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Abstract Predicate logic based reasoning approaches pro-
vide a means of formally specifying domain knowledge
and manipulating symbolic information to explicitly reason
about different concepts of interest. Extension of traditional
binary predicate logics with the bilattice formalism permits
the handling of uncertainty in reasoning, thereby facilitating
their application to computer vision problems. In this pa-
per, we propose using first order predicate logics, extended
with a bilattice based uncertainty handling formalism, as a
means of formally encoding pattern grammars, to parse a
set of image features, and detect the presence of different
patterns of interest. Detections from low level feature detec-
tors are treated as logical facts and, in conjunction with log-
ical rules, used to drive the reasoning. Positive and negative
information from different sources, as well as uncertainties
from detections, are integrated within the bilattice frame-
work. We show that this approach can also generate proofs
or justifications, in the form of parse trees, for each hypoth-
esis it proposes thus permitting direct analysis of the final
solution in linguistic form. Automated logical rule weight
learning is an important aspect of the application of such
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systems in the computer vision domain. We propose a rule
weight optimization method which casts the instantiated in-
ference tree as a knowledge-based neural network, inter-
prets rule uncertainties as link weights in the network, and
applies a constrained, back-propagation algorithm to con-
verge upon a set of rule weights that give optimal perfor-
mance within the bilattice framework. Finally, we evaluate
the proposed predicate logic based pattern grammar formu-
lation via application to the problems of (a) detecting the
presence of humans under partial occlusions and (b) detect-
ing large complex man made structures as viewed in satellite
imagery. We also evaluate the optimization approach on real
as well as simulated data and show favorable results.

1 Introduction

Reliably detecting patterns in visual data has been the pri-
mary goal of computer vision research for several years.
Such patterns could be strictly spatial in nature, like static
images of pedestrians, bicycles, airplanes etc., or they could
be spatio-temporal in nature, like patterns of human or ve-
hicular activity over time. Complex patterns tend to be com-
positional and hierarchical - a human can be thought to be
composed of head, torso and limbs - a head to be com-
posed of hair and face - a face to be composed of eyes,
nose, mouth. Such patterns also tend to be challenging to
detect, robustly as a whole, due to high degree of variabil-
ity in shape, appearance, partial occlusions, articulation, and
image noise among other factors. While the computer vi-
sion community has made significant headway in designing
fairly robust low level, local feature detectors, such feature
detectors only serve to detect parts of the larger pattern to be
detected. Combining the detections of parts into a context
sensitive, constraint satisfying set of pattern hypotheses is
a non-trivial task. The key questions we need to answer are
how to represent knowledge of what the pattern looks like in
a hierarchical, compositional manner and how this knowl-
edge can be exploited to effectively search for the presence
of the patterns of interest?
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Predicate logic based reasoning approaches provide a
means of formally specifying domain knowledge and ma-
nipulating symbolic information to explicitly reason about
the presence of different patterns of interest. Such logic pro-
grams help easily model hierarchical, compositional pat-
terns to combine contextual information with the detection
of low level parts via conjunctions, disjunctions and differ-
ent kinds of negations. First order predicate logic separates
out the name, property or type of a logical construct from
its associated parameters and further, via the use of existen-
tial and universal quantifiers, allows for enumeration over its
parameters.

This provides for a powerful language that can be used to
specify pattern grammars to parse a set of image features to
detect the presence of the pattern of interest. Such pattern
grammars encode constraints about the presence/absence
of predefined parts in the image, geometric relations over
their parameters, interactions between these parts and scene
context, and search for solutions best satisfying those con-
straints. Additionally, it is straightforward to generate proofs
or justifications, in the form of parse trees, for the final so-
lution thus permitting direct analysis of the final solution in
a linguistic form.

While formal reasoning approaches have long been used
in automated theorem proving, constraint satisfaction and
computational artificial intelligence, historically, their use in
the field of computer vision has remained limited. In addi-
tion to the ability to specify constraints and search for pat-
terns satisfying those constraints, it is important to evaluate
the quality of the solution as a function of the observation
and model uncertainty. One of the primary inhibiting fac-
tors to a successful integration of computer vision and first
order predicate logic has been the design of an appropriate
interface between the binary-valued logic and probabilistic
vision output. Bilattices, algebraic structures introduced by
Ginsberg [17], provide a means to design exactly such an
interface to model uncertainties for logical reasoning.

Unlike traditional logics, predicate logics extended us-
ing the bilattice-based uncertainty handling formalism, asso-
ciate uncertainties with both logical rules (denoting degree
of confidence in domain knowledge) and observed logical
facts (denoting degree of confidence in observation). These
uncertainties are taken from, and semantically interpreted
within, a set structured as a bilattice. Modeling uncertain-
ties in the bilattice facilitates independent representation of
both positive and negative constraints about a proposition
and furthermore provides tolerance for contradictory data
inherent in many real-world applications. Performing infer-
ence in such a framework is also, typically, computationally
efficient.

The predicate logic based approach extended using the
bilattice formalism can therefore be used to encode pattern
grammars to detect whether or not a specific pattern exists in
an image, where in the image the pattern exists (via instanti-
ated parameters of the predicates), why the system thinks the
pattern exists (via proofs) and finally how strongly it thinks
the pattern exists (final inferred uncertainty). Due to these
characteristics, bilattice based logical reasoning frameworks
appear to be promising candidates for use in time-sensitive,

resource-bound, computer vision applications. In our previ-
ous work [39,40], we have shown the applicability of such
a formalism in computer vision problems such as activ-
ity recognition, identity maintenance and human detection.
Arieli et al. [2] have applied such frameworks in machine
learning for preference modeling applications. Theoretical
aspects of these frameworks have been studied by [3,17,11]

1.1 Application Domain

Detecting specific object patterns in static images is a dif-
ficult problem. This difficulty arises due to wide variability
in appearance of the pattern, possible articulation, deforma-
tion, view point changes, illumination conditions, shadows
and reflections, among other factors. While detectors can be
trained to handle some of these variations and detect ob-
ject patterns individually, as a whole, their performance de-
grades significantly when the pattern visually deviates from
this predefined template. While such deviations can poten-
tially be caused by all the variations listed above, the two
most significant causes of such deviations are (a) partial oc-
clusions of the pattern, by other patterns either of the same
or different class, and (b) pattern deformations, either due
to object articulation, or in case of man made objects due to
different functional requirements.

Part based detectors are typically better suited to handle
such deviations in such patterns because they can, in prin-
ciple, be used to detect local object components, which can
then be assembled together to detect the whole object. How-
ever, the process of going from a set of component detec-
tions to a set of scene consistent, context sensitive, pattern
hypotheses is far from trivial. Since part based detectors
only learn part of the information from the whole pattern,
they are typically less reliable and tend to generate large
numbers of false positives. Occlusions and local image noise
characteristics also lead to missed detections. It is therefore
important to not only exploit contextual, scene geometry and
specific object constraints to weed out false positives, but

Figure 1 Figure showing valid human detections and a few represen-
tative false positives.
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Figure 2 Figure showing some examples of surface to air missile (SAM) sites in aerial imagery

also be able to explain as many valid missing object parts as
possible to correctly detect all patterns.

