially close.
This assumption is true for most images, though we will also
show counterexamples later in Section IV. For the cluster tree
improvement to be practical on a large variety of images, it
must also provide the option to restrict the search space locally.
This can be achieved by two strategies. The algorithmic
approach is by subdividing the image into overlapping blocks.
We used a rather large overlap of 50% in our experiments.
A filtering result using cluster trees is computed indepen-
dently for each block. The final result is then obtained as
the weighted average of the block results with the weights
αi(x) = exp(−2|x − ci|2/(s2)), where ci denotes the center
of block i, and s is the width of a block.

A more profound approach with the same effect is to shift
the locality assumption to the distance measure by having a
distance that consists of the patch similarity and the local
proximity: d̃2(x, y) = d2(x, y) + γ|x − y|2 with d2(x, y) as
defined in (5) and γ steering the importance of the locality
constraint, i.e., the size of the neighborhood. This bilateral
filter version is more sound and in combination with the cluster
tree it is usually even faster than the algorithmic way to enforce
the locality constraint. In a similar manner we can integrate
other prior assumptions by choosing corresponding distances.
As the cluster tree approach works with general distances, it
can accelerate all these approaches.

III. ITERATIVE NONLOCAL MEANS

A. Previous iterative approaches

The UINTA filter in [2], which was presented at the same
time as the nonlocal means filter in [9], can be understood as
the first iterative version of nonlocal means. The motivation
for the iterative structure of the filter stems from an entropy
minimization framework though. Let u ∈ R be the gray value
of the center pixel of a patch and v ∈ RD−1 the gray values
of the pixels in its neighborhood. Generating the most likely
u := (u, v)> ∈ RD can then be formulated as maximizing
the conditional probability density p(u|v), or alternatively, the
joint probability density p(u). The concept in [2] is to estimate
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this density from image samples ui ≡ u(y) via the kernel
density estimator [31]

p(u(x)) =
1
N

N∑
i=1

K(u(x),ui), (6)

where K(u(x),u(y)) is the kernel function that also ap-
pears in the nonlocal means filter (usually written briefly as
K(x, y)). Maximization of p(u) with regard to u yields a
variant of the mean shift algorithm [18], where the mean
shift vector ∂p(u)

∂u is projected to the u-axis. Like in [18],
the UINTA filter ascents on the densities estimated from the
updated samples u(y). In this framework, the nonlocal means
filter from [9] is a single gradient ascent step in u with step
size 1, where u is initialized with the intensities I of the noisy
input image.

Another iterative nonlocal means algorithm has been sug-
gested in [20]. Rather than from statistics, its motivation is
based on the calculus of variation and diffusion processes. It
is proposed to minimize the functional

E(u(x)) =
1
4

∫
(u(x)− u(y))2KI(x, y) dxdy. (7)

The notation KI(x, y) reflects that weights are computed here
only once on the basis of the input image I . This is in contrast
to the iterative scheme of [2] described above. The Euler-
Lagrange equation leads to the following iterative scheme:

u0(x) = I(x)

uk+1(x) = uk(x) + τ

∫
(uk(y)− uk(x))KI(x, y) dy.

(8)

In order to ensure properties such as preservation of the
average image intensity and convergence to a constant image,
the weights are adapted in a special way [20]: (i) only the
m = 5 largest weights for each point x as well as the four
spatial neighbors are kept, all other weights are set to 0;
(ii) in case that K(x, y) = 0 and K(y, x) 6= 0, K(x, y)
is set to K(y, x). (i) ensures irreducibility and therefore
convergence to a trivial steady state. (ii) ensures that the
scheme is conservative, i.e., the mean intensity of the image
is preserved. Extensions of [20] have been presented in [19]
and [4]. The first replaces the L2 norm by other norms, such
as L1, resulting in a nonlinear process. The second approach
proposes extensions such as spatial bandwidth selection and
how to deal optimally with color images. From the conceptual
point of view, however, these approaches belong to one class,
where the weights KI(x, y) depend on the input image and
are not touched in the iterative process.