In this paper we explore two object classes (a) pedes-
trians, viewed in a surveillance setting, potentially under
partial occlusions and (b) large, complex, deformable, man
made structures as viewed in aerial satellite images.

Consider Figure 1. It shows a number of humans that are
occluded by the scene boundary as well as by each other.
Ideally, a human detection system should be able to reason
about whether a hypothesis is a human or not by aggregat-
ing information provided by different sources, both visual
and non-visual. For example, in Figure 1, the system should
reason that it is likely that individual 1 is human because
two independent sources, the head detector and the torso de-
tector report that it is a human. The absence of legs indi-
cates it is possibly not a human, however this absence can
be justified due to their occlusion by the image boundary.
Furthermore, hypothesis 1 is consistent with the scene ge-
ometry and lies on the ground plane. Since the evidence for
it being human exceeds evidence against, the system should
decide that it is indeed a human. Similar reasoning applies
to individual 4, only its legs are occluded by human 2. Ev-
idence against A and B (inconsistent with scene geometry
and not on the ground plane respectively) exceeds evidence
in favor of them being human and therefore A and B should
be rejected as being valid hypotheses.

Figure 2, shows examples of a large man made object as
viewed from a satellite. These objects, surface to air missile
(SAM) sites, are highly variable in shape and generally very
hard to discern from background clutter. However, the key
signatures of these objects include the functional arrange-
ment of its constituent missile launchers, contextual infor-
mation such as the geographical and topological structure of
its neighboring regions and the general arrangement of phys-
ical access structures around it. We need to be able to capture
this information and encode it as constraints that support or
refute the given hypothesis.

1.2 Overview

This paper proposes a predicate logic based approach that
reasons and detects object patterns in the manner outlined
above. In this framework, knowledge about contextual cues,
scene geometry and object pattern constraints is encoded
in the form of rules in a logic programming language and

applied to the output of low level component, parts based
detectors. Positive and negative information from different
rules, as well as uncertainties from detections are integrated
within an uncertainty handling formalism known as the bi-
lattice framework. This approach can also generate proofs or
justifications for each hypothesis it proposes. These justifi-
cations (or lack thereof) are further employed by the system
to explain and validate, or reject potential hypotheses. This
allows the system to explicitly reason about complex inter-
actions between object patterns and handle occlusions, de-
formations and other variabilities. Proofs generated by this
approach are also available to the end user as an explanation
of why the system thinks a particular hypothesis is actually
a pattern of interest.

The rest of the paper is organized as follows: we first re-
view past work on pattern grammar formalisms and statisti-
cal relational learning in Section 2. We then describe the use
of predicate logic based pattern grammars to the problem
of detecting complex object patterns in static images. We
further motivate and describe the use of the bilattice frame-
work to handle uncertainties inherent in such pattern detec-
tion problems (Section 3). We then discuss two applications
of this framework: (a) detection of partially occluded hu-
mans in static images and (b) detection of man made objects
in aerial imagery (Section 4). We evaluate the human detec-
tion system on the ‘USC pedestrian set B’ [53], USC’s sub-
set of the CAVIAR dataset [1] (This dataset will henceforth
be referred to in this paper as the USC-CAVIAR dataset).
We also evaluate it on a dataset we collected on our own. In
this paper, we refer to this dataset as Dataset-A. We evaluate
the aerial object detection system on a specific type of man
made object - surface to air missile site (Section 5). Auto-
matically optimizing parameters associated with the speci-
fied knowledge base is an important aspect of such a system.
In Section 6, we describe an approach that interprets the in-
stantiated proof tree as a knowledge based artificial neural
network and performs backpropagation based rule weight
optimization. We report results of the learning methodology
on the problem of human detection on real and simulated
data (Section 7). We conclude in Section 8.

The bilattice based logical reasoning framework along
with its application to the problem of human detection has
been previously published in [40]. This paper extends the
work reported in [40] by introducing a rule weight optimiza-
tion approach and further by applying the reasoning frame-
work to complex spatial objects. A short summary of this
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paper also appears in [41] as an extended abstract. Part of
paper [40], including some of the results reported, are being
reproduced in this paper for a more self contained presenta-
tion.

2 Background

Computer vision approaches can broadly be characterized
by the amount of model knowledge they exploit. Model free
approaches assume no prior knowledge about the structure
of the world and attempt to characterize patterns directly
from data. These approaches typically utilize statistical (of-
ten discriminative) classifiers whose parameters are opti-
mized via different learning methods. Support vector ma-
chines [47], boosting [36], artificial neural networks [34,23,
18], or regularization networks [31], are examples of such
approaches. In computer vision, some of these approaches
operate by performing classification directly on image pix-
els [23], while others perform classification on extracted fea-
ture vectors [50,5]. Such approaches typically require large
volumes of training data to adequately capture all pattern
variations.

Model based approaches on the other hand exploit some
form of knowledge of the world to compactly describe the
pattern of interest. Since the model already captures what
the pattern and, to some extent, its variations should look
like, the amount of data required for optimization is typi-
cally less than that for model free approaches. Models are
often formalized in a generative Bayesian paradigm, based
on/motivated from physical or geometric principles and are
represented by associated probability distributions.

In this work we will primarily focus on model based
approaches. In general, there exist three aspects of model
based approaches one needs to consider: (1) Knowledge rep-
resentation (2) Learning and (3) Inference. In the knowledge
representation step, different variables that influence the fi-
nal decision are identified and dependencies between these
variables are made explicit. The learning step next, numer-
ically captures the nature of the dependencies between dif-
ferent variables and how they influence each other. Finally,
in the inference step, real world observations and their like-
lihoods are combined with the knowledge structure as well
as the learnt relationships between variables to arrive at a
likelihood of the final decision. Variations in the the type
of knowledge representation, methodology/approximations
of inference, and the type of learning approach give rise to
different flavors of such approaches [4,29,32,33,58].

In the remainder of this section, we will review stochas-
tic image grammars, a class of model based approaches that
attempt to encode a grammar for visual patterns. We then
review statistical relational learning based approaches that
combine first order logic with probabilistic reasoning. Fi-
nally, we contrast the proposed predicate logic based pattern
grammar formulation with these two classes of approaches.

2.1 Stochastic Image Grammars

Stochastic image grammar based approaches formally
model visual patterns as compositions of their constituent

parts. Based on this model, these approaches then attempt
to parse an image (or its extracted features) to detect the
presence of that pattern of interest. Due to the nature of
compositionality in images, such models typically tend to
be hierarchical (i.e., trees, or DAGs in case of shared parts),
with each level capturing a representation of the pattern at
a particular granularity. Typical challenges associated with
such approaches are (1) the formulation of the pattern gram-
mar syntax (2) learning of these pattern grammars from data
(both structure and parameters), and (3) inference.