B. A new variational principle for nonlocal means

We propose here a variational formulation that is different
from the methods above. It is based on a trivial variational
principle for the nonlocal means filter, which can be written
as:

E(u) =
∫ (

u(x)−
∫

KI(x, y)I(y) dy∫
KI(x, y) dy

)2

dx. (9)

We can derive an iterated form of the nonlocal means filter by
extending this functional in a way that replaces KI by Ku:

E(u) =
∫ (

u(x)−
∫

Ku(x, y)I(y) dy∫
Ku(x, y) dy

)2

dx. (10)

Thus, rather than imposing similarity of u(x) to I(y) for
locations y where the input image I(y) is similar to I(x),
we impose similarity to I(y) for locations y where u(x) is
similar to the filtered image u(y). This induces an additional
feedback and further decouples the resulting image u from the
input image I . The idea is that the similarity of patches can be
judged more accurately from the already denoised signal than
from the noisy input image. On the other hand, in contrast to
the UINTA filter, a minimal coupling to the input image I is
preserved, since averaging is over the original intensities I(y)
rather than the estimated intensities u(y). Another strategy
to keep a link to the original image is by an additional
data fidelity term, as used, e.g., in [20], [4]. However, this
linking is conceptually different as it keeps the result close
to the noisy input and thereby reintroduces part of the noise,
whereas our approach uses the original image for averaging,
where the noise is removed completely when the number of
points for averaging gets large enough. Note that the number
of parameters is the same: in one case we must choose the
iteration number, in the other case we must set the weight of
the data fidelity term.

C. Fixed point iteration

Due to the introduced dependence of K on u, the minimizer
of (10) is no longer the result of a weighted convolution, as
in (9), but the solution of a nonlinear optimization problem.
A straightforward way to approximate a solution of (10) is by
an iterative scheme with iteration index k, where we start with
the initialization u0 = I . For fixed u = uk we are in a similar
situation as with the conventional nonlocal means filter. In
particular, we can compute the similarity measure Kuk(x, y)
for the current image uk and, as a consequence, we obtain an
update on u

uk+1(x) =
∫

Kuk(x, y)I(y) dy∫
Kuk(x, y) dy

(11)

This fixed point iteration resembles very much the iteration
equation in [23], [22]. Although in these papers the iteration
arises from a different motivation and is coupled with ideas
to adapt the local window size, the interesting relation is that
their method also averages over values from the input image,
but computes distances in the denoised image.

D. Euler-Lagrange equation and gradient descent

An alternative way to find a solution of (10) is by computing
its Euler-Lagrange equation, which states a necessary condi-
tion for a (local) minimum. We are interested in the gradient

∂E(u)
∂u

=
∂E(u + εh)

∂ε

∣∣∣∣
ε→0

. (12)



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

After evaluation and substitution of integration variables, we
end up with the following Euler-Lagrange equation:

∂E(u)

∂u
= 0 =

„
u(x)−

R
Ku(x, y)I(y) dyR

Ku(x, y) dy

«
+2

ZZ „
u(z)−

„ R
Ku(z, y′)I(y′) dy′R

Ku(z, y′) dy′

««
I(y)K′

u(z, y)R
Ku(z, y′)dy′ Gρ(y − x)(u(z − y − x)− u(x))dydz

+2

ZZZ „
u(z)−

„ R
Ku(z, y′)I(y′) dyR

Ku(z, y′) dy′

««
I(y)Ku(z, y)K′

u(z, y′′)`R
Ku(z, y′)dy′

´2 Gρ(z − x)(u(x)− u(y′′ − z − x))dy′′dydz,

where K ′
u(x, y) denotes the derivative of the kernel function

Ku. After initializing u0 = I , the gradient descent equation

uk+1 = uk − τ
∂E(u)

∂u
(13)

converges to the next local minimum for some sufficiently
small step size τ and t →∞. Obviously, gradient descent with
the gradient being reduced to the first term in (III-D) leads for
τ = 1 to the same iterative scheme as in Section III-C. The
additional two terms take the variation of Ku into account and
ensure convergence. However, these terms induce a very large
computational load in each iteration. In particular, the time
complexity of the third term in each iteration is O(MN4),
where N is the number of pixels in the image and M the
number of pixels in the compared patch. For comparison, the
first term only has a time complexity of O(MN2) and a
nonlinear diffusion filter like TV flow has a time complexity
of O(N) in each iteration. Hence, in our experiments, we
took only the first term into account, which comes down
to the fixed point scheme with a flexible time step size.
Empirically, this iterative scheme converged for sufficiently
small time steps (we chose τ = 0.2). Empirical investigation
in other fields such as image segmentation [8] or optical flow
estimation show that fixed point iteration and gradient descent
can converge to different local optima, but gradient descent
does not necessarily find the better optimum. We expect these
findings to carry over to the case here, where experimental
comparison is not possible due to the large computational
complexity.