Various grammar approaches have been proposed in re-
cent literature that attempt to tackle different aspects of the
challenges described above. Zhu and Mumford [58], for in-
stance, use an AND-OR graph representation that models
objects as a hierarchy of conjunctions and disjunctions of
parts along with spatial and functional relations between
nodes. In order to account for computational cost, they em-
ploy data driven probabilistic sampling methods to perform
inference.

Fidler and Leonardis [10] propose a framework for
learning hierarchical, compositional representation of mul-
tiple class objects. They demonstrate that due to the deep
hierarchical nature, several intermediate nodes in the tree
get shared across multiple object classes. The growth in size
of the hierarchy, and hence computational complexity, is
highly sub-linear as the number of modeled classes is in-
creased. This is one of the primary advantages of hierarchi-
cal approaches.

Todorovic et al. [44] also address the issue of designing
models that share intermediate nodes across multiple ob-
ject classes. In the context of categories that share certain
parts, they aim at learning the underlying part taxonomy,
relevances, likelihoods, and priors of those parts. They pro-
pose an inference approach where recognition is achieved
by maximizing the match of the query sample with the tax-
onomy.

Jin and Geman [19] propose a composition machine ap-
proach, which performs depth-first search on a restricted
representation and corrects its results using re-ranking. Zhu
et al. [56] propose a recursive compositional model to rep-
resent shape and visual appearance of objects at different
scales. Coarse-to-fine modeling is exploited by Kokkinos
and Yuille [22]. Here, the authors exploit the hierarchical
object representation to efficiently compute a coarse solu-
tion which is then used to guide search at a finer level.

Wang et al. [52] propose the concept of spatial random
trees (SRT) as an instance of an image grammar. SRTs pro-
vide polynomial-complexity exact inference algorithms, and
come with maximum-a-posteriori estimation of both the tree
structure and the tree states given an image. The concept of
hierarchical compositionality for image grammars has been
exploited by several other researchers, as well [16,26,46].

While the knowledge representations explored within
the stochastic image grammar community have been pri-
marily geared toward capturing hierarchical, compositional,
knowledge about visual patterns, the machine learning com-
munity has focused on designing knowledge representation
frameworks for general AI tasks. One such class of ap-
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proaches of relevance to this paper is statistical relational
learning.

2.2 Statistical Relational Learning

Statistical relational learning (SRL) [21,6,13,35,43] ap-
proaches model world knowledge using a first order logic.
This allows SRL approaches to specify statistics over a set
of relations as opposed to between a set of ground enti-
ties. Knowledge based model construction [21] for instance
is a combination of logic programming and Bayesian net-
works. The logic program specifies a template for the pat-
tern, which when instantiated with ground observations gen-
erates a Bayesian network. Stochastic logic programs [6] are
a combination of logic programming and log-linear models
and are a special case of knowledge based model construc-
tion. Probabilistic relational models [13] combine frame
based systems and Bayesian networks. One of the applica-
tions of SRL based approaches in the computer vision do-
main is documented by Fern [9] where logical constraints
are used to infer hidden states of relational processes. This
is applied to classifying specific events in video sequences.

It is typical in SRL based approaches to employ a con-
strained subset of full first order predicate logic, called Horn
clauses. Horn clauses are clauses with at most one positive
literal. The reason this constrained language is sufficient for
these approaches is because first order logical rules only
serve as a template to instantiate the structure of the propo-
sitional graphical model (Markov network, Bayesian net-
work). The distributions over the variables of these graph-
ical models are typically estimated and maintained external
to the graphical model. It is in these conditional distribu-
tions that the specific nature of influence between different
variables of the graphical model is captured.

2.3 Contrast to proposed approach

Similar to the image grammar approaches reviewed above,
the proposed predicate logic based approach attempts to
parse object patterns by modeling and specifying pattern
grammars. This grammar specification is encoded as rules
in a first order logic programming language and parsing
of object pattern corresponds to searching through the fea-
ture space for solutions that best satisfy these logical con-
straints. In contrast to the statistical relational learning based
approaches, the specific nature of influence between differ-
ent variables is not captured externally in conditional prob-
ability tables, but rather, directly (and weakly) encoded in
the rule specification itself. Finally, the use of the bilattice
formalism permits exploitation of the full expressive power
of first order predicate logical language via the use of exis-
tential and universal quantifiers, conjunctions, disjunctions,
definite negations, negations by default etc.

Bayesian systems assume completeness of the world
model. The proposed framework relaxes such assumptions.
This incompleteness of information requires explicit hand-
ing of inconsistency (along the degree of information axis).

The practical benefit that arises out of this is the ease of
model specification and training to learn the model (Lesser
complexity implies lesser training data) and similarly less
complex (and faster) inference.

3 Reasoning Framework

Logic programming systems employ two kinds of formulae,
facts and rules, to perform logical inference. Rules are of the
form “A← A0,A1, · · · ,Am” where each Ai is called an atom
and ‘,’ represents logical conjunction. Each atom is of the
form p(t1, t2, · · · , tn), where ti is a term, and p is a predicate
symbol of arity n. Terms could either be variables (denoted
by upper case alphabets) or constant symbols (denoted by
lower case alphabets). The left hand side of the rule is re-
ferred to as the head and the right hand side is the body.
Rules are interpreted as “if body then head”. Facts are logi-
cal rules of the form “A←” (henceforth denoted by just “A”)
and correspond to the input to the inference process. Finally,
‘¬’ represents negation such that A = ¬¬A.

3.1 Logic based Reasoning

To perform the kind of reasoning outlined in Section 1.1,
one has to specify rules that allow the system to take input
from the low level detectors and explicitly infer whether or
not there exists a specific pattern at a particular location. For
instance, for the human detection problem, if we were to
employ a head, torso and legs detector, then a possible rule
would be:

human(X ,Y,S) ←− head(Xh,Yh,Sh),
torso(Xt ,Yt ,St),
legs(Xl ,Yl ,Sl),

geometry constraint(Xh,Yh,Sh,Xt ,Yt ,St ,Xl ,Yl ,Sl),
compute center(Xh,Yh,Sh,Xt ,Yt ,St ,Xl ,Yl ,Sl ,X ,Y,S).

This rule captures the information that if the head,
torso and legs detectors were to independently report
a detection at some location and scale (by asserting
facts head(Xh,Yh,Sh), torso(Xt ,Yt ,St), legs(Xl ,Yl ,Sl) re-
spectively), and these coordinates respected certain geomet-
ric constraints, then one could conclude that there exists a
human at that location and scale. A logic programming sys-
tem would search the input facts to find all combinations that
satisfy the rule and report the presence of humans at those
locations. Note that this rule will only detect humans that
are visible in their entirety. Similar rules can be specified for
situations when one or more of the detections are missing
due to occlusions or other reasons. There are, however, some
problems with a system built on such rule specifications:

1. Traditional logics treat such rules as binary and defi-
nite, meaning that every time the body of the rule is true, the
head of the rule will have to be true. For a real world system,
we need to be able to assign some uncertainty values to the
rules that capture its reliability.
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Figure 3 The choice of different lattices that compose the bilattice give rise to different logics. (a) bilattice for two valued logics (trivial bilattice)
with only true and false nodes (b) bilattice for three valued logic with additional node for unknown c) bilattice for four valued logics with
additional node for contradiction (d) bilattice for default logics [17,39] where dt, df and * represent true by default, false by default and
contradiction between dt-df respectively (e) bilattice for prioritized default logics [17,39] with different levels of defaults and (e) bilattice for
continuous valued logic [3,40] as described in this paper.

2. Traditional logics treat facts as binary. We would like
to take as input, along with the detection, the uncertainty of
the detection and integrate it into the reasoning framework

3. Traditional logic programming has no support for ex-
plicit negation in the head. There is no easy way of specify-
ing a rule like:

¬human(X ,Y,S) ← ¬scene consistent(X ,Y,S).

and integrating it with positive evidence. Such a rule says
a hypothesis is not human if it is inconsistent with scene
geometry.

4. Such a system will not be scalable. We would have
to specify one rule for every situation we foresee. If we
would like to include in our reasoning the output from an-
other detector, say a hair detector to detect the presence of
hair and consequently a head, we would have to re-engineer
all our rules to account for new situations. We would like a
framework that allows us to directly include new informa-
tion without much re-engineering.

5. Finally, traditional logic programming does not have
support for integration of evidence from multiple sources,
nor is it able to handle data that is contradictory in nature.

3.2 Bilattice Theory

Over the last several decades, in the symbolic AI commu-
nity, several different approaches have been introduced that
handle different aspects of the limitations discussed above.
Bilattices are algebraic structures introduced by [17] as a

uniform framework within which a number of these ap-
proaches can be modeled. Ginsberg used the bilattice for-
malism to model first order logic, assumption based truth
maintenance systems, and formal systems such as default
logics and circumscription. Figure 3 shows examples of dif-
ferent bilattices and the types of logic they can be used to
model. Figure 3(a) for instance models classical two valued
logic, Figure 3(b) models three valued logics, Figure 3(c)
models Belnap’s four valued logics, Figure 3(d) and (e)
model traditional and prioritized default logics, and Fig-
ure 3(f) models continuous valued logics.

In our application, the reasoning system is looked upon
as a passive rational agent capable of reasoning under uncer-
tainty. Uncertainties assigned to the rules that guide reason-
ing, as well as detection uncertainties reported by the low
level detectors, are taken from a set structured as a bilat-
tice. These uncertainty measures are ordered along two axes,
one along the source’s 1 degree of information and the other
along the agent’s degree of belief. As we will see, this struc-
ture allows us to address all of the issues raised in the pre-
vious section and provides a uniform framework which not
only permits us to encode multiple rules for the same propo-
sition, but also allows inference in the presence of contra-
dictory information from different sources.

All of the bilattices shown in Figure 3, are generated via
differing choices of their constituent lattices. While bilat-
tices depicted in Figure 3(a), (d) and (e) have been employed

1 A single rule applied to its set of corresponding facts is referred to
as a source here. There can be multiple rules deriving the same propo-
sition (both positive and negative forms of it) and therefore we have
multiple sources of information.
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to address certain problems in computer vision [39,38], in
this paper we focus on the continuous valued logic as mod-
eled by the bilattice shown in Figure 3(f).

Definition 1 (Lattice) A lattice is a set L equipped with a
partial ordering ≤ over its elements, a greatest lower bound
(glb) and a lowest upper bound (lub) and is denoted as L =
(L,≤) where glb and lub are operations from L×L→L that
are idempotent, commutative and associative. Such a lattice
is said to be complete, iff for every nonempty subset M of
L, there exists a unique lub and glb.

Definition 2 (Bilattice [17]) A bilattice is a triple B =
(B,≤t ,≤k), where B is a nonempty set containing at least
two elements and (B,≤t), (B,≤k) are complete lattices.

Informally a bilattice is a set, B, of uncertainty measures
composed of two complete lattices (B,≤t) and (B,≤k) each
of which is associated with a partial order≤t and≤k respec-
tively. The ≤t partial order (agent’s degree of belief) indi-
cates how true or false a particular value is, with f being the
minimal and t being the maximal while the ≤k partial order
indicates how much is known about a particular proposition.
The minimal element here is⊥ (completely unknown) while
the maximal element is> (representing a contradictory state
of knowledge where a proposition is both true and false).
The glb and the lub operators on the ≤t partial order are ∧
and ∨ and correspond to the usual logical notions of con-
junction and disjunction, respectively. The glb and the lub
operators on the ≤k partial order are ⊗ and ⊕, respectively,
where ⊕ corresponds to the combination of evidence from
different sources or lines of reasoning while ⊗ corresponds
to the consensus operator. A bilattice is also equipped with
a negation operator ¬ that inverts the sense of the ≤t partial
order while leaving the ≤k partial order intact and a con-
flation operator − which inverts the sense of the ≤k partial
order while leaving the ≤t partial order intact.

The intuition is that every piece of knowledge, be it a
rule or an observation from the real world, provides dif-
ferent degrees of information. An agent that has to reason
about the state of the world based on this input, will have
to translate the source’s degree of information, to its own
degree of belief. Ideally, the more information a source pro-
vides, the more strongly an agent is likely to believe it (i.e
closer to the extremities of the t-axis) . The only excep-
tion to this rule being the case of contradictory informa-
tion. When two sources contradict each other, it will cause
the agent’s degree of belief to decrease despite the increase
in information content. It is this decoupling of the sources
and the ability of the agent to reason independently along
the truth axis that helps us address the issues raised in the
previous section. It is important to note that the line join-
ing ⊥ and > represents the line of indifference. If the fi-
nal uncertainty value associated with a hypothesis lies along
this line, it means that the degree of belief for
and degree of belief against it cancel each other
out and the agent cannot say whether the hypothesis is
true or false. Ideally the final uncertainty values should
be either f or t, but noise in observation as well as

Figure 4 The bilattice square B = ([0,1]2,≤t ,≤k). Every element of
this bilattice is of the form 〈evidence f or,evidence against〉.

less than completely reliable rules ensure that this is al-
most never the case. The horizontal line joining t and f
is the line of consistency. For any point along this line,
the degree of belief for will be exactly equal to
(1-degree of belief against) and thus the final
answer will be exactly consistent.