IV. EXPERIMENTS

In the experimental evaluation, we quantified the speedup
of the cluster tree improvement relative to its loss in quality.
Moreover, we compared the proposed iterative technique to
other iterative versions of nonlocal means. Finally, we also
investigated the use of cluster trees in the iterative scheme.
As a quantitative measure for quality we stick to the peak
signal-to-noise ratio (PSNR) defined as

PSNR = 10 log10

(
2552

1
|Ω|
∑

i∈Ω(ui − ri)2

)
, (14)

where u denotes the restored image and r the noise free
reference image. In all experiments we used the same Gaussian

PSNR Time
Standard nonlocal means 30.31 41940ms
Random sampling, 100 samples 29.55 25410ms
Random sampling, 200 samples 30.16 72480ms
Spatial sub-sampling 29.51 5480ms
Preselection by mean and variance 29.80 17640ms
Cluster trees, no overlap 29.83 14440ms
Cluster trees, overlap of 5 30.08 19580ms
Cluster trees, overlap of 10 30.26 31330ms

TABLE I
COMPARISON OF SEVERAL FAST NONLOCAL MEANS IMPLEMENTATIONS

(NON-ITERATIVE) USING THE BARBARA TEST IMAGE AND A 21× 21
SEARCH WINDOW. REGARDING BOTH QUALITY AND COMPUTATION TIME,

THE CLUSTER TREE IMPLEMENTATION COMPARES WELL TO EXISTING
TECHNIQUES; SEE ALSO FIG. 4.

weighted 9 × 9 patches (ρ = 2). Image intensities were in a
range between 0 and 255. All computations times are on a
Pentium IV 3.4GHz. Figure 3 shows some test images we
used. Since they are standard test images from [34] that are
widely available and already contain fixed Gaussian noise with
standard deviation 20, future comparison to other methods we
did not implement is still feasible.

A. Comparison of fast, semi-local and nonlocal implementa-
tions

First we regarded the fast implementation of nonlocal means
via cluster trees. Table I shows a comparison of efficient
techniques that have been suggested in the literature. For the
comparison we used the 512 × 512 Barbara test image from
Fig.3(a). Given a fixed local search window size of 21 × 21
pixels, the fastest technique is spatial sub-sampling, i.e., using
the distance computed for a point x also for its 8 neighbors
[10]. However, the speedup of this method comes at a cost.
Fig. 4 shows a zoom into the Barbara image. Clearly, the
spatial sub-sampling blurs the image. This is also reflected by
the lowest PSNR value. The cluster tree implementation is the
second fastest method and it does not cause blurring effects or
any other systematic artifacts. It outperforms the preselection
of patches by mean and variance as well as random sampling.
For the preselection we used the thresholds given in [14].

The speedup that can be achieved with the cluster tree
implementation becomes much more significant when the
search window size increases. This is shown in Table II.
Except for the preselection methods (by mean and variance or
via cluster trees), all methods scale linearly with the window
size, which can become computationally demanding. Note
that using the distance for preselecting patches is much more
efficient than the approximation by mean and variance, which
selects too many patches that are not similar. Also note that the
cluster tree implementation is much more efficient in case of a
true nonlocal filtering without any local search window. Then,
filtering can be implemented with one large cluster tree instead
of many smaller ones and multiple computations at the same
pixel due to overlapping local blocks are no longer necessary.
This explains why the implementation of semi-locality by
including proximity of points in the distance, see Section II-C,
is usually more efficient than its algorithmic implementation
via local windows.



IEEE TRANSACTIONS ON IMAGE PROCESSING 6

Fig. 3. Some standard test images including Gaussian noise with standard deviation 20 used in the experiments. From left to right: (a) Barbara (512×512).
(b) House (256× 256). (c) Lena (512× 512). (d) Peppers (256× 256). (e) Boats (512× 512).

Fig. 4. Zoom into the Barbara image. Top row, from left to right: (a) Noisy input image. (b) Standard nonlocal means. (c) Random sampling with 100
samples. Bottom row: (d) Spatial sub-sampling. Blurring and block artifacts are visible. (e) Preselection by mean and variance. (f) Cluster trees with no
overlap. All methods were run with a 21× 21 search window. Apart from spatial sub-sampling, the cluster tree implementation is fastest and its quality is at
least as good as that of other acceleration techniques; see also Table I.

17× 17 33× 33 65× 65 129× 129 257× 257 no window
Standard nonlocal means 27s 106s 410s 1539s 5378s 16107s
Random sampling 13s 50s 209s 902s 4126s 15362s
Spatial sub-sampling 4s 15s 65s 262s 957s 3241s
Preselection by mean and variance 13s 34s 88s 221s 591s 1529s
Cluster trees, w = 0 12s 14s 14s 14s 14s 14s
Cluster trees, w = 5 15s 31s 58s 101s 101s 101s
Cluster trees, w = 10 22s 61s 149s 303s 687s 797s

TABLE II
COMPUTATION TIMES OF SEVERAL FAST NONLOCAL MEANS IMPLEMENTATIONS DEPENDING ON THE SEARCH WINDOW SIZE. THE METHODS WERE RUN

WITH THE 512× 512 BARBARA TEST IMAGE. FOR GROWING WINDOW SIZES, THE CLUSTER TREE IMPLEMENTATION IS INCREASINGLY FASTER THAN
EXISTING TECHNIQUES.

B. Semi-local versus fast nonlocal filtering of textured images

Table III demonstrates that the common habit in the liter-
ature to use only very small search windows (partially only
11 × 11 pixels [20]) is not always advantageous. Especially
in case of strongly textured images, larger windows are ben-

eficial, as the comparison of the nonlocal means filter with a
21×21 and a 41×41, respectively, shows. In such cases, cluster
trees yield the largest speedup. The local search window can
even be dropped completely, which further increases accuracy
and still the method is faster than all other implementations.
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Barbara Time Iterations House Lena Peppers Boats
ROF model 27.05 7.8s 10 31.47 31.40 29.82 29.40
Nonlocal means filter 30.31 52.2s 1 32.49 31.78 29.62 29.34
UINTA filter 30.14 385s 9 32.59 31.79 29.75 29.54
Gilboa-Osher 30.20 48.9s 9 32.55 31.95 30.28 29.89
Gilboa-Osher L1 29.43 57.3s 80 32.17 31.39 30.04 29.53
Proposed iterative filter 30.33 419s 10 32.74 32.08 30.04 29.69
[22] 30.37 n.a. n.a. 32.90 32.54 30.59 30.12
[15] 31.78 10s n.a. 33.77 33.05 31.29 30.88

TABLE IV
PSNRS OF SEVERAL FILTERS ON STANDARD NOISY TEST IMAGES INCLUDING WGN WITH STANDARD DEVIATION 20. ALL PATCH BASED METHODS

WERE RUN WITH A 21× 21 SEARCH WINDOW. THE PROPOSED ITERATIVE FILTER COMPARES WELL TO EXISTING TECHNIQUES. ONLY TWO VERY
SOPHISTICATED RECENT FILTERING TECHNIQUES [22], [15] CAN OUTPERFORM OUR COMPARATIVELY SIMPLE METHOD. CLUSTER TREES HAVE NOT

BEEN USED FOR RESULTS IN THIS TABLE.

Fig. 5. Comparison of acceleration techniques for a heavily textured image.
For corresponding PSNR values and computation times see Table III. Top
row, from left to right: (a) Reference image with 115 × 113 pixels. (b)
Gaussian noise with standard deviation 40 added. (c) Nonlocal means filter
with a 21× 21 and (d) a 41× 41 search window. The larger window yields
a favorable result. Bottom row: (e) Nonlocal means by spatial subsampling
and a 41×41 window. Blurring effects by the subsampling are clearly visible.
(f) Sampled nonlocal means with 312 samples from a 41 × 41 window. (g)
Preselection of patches via mean and variance in a 41 × 41 window. (h)
Nonlocal means with cluster trees and an overlap of 10. Patches from the
whole image domain are considered. Cluster tree based denoising compares
well to the other methods.

window PSNR Time
Standard nonlocal means 21× 21 20.56 1570ms
Standard nonlocal means 41× 41 21.11 5440ms
Random sampling, 312 samples 41× 41 20.52 4080ms
Spatial sub-sampling 41× 41 19.95 720ms
Preselection by mean and variance 41× 41 20.68 1780ms
Cluster trees, no overlap none 20.32 460ms
Cluster trees, overlap of 5 none 20.48 540ms
Cluster trees, overlap of 10 none 21.13 970ms

TABLE III
QUANTITATIVE COMPARISON OF FAST NONLOCAL MEANS

IMPLEMENTATIONS CORRESPONDING TO FIG. 5. TRUE NONLOCAL
FILTERING WITH THE CLUSTER TREE IMPLEMENTATION IS FASTER THAN

SEMI-LOCAL IMPLEMENTATIONS AND THE ACCURACY IS BETTER.