Definition 3 (Rectangular Bilattice [11,2]) Let L =
(L,≤L) and R = (R,≤R) be two complete lattices. A rectan-
gular bilattice is a structure L ¯R = (L×R,≤t ,≤k), where
for every x1,x2 ∈L and y1,y2 ∈R,
1. 〈x1,y1〉 ≤t 〈x2,y2〉 ⇔ x1 ≤L x2 and y1 ≥R y2,
2. 〈x1,y1〉 ≤k 〈x2,y2〉 ⇔ x1 ≤L x2 and y1 ≤R y2

An element 〈x1,y1〉 of the rectangular bilattice L ¯R
may be interpreted such that x1 represents the amount of
belief for some assertion while y1 represents the amount of
belief against it. If we denote the glb and lub operations of
complete lattices L = (L,≤L), and R = (R,≤R) by ∧L and
∨L, and ∧R and ∨R respectively, we can define the glb and
lub operations along each axis of the bilattice L ¯R as
follows [2,11]:
〈x1,y1〉∧ 〈x2,y2〉 = 〈x1∧L x2,y1∨R y2〉,
〈x1,y1〉∨ 〈x2,y2〉 = 〈x1∨L x2,y1∧R y2〉,
〈x1,y1〉⊗〈x2,y2〉 = 〈x1∧L x2,y1∧R y2〉,
〈x1,y1〉⊕〈x2,y2〉 = 〈x1∨L x2,y1∨R y2〉 (1)

Of interest to us in our application is a particular class
of rectangular bilattices where L and R coincide. These
structures are called squares [3] and L ¯L is abbrevi-
ated as L 2. Since detection likelihoods reported by the low
level detectors are typically normalized to lie in the [0,1]
interval, the underlying lattice that we are interested in is
L = ([0,1],≤)2. The bilattice that is formed by L 2 is de-
picted in Figure 4. Each element in this bilattice is a tuple

2 Note that with this choice of the lattice, ≤ becomes a complete
ordering, meaning all members of the lattice are comparable. Defini-
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with the first element encoding evidence for a proposition
and the second encoding evidence against. In this bilattice,
the element f (false) is denoted by the element 〈0,1〉 indicat-
ing, no evidence for but full evidence against, similarly ele-
ment t is denoted by 〈1,0〉, element⊥ by 〈0,0〉 indicating no
information at all and > is denoted by 〈1,1〉. To fully define
glb and lub operators along both the axes of the bilattice as
listed in (1), we need to define the glb and lub operators for
the underlying lattice ([0,1],≤). A popular choice for such
operators are triangular-norms and triangular-conorms. Tri-
angular norms and conorms were introduced by Schweizer
and Sklar [37] to model the distances in probabilistic metric
spaces. Triangular norms are used to model the glb operator
and the triangular conorm to model the lub operator within
each lattice.

Definition 4 (triangular norm) A mapping
T : [0,1]× [0,1]→ [0,1]
is a triangular norm (t-norm) iff T satisfies the following
properties:
- Symmetry: T (a,b) = T (b,a),∀a,b ∈ [0,1]
- Associativity: T (a,T (b,c)) = T (T (a,b),c),∀a,b,c ∈
[0,1].
- Monotonicity:T (a,b)≤T (a′,b′)i f a≤ a′and b≤ b′
- One identity: T (a,1) = a,∀a ∈ [0,1].

Definition 5 (triangular conorm) A mapping
S : [0,1]× [0,1]→ [0,1]
is a triangular conorm (t-conorm) iff S satisfies the follow-
ing properties:
- Symmetry: S (a,b) = S (b,a),∀a,b ∈ [0,1]
- Associativity: S (a,S (b,c)) = S (S (a,b),c),∀a,b,c ∈
[0,1].
- Monotonicity:S (a,b)≤S (a′,b′)i f a≤ a′and b≤ b′
- Zero identity: S (a,0) = a,∀a ∈ [0,1].

if T is a t-norm, then the equality S (a,b) = 1 −
T (1− a,1− b) defines a t-conorm and we say S is de-
rived from T . There are number of possible t-norms and
t-conorms one can choose. In our application, for the un-
derlying lattice, L = ([0,1],≤), we choose the t-norm such
that T (a,b) ≡ a∧L b = ab and consequently choose the t-
conorm as S (a,b)≡ a∨L b = a+b−ab. Based on this, the
glb and lub operators for each axis of the bilattice B can then
be defined as per (1).

3.3 Inference

Inference in bilattice based reasoning frameworks is per-
formed by computing the closure over the truth assignment.

Definition 6 (Truth Assignment) Given a declarative lan-
guage L, a truth assignment is a function φ : L→ B where B
is a bilattice on truth values or uncertainty measures.

Definition 7 (Closure) Let K be the knowledge base and
φ be a truth assignment, labeling every formula k ∈K , then
the closure over k ∈ K , denoted cl(φ) is the truth assign-
ment that labels information entailed by K .

tion 3 therefore needs to be modified such that 〈x1,y1〉 ≤t 〈x2,y2〉 ⇔
x1− y1 ≤ x2− y2 and 〈x1,y1〉 ≤k 〈x2,y2〉 ⇔ x1 + y1 ≤ x2 + y2.

For example, if φ labels sentences {p,q ← p} ∈ K
as 〈1,0〉 (true); i.e. φ(p) = 〈1,0〉 and φ(q ← p) = 〈1,0〉,
then cl(φ) should also label q as 〈1,0〉 as it is information
entailed by K . Entailment is denoted by the symbol ‘|=’
(K |= q).

Let S+
q ⊂ L be the collection of minimal subsets of sen-

tences in K entailing q. For each minimal subset U ∈ S+
q ,

the uncertainty measure to be assigned to the conjunction of
elements of U is

∧

p∈U

cl(φ)(p) (2)

This term represents the conjunction of the closure of
the elements of U3. It is important to note that this term is
merely a contribution to the final uncertainty measure of q
and not the final uncertainty measure itself. The reason it is
merely a contribution is because there could be other sets
of sentences in S+

q that entail q representing different lines
of reasoning (or, in our case, different rules and supporting
facts). The contributions of these sets of sentences need to be
combined using the ⊕ operator along the information (≤k)
axis. Also, if the expression in (2) evaluates to false, then its
contribution to the value of q should be 〈0,0〉 (unknown) and
not 〈0,1〉 (false). These arguments suggest that the closure
over φ of q is

cl(φ)(q) =
⊕

U∈S+
q

⊥ ∨[
∧

p∈U

cl(φ)(p)] (3)

where ⊥ is 〈0,0〉. This is however, only part of the informa-
tion. We also need to take into account the sets of sentences
entailing ¬q. Let S−q be collections of minimal subsets in
K entailing ¬q. Aggregating information from S−q yields
the following expression

cl(φ)(q)=
⊕

U∈S+
q

⊥∨[
∧

p∈U

cl(φ)(p)]⊕¬
⊕

U∈S−q

⊥∨[
∧

p∈U

cl(φ)(p)]

(4)

For more details see [17].
Table 1 shows an example, using a simplified logic pro-

gram, illustrating the process of computing the closure as
defined above by combining evidence from three sources.
In this example, the final uncertainty value computed is
〈0.4944,0.72〉. This indicates that evidence against the hy-
pothesis at (25,95) at scale 0.9 exceeds evidence in favor of
and, depending on the final threshold for detection, this hy-
pothesis is likely to be rejected.

3 Recall that ∧ and ∨ are glb and lub operators along the ≤t order-
ing and ⊗ and ⊕ along ≤k axis. The symbols

∧
,
∨

,
⊗

,
⊕

are their
infinitary counterparts such that

⊕
p∈S p = p1⊕ p2⊕·· · , and so on.
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Assume the following set of rules and facts:
Rules Facts

φ(human(X ,Y,S)← head(X ,Y,S)) = 〈0.40,0.60〉 φ(head(25,95,0.9)) = 〈0.90,0.10〉
φ(human(X ,Y,S)← torso(X ,Y,S)) = 〈0.30,0.70〉 φ(torso(25,95,0.9)) = 〈0.70,0.30〉

φ(¬human(X ,Y,S)←¬scene consistent(X ,Y,S)) = 〈0.90,0.10〉 φ(¬scene consistent(25,95,0.9)) = 〈0.80,0.20〉
Inference is performed as follows:
cl(φ)(human(25,95,0.9)) = 〈0,0〉∨ [〈0.4,0.6〉∧ 〈0.9,0.1〉]⊕〈0,0〉∨ [〈0.3,0.7〉∧ 〈0.7,0.3〉]⊕¬(〈0,0〉∨ [〈0.9,0.1〉∧ 〈0.8,0.2〉])

= 〈0.36,0〉⊕〈0.21,0〉⊕¬〈0.72,0〉= 〈0.4944,0〉⊕〈0,0.72〉= 〈0.4944,0.72〉
Table 1 Example showing inference using closure within a ([0,1]2,≤t ,≤k) bilattice

3.4 Negation

Systems such as this typically employ different kinds of
negation. One kind of negation that has already been men-
tioned earlier is ¬. This negation flips the bilattice along the
≤t axis while leaving the ordering along the ≤k axis un-
changed. Another important kind of negation is negation by
failure to prove, denoted by not. not(A) succeeds if A fails.
This operator flips the bilattice along both the≤t axis as well
as the ≤k axis. Recall that, in Section 3.2, ‘−’ was defined
as the conflation operator that flips the bilattice along the≤k
axis. Therefore, φ(not(A)) = ¬−φ(A). In other words, if A
evaluates to 〈0,0〉, then not(A) will evaluate to 〈1,1〉. This
operator is important when we want to detect the absence of
a particular body part for a hypothesis.

3.5 Generating Proofs

As mentioned earlier, in addition to using the explanatory
ability of logical rules, we can also provide these expla-
nations to the user as justification of why the system be-
lieves that a given hypothesis is a human. The system pro-
vides a straightforward technique to generate proofs from
its inference tree. Since all of the bilattice based reasoning
is encoded as meta-logical rules in a logic programming lan-
guage, it is easy to add predicates that succeed when the rule
fires and propagate character strings through the inference
tree up to the root where they are aggregated and displayed.
Such proofs can either be dumps of the logic program it-
self or be English text. In our implementation, we output the
logic program as the proof tree.

4 Pattern Grammars

We can now use this framework to define a knowledge
base to detect different patterns of interest. We begin by
defining a number of predicates and their associated pa-
rameters pertinent to the problem at hand. For instance,
for the human detection problem, we can define atoms
such as human(X ,Y,S)4, head(X ,Y,S), torso(X ,Y,S) etc.
We also define relational and geometric predicates such
as above(X1,Y1,S1,X2,Y2,S2), smaller(X1,Y1,S1,X2,Y2,S2),
sceneconsistent(X ,Y,S)5.

4 meaning there exists a human at location (X ,Y ) and scale S in the
image

5 meaning the hypothesis at (X ,Y ) and scale S is consistent with the
scene geometry and conforms, within bounds, to the expected size of
an object at the location

The next step involves specification of the pattern gram-
mar, as logical rules, over these defined atoms. Such rules
would capture different aspects of the pattern to be recog-
nized such as those shown in Figure 5. Rules in such sys-
tems can be learnt automatically; however, such approaches
are typically computationally very expensive. We manually
encode the rules while automatically learning the uncertain-
ties associated with them as described in Section 6.

A desirable property of any reasoning framework is scal-
ability. We may expect scalability in vision systems as dif-
ferent objects or pattern classes are hierarchically composed
of constituent patterns that share features like textures, edges
etc. and as objects inhabit the same optical world and are
imaged by similar optical sensors. We see scalability as a
design principle wherein the model description is modular,
hierarchical and compositional, reflecting the above under-
standing of the world. The proposed framework results in
scalable systems if models are appropriately described as
such.

With this goal in mind, we lay out the following design
principle for object pattern grammar specification. We par-
tition rule specification into three broad categories: object
composition model based, object embodiment model based
and object context model based.
Composition model Rules encoding these models capture a
hierarchical representation of the object pattern as a compo-
sition of its constituent part detections. These parts might by
themselves be composed of sub-parts. Rules in this category
try to support or refute the presence of a pattern based on the
presence or absence of its constituent parts.
Embodiment model These rules model knowledge about
the object pattern’s geometric layout and their embodiment
in 3D projective spaces.
Context model These rules attempt to model the surround-
ing context within which the pattern of interest is embedded.
These rules would for example model interactions between
a given object and other objects or other scene structures.

As mentioned above, such an object oriented organiza-
tion of the knowledge representation derives from an im-
plicit understanding of our physical world as composed of
objects. Specification and conceptual layering of rules in this
manner induces a natural hierarchy in such a pattern speci-
fication. By enforcing that the specified rules are well struc-
tured, categorized into the above categories and follow gen-
eral principles of composability, we ensure the scalability of
our system.

It is important to note that there would typically exist
multiple rules that derive the same proposition. These mul-
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tiple rules are interpreted in logic programming as disjunc-
tions (i.e. rule 1 is true or rule 2 is true etc). Writing rules
in this manner makes each rule independently ‘vote’ for the
proposition to be inferred. This disjunctive specification re-
sults in a scalable solution where the absence of a single
observation does not completely preempt the final output,
but merely reduces its final confidence value. As can be
seen from the subset of rules in Figure 5, the inference tree
formed would be comprised of conjunctions, disjunctions
and different kinds of negations.

4.1 Human Detection

Human detection in images is a hard problem. There are
a number of approaches in computer vision literature that
detect humans both as whole as well as a collection of
parts. Leibe et al. [24] employs an iterative method com-
bining local and global cues via a probabilistic segmenta-
tion, Gavrilla [14,15] uses edge templates to recognize full
body patterns, Papageorgiou et al. [30] uses SVM detectors,
and Felzenszwalb [8] uses shape models. A popular detec-
tor used in such systems is a cascade of detectors trained
using AdaBoost as proposed by Viola and Jones [49]. Dalal
and Triggs [7] use an SVM based classifier based on the his-
togram of oriented gradients. This was further extended by
Zhu et al. [57] to detect whole humans using a cascade of
histograms of oriented gradients. Part based representations
have also been used to detect humans. Wu and Nevatia [53]
use edgelet features and learn nested cascade detectors for
each of several body parts and detect the whole human us-
ing an iterative probabilistic formulation.