C. Comparison of iterative nonlocal means filters

Table IV quantitatively compares the iterative nonlocal
means filters that can currently be found in the literature.
Since the cluster tree approximation leads to a small decrease
in the PSNR, we used the standard implementation in this
experiment. The step size was set to τ = 0.2 as suggested for
the UINTA filter in [3]. The Gilboa-Osher filter was imple-
mented as stated in [20]. We also implemented its nonlinear
version based on the L1 norm proposed in [19]. The kernel

Building the 
tree

21.3%

Computing 
weights
78.7%

Building the 
tree

18.9%

Computing 
weights
81.1%

Computing 
weights
88.7%

Building the 
tree

11.3%

Fig. 6. Relative time taken for building the tree depending on the overlap
width w. The image was of size 512 × 512 pixels. From left to right: (a)
w = 0. (b) w = 5. (c) w = 10. Although building the tree dominates
the asymptotic complexity, in practice, most time is spent for computing the
distances of the selected patches.

size h and the number of iterations were manually optimized.
The same h was used for all iterations. Actually the UINTA
filter optimizes h in each iteration automatically. However, this
decreased the PSNR compared to the version with a fixed but
manually chosen h. Hence, for having a fair comparison, h
was manually chosen for the UINTA filter, as well.

The PSNR values show that differences between the itera-
tive filters are rather small2. The filter proposed in the present
paper compares favorably, especially when the images contain
regular textures. In case of images with rather homogeneous
areas, the Gilboa-Osher filter can benefit from emphasizing the
direct neighbors of a pixel. Only the two very sophisticated
state-of-the-art filtering methods [22] and [15] can achieve
higher PSNRs.

D. Cluster tree implementation and iterated filters

The cluster tree implementation can also be used to speed
up some of the iterative methods investigated in this paper.
In case of the Gilboa-Osher filter, the speedup is not large,
since the weights have to be computed only once. Moreover,
the Gilboa-Osher filter is a semi-local filter by construction
and does not benefit from larger search windows. The UINTA
filter as well as the iterative filter proposed in this paper both
benefit from the cluster tree in each iteration. Note, however,
that in both filters the distances change after each iteration.
Consequently, the tree has to be rebuilt in each iteration and
cannot be recycled. However, this is not a problem. Although

2It might seem surprising that in a few cases, the UINTA filter performs
slightly worse than the non-iterative filter. This is possible, since the UINTA
filter was run with time steps of 0.2, whereas a single iteration of nonlocal
means corresponds to a time step size of 1.
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building the tree structure, which takes O(DN log N) time,
dominates the asymptotic complexity of the filter, interestingly,
this asymptotic complexity is not relevant for image sizes
encountered in practice. Fig. 6 shows the ratio of computation
time spent for building the cluster tree and for filtering the
image by means of the preselected set of patches, respectively.
Building the tree structure is responsible for less than a
quarter of the total computation time. The reason is that the
preselection sets still contain numerous similar patches for
which distances need to be computed. When increasing the
overlap width w, the number of patches in a set becomes
even larger. This dominance of distance computations over the
asymptotic complexity also explains why the cluster tree on
the whole image domain can be much faster than the nonlocal
means filter with the search restricted to a local window, which
has a time complexity of only O(DN). The extra effort for
building the tree is easily amortized by the good preselection
of similar patches.

An experimental result when applying the cluster tree im-
plementation to the iterative filter proposed in this paper is
depicted in Fig. 7. Whereas for the test images in Fig. 3, the
impact of iterating the filter was rather small, in this textured
image the difference between the iterative and the non-iterative
filter is much larger. Especially the regular textures are restored
very well by the iterative filter. Thanks to the cluster tree
implementation, computation times of the iterative filter are
still acceptable.