Our human body part detectors are inspired by [57].
Similar to their approach we train a cascade of SVM-
classifiers on histograms of gradient orientations. Instead of
the hard threshold function suggested in their paper, we ap-
ply a sigmoid function to the output of each SVM. These
softly thresholded functions are combined using a boosting
algorithm [12]. After each boosting round, we calibrate the
probability of the partial classifier based on an evaluation
set, and set cascade decision thresholds based on the sequen-
tial likelihood ratio test similar to [42]. To train the parts-
based detector, we restrict the location of the windows used
during the feature computation to the areas corresponding to
the different body parts (head/shoulder, torso, legs).

φ(human(X ,Y,S) ← head(X ,Y,S),
sceneconsistent(X ,Y,S)) = 〈α1,β1〉

φ(human(X ,Y,S) ← not(torso(X ,Y,S),
torso occluded(X ,Y,S,Xo,Yo,So),
human(Xo,Yo,So),
Yo > Y ) = 〈α2,β2〉.

φ(¬human(X ,Y,S) ← not(onground plane(X ,Y,S))) = 〈α3,β3〉
φ(¬human(X ,Y,S) ← not(head(X ,Y,S))) = 〈α4,β4〉

Figure 5 A sample subset of rules for human detection

The pattern grammar for the human detection problem is
formulated as per the broad categories listed in the previous
section. Component based rules hypothesize that a human is
present at a particular location if one or more of the body
part detectors described above detects a body part there. In
other words, if a head is detected at some location, we say
there exists a human there. There are positive rules, one each
for the head, torso, legs and full-body based detectors as well
as negative rules that fire in the absence of these detections.

Geometry based rules validate or reject human hypothe-
ses based on geometric and scene information. This infor-
mation is entered a priori in the system at setup time. We
employ information about expected height of people and re-
gions of expected foot location. The expected image height
rule is based on ground plane information and anthropome-
try. Fixing a Gaussian at an adult human’s expected physical
height allows us to generate scene consistency likelihoods
for a particular hypothesis given its location and size. The
expected foot location region is a region demarcated in the
image outside of which no valid feet can occur and therefore
serves to eliminate false positives.

Context based rules are the most important rules for a
system that has to handle occlusions. The idea here is that
if the system does not detect a particular body part, then it
must be able to explain its absence for the hypothesis to be
considered valid. If it fails to explain a missing body part,
then it is construed as evidence against the hypothesis being
a human. Absence of body parts is detected using logic pro-
gramming’s ‘negation as failure’ operator (not). not(A) suc-
ceeds when A evaluates to 〈0,0〉 as described in Section 3.4.
A valid explanation for missing body part could either be
due to occlusions by static objects or due to occlusions by
other humans.

Explaining missed detections due to occlusions by static
objects is straightforward. At setup, all static occlusions are
marked. Image boundaries are also treated as occlusions and
marked as shown in Figure 1(black area at the bottom of the
figure). For a given hypothesis, the fraction of overlap of the
missing body part with the static occlusion is computed and
reported as the uncertainty of occlusion. The process is sim-
ilar for occlusions by other human hypotheses, with the only
difference being that, in addition to the degree of occlusion,
we also take into account the degree of confidence of the hy-
pothesis that is responsible for the occlusion, as illustrated
in the second rule in Figure 5.

This rule will check to see if human(X ,Y,S)’s torso is
occluded by human(Xo,Yo,So) under condition that Yo > Y ,
meaning the occluded human is behind the ‘occluder’. It is
important to note that this would induce a scene geometry
constrained, hierarchy in the parse graph, since whether or
not a given hypothesis is a human depends on whether or
not a hypothesis in front of it was inferred as being a valid
pattern of interest. There exist similar rules for other com-
ponents and also rules deriving ¬human in the absence of
explanations for missing parts.
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(a) (b)

Figure 6 Sample features detected in aerial images

4.2 Aerial Object Detection

Typical objects of interest in aerial images are buildings,
roads, factories, rivers, harbors, airfields, golf courses, etc.
We focus on the detection of surface-to-air missile (SAM)
sites. The two primary classes of features we employ are
geometric and contextual. Geometric features extracted are
straight lines, circles, corners etc. In case of SAM sites,
the primary discriminating feature is typically the arrange-
ment of individual missile launchers that compose the SAM
site. Circle feature detectors can be used to detect individual
launchers as shown in Figure 6 (a) while, line features can
help detect neighboring structures such as a road network.

For contextual features, we attempt to discriminate ter-
rain textures in aerial scenes, such as, “Forest”, “Desert”,
“Road”, “Urban”, “Maritime”, and “Agricultural” on a
coarse level. Terrain textures, such as oceans, forest, urban,
agricultural areas, contain repetitions of fundamental micro-
structures such as waves, trees, houses and streets, agricul-
tural produce, respectively. Such configurations have been
studied in literature as texture (with a texton being the mi-
cro structure) and identified as a significant feature for per-
ception and identification, both in psychophysics [20] and
computer vision [25]. Walker and Malik [51] report that tex-
ture provides a strong cue for the identification of natural
scenes in the human visual system. Our context features are
inspired by well developed texture classification techniques;
see [25,48]. Figure 6 (b) shows different regions of the im-
age color labeled with the corresponding detected textures.
The spatial, geometric and contextual constraints that need
to be satisfied for an object to be classified as a SAM site
are encoded as logical rules, again broadly falling in the cat-
egories listed above.

4.3 Implementation Details

A predicate logic based reasoning framework can be effi-
ciently implemented in a logic programming language like
Prolog. Distributions of Prolog like SWI-Prolog, allow for
the straightforward integration of C++ with an embedded
Prolog reasoning engine. Predefined rules can be inserted

(a) (b)

Figure 7 (a) Figure showing a sample image from the USC CAVIAR
dataset with detection results overlaid and (b) Computed uncertainty
value (for all human hypotheses in left image) plotted in the bilattice
space.

into the Prolog engine’s knowledge base at set up time by the
C++ module, along with information about scene geometry
and other constraints. At runtime, the C++ module can ap-
ply the detectors on the given image, preprocess the feature
detector output if needed, syntactically structure this output
as logical facts, and finally insert it into the Prolog knowl-
edge base. These detections then serve as initial hypotheses
upon which the query can be performed. Since rules contain
unbounded variables and observed facts contain constants
as parameters, querying for a proposition in Prolog implies
finding a suitable binding of the rule variables to the con-
stants of the supporting facts. If no such binding is found,
the corresponding rule does not fire.

It is important to note that complexity of general in-
ference in predicate logics can be combinatorial. In prac-
tice, however, variable interdependencies between different
atoms of a rule restrict the search space significantly. Specif-
ically, in the pattern grammar formulation described in this
paper, there exists significant reuse of the variables between
atoms both within and across different rules. Additionally,
Prolog can be set up to index facts based on specific vari-
ables further reducing complexity of variable binding.