Fig. 8 shows another texture image, where additionally the
noise level is very high. Among the compared filters, only
the UINTA filter and the proposed iterative filter can restore
the original image. The proposed filter preserves the contrast
of textured structures a little better than the UINTA filter.
Comparing the results in Fig. 8(f) and Fig. 8(g) with respect to
quality and computation time, shows again that the cluster tree
implementation on the whole domain outperforms a standard
implementation restricted to a local search window.

E. Image evolution

Finally, Fig. 9 depicts the evolution of the image when
iterating the proposed filter, the UINTA filter with fixed h, and
the UINTA filter with adaptive h, respectively. Empirically,
all filters converge to a steady state. This steady state is in all
cases a regular texture pattern. However, thanks to the stronger
influence of the input image, the proposed filter preserves this
pattern much better than the UINTA filter. This is because only
the similarity is computed by means of the denoised image u.
The averaging is still over the intensities of the input image
I .

The motion of the texture boundaries in Fig. 9 looks like
curvature motion: corners tend to be rounded and convex
areas successively shrink until they finally disappear. This
behavior can be explained by using the relationship between
the median filter and curvature motion. It is well-known that
iterated median filtering approximates curvature motion. The
non-local means filter acts similar to the median filter: it tends
to replace the central pixel value by a value that stems from
the weighted averaging of similar patches. If a patch comprises

two different texture patterns, like at a texture boundary, the
texture pattern that covers more pixels in the patch will usually
dominate the distance and, thus, the central pixel will tend to
be replaced by a value that is consistent with the dominant
texture pattern. This happens particularly in places where the
texture boundary has non-zero curvature. In such places one
texture covers more pixels than the other and the filtering step
will displace the contour towards the less represented texture.
Iterative application of the filter therefore tends to decrease
the curvature and shrink convex texture areas. It has to be
noted, though, that this rule is only approximative, since the
distance between patches not only depends on the ratio of
pixels belonging to one or the other pattern but is influenced
also by the contrast and frequency of the patterns.

V. CONCLUSIONS

In this paper, we presented a new technique to speed up
nonlocal means filters. The proposed arrangement of patches in
a cluster tree allows for the efficient and sound preselection of
similar patches by means of the same distance measure as used
by the filter itself. A direct comparison to existing techniques
has shown that this consistency in the design of the filter is re-
warded by favorable results regarding the quality and speedup.
Additionally, we suggested an iterative filter that is built upon
a variational principle and is different from the UINTA filter
in the sense that it comprises a stronger coupling to the noisy
input image. As shown by the experimental evaluation, this
stronger coupling preserves the contrast of textural structures
much better. The two contributions of this paper can also be
combined very well. The emerging filter yields high quality
filtering in reasonable time. This is especially the case for
textural patterns, where large search windows are needed. We
have demonstrated that the filter yields interesting evolutions
that resemble curvature motion with level lines defined by
texture rather than intensity.
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[28] P. Mrázek, J. Weickert, and A. Bruhn. On robust estimation and smooth-
ing with spatial and tonal kernels. In R. Klette, R. Kozera, L. Noakes,
and J. Weickert, editors, Geometric Properties from Incomplete Data,
pages 335–352. Springer, Dordrecht, 2006.

[29] S. Nene and S. Nayar. A simple algorithm for nearest neighbor search in
high dimensions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(9):989–1003, 1997.

[30] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary
tree. In Proc. International Conference on Computer Vision and Pattern
Recognition, pages 2161–2168, 2006.

[31] E. Parzen. On the estimation of a probability density function and the
mode. Annals of Mathematical Statistics, 33:1065–1076, 1962.

[32] P. Perona and J. Malik. Scale space and edge detection using anisotropic
diffusion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12:629–639, 1990.

[33] K. Popat and R. Picard. Novel cluster-based probability model for
texture synthesis, classification, and compression. In Proc. SPIE Visual
Communications and Image Processing, 1993.

[34] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli. Image denoising
using scale mixtures of gaussians in the wavelet domain. IEEE
Transactions on Image Processing, 12(11):1338–1351, 2003.

[35] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D, 60:259–268, 1992.

[36] S. M. Smith and J. M. Brady. SUSAN: A new approach to low-level
image processing. International Journal of Computer Vision, 23(1):45–
78, May 1997.

[37] G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk. On the
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