5 Evaluation I

In this section, we first describe some qualitative results
on the human detection problem using the USC-CAVIAR
dataset and show how our system reasons and resolves diffi-
cult scenarios. We subsequently present quantitative results
on the USC-CAVIAR dataset as well as on problem of de-
tecting SAM sites from aerial imagery. Please note that for
both the problems, we obtain rule-weights using the positive
predictive value (PPV) approach as described in Section 6.1.

5.1 Human Detection

We have evaluated below the performance of the bilattice
based logical reasoning approach on the problem of human
detection on static images.
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5.1.1 Qualitative Results

Table 2 lists the proof for Human 4 from Figure 1. For Hu-
man 4, the head and torso are visible while the legs are miss-
ing due to occlusion by human 2. In Table 2, variables start-
ing with G · · · are non-unified variables in Prolog, meaning
that legs cannot be found and therefore the variables of the
predicate legs cannot be instantiated. It can be seen that evi-
dence in favor of the hypothesis exceeds that against.

Figure 7(a), shows a sample image from the
USC CAVIAR dataset and shows the detection results
overlaid. Figure 7(b) plots the uncertainty value for each
hypothesis point in the bilattice space. The red circles on
the right are the accepted detections and correspond to the
bounding boxes in (a), while the gray circles in the left half
of the bilattice are hypotheses rejected by the reasoning
framework (not displayed in (a)).

5.1.2 Quantitative Results

We applied our framework to the set of static images taken
from USC-CAVIAR [53] dataset. This dataset, a subset of
the original CAVIAR [1] data, contains 54 frames with 271
humans of which 75 humans are partially occluded by other
humans and 18 humans are occluded by the scene boundary.
This data is not part of our training set. We have trained our
parts based detector on the MIT pedestrian dataset [30]. For
training purposes, the size of the human was 32x96 centered
and embedded within an image of size 64x128. We used 924
positive images and 6384 negative images for training. The
number of layers used in full-body, head, torso and leg de-
tectors were 12, 20, 20, and 7 respectively. Figure 8 shows
the ROC curves for our parts based detectors as well as for
the full reasoning system. “Full Reasoning*”, in Figure 8,
is the ROC curve on the 75 occluded humans. ROC curves
for part based detectors represent detections that have no
prior knowledge about scene geometry or other anthropo-
metric constraints. It can be seen that performing high level
reasoning over low level part based detections, especially
in presence of occlusions, greatly increases overall perfor-
mance. We have also compared the performance of our sys-
tem with the results reported by Wu and Nevatia [53] on the
same dataset. We have taken results reported in their origi-
nal paper and plotted them in Figure 8. As can be seen, re-
sults from both systems are comparable. The results in Fig-
ure 8 were first reported in [40]. Since then [27] and [54]
published new results on this datasets that show some im-
provements in the overall ROC curve. All the reported re-
sults however are comparable to each other.

We also applied our framework on another set of im-
ages taken from a dataset we collected on our own (in this
paper we refer to it as Dataset-A). This dataset contains 58
images (see Figure 9) of 166 humans, walking along a cor-
ridor, 126 of whom are occluded 30% or more, 64 by the
image boundary and 62 by each other. Dataset-A is signifi-
cantly harder than the USC-CAVIAR dataset due to heavier
occlusions (44 humans are occluded 70% or more), perspec-
tive distortions (causing humans to appear tilted), and due to
the fact that many humans appear in profile view. Figure 10
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Figure 8 ROC curves for evaluation on the USC-CAVIAR dataset.
Full Reasoning* is ROC curve for 75 humans occluded by other hu-
mans. Results of [53] on the same dataset are copied from their original
paper. WuNevatia* is ROC curve for the 75 humans occluded by other
humans

Figure 9 An image from Dataset-A
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Figure 10 ROC curves for evaluation on Dataset-A. Full Reasoning*
is ROC curve for 126 occluded humans.

shows the ROC curves for this dataset. It can be seen that
the low level detectors as well as the full body detector per-
form worse here than on the USC-CAVIAR data, however,
even in such a case, the proposed logical reasoning approach
gives a big improvement in performance.
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Total: human(154,177,1.25) 〈0.359727,0.103261〉
+ve evidence: head(154, 177, 1.25) 〈0.94481,0.05519〉

torso(156.25, 178.75, 1.25) 〈0.97871,0.02129〉
on ground plane(154, 177, 1.25) 〈1,0〉
scene consistent(154, 177, 1.25) 〈0.999339,0.000661〉
not((legs( G7093, G7094, G7095),

legs body consistent(154, 177, 1.25, G7093, G7094, G7095))) 〈1,1〉
is part occluded(134.0, 177.0, 174.0, 237.0) 〈0.260579,0.739421〉

-ve evidence: ¬scene consistent(154, 177, 1.25) 〈0.000661,0.999339〉
not((legs( G7260, G7261, G7262),

legs body consistent(154, 177, 1.25, G7260, G7261, G7262))) 〈1,1〉
Table 2 Proof for human marked as ‘4’ in Figure 1

5.2 Aerial Object Detection

We have evaluated the bilattice based logical reasoning ap-
proach on the problem of detecting SAM sites in aerial im-
agery. As can be seen from Figure 2, these objects are highly
variable in shape and are hard to detect even for humans.
However, the defining characteristic of such an object is
the arrangement of its constituent missile launchers which
arises from functional requirements. Additionally, there are
a number of contextual cues that can be exploited such as
geographical and topological makeup of the neighboring re-
gions. We created a dataset of SAM sites containing 33 pos-
itive examples and 869 negative examples sampled from a
400Km2 physical region surrounding the positive example.
Figure 11 shows the ROC curve obtained for this data. Fig-
ure 11 also plots the ROC curve on that data for a AdaBoost
with Haar wavelets approach [49]. The AdaBoost based ap-
proach was trained on a separate training set of 869 negative
images and 32 positive images.

As can be seen from Figure 11, there is a marked im-
provement in performance using the pattern grammar based
approach over a purely data driven approach. It is impor-
tant to note however, that even for relatively simple, well
constrained objects a purely data driven approach such as
AdaBoost would need a lot of data to adequately generalize.
In datasets such SAM sites, it is usually hard to acquire the
required amounts of annotated data for such an approach to
effectively learn. Add to that the high variability in the shape
of the object and even more data would be needed to ade-
quately generalize. In the case of the pattern grammar based
approach, since knowledge of the object structure and sur-
rounding context is directly specified, we would expect the
results to be better than any purely data driven technique.

6 Rule Weight Learning

Although theoretical aspects of bilattices and the nature of
semantics they give rise to in logic programs have been ex-
tensively studied in literature [3,11,17], little work exists on
automated learning procedures, which are of grave impor-
tance to computer vision applications. Learning in such sys-
tems implies: a) Learning the structure of the rules b) Learn-
ing rule weights. While there exists literature for learning
rule structure from data, such approaches tend to be compu-
tationally prohibitive and require large amounts of data. In
this paper, we assume that the rule structure is given to us

Figure 11 ROC Curves for SAM site detection problem.

and focus instead on learning and optimizing rule weights
within the bilattice framework.

6.1 Positive predictive value based learning

A common technique for rule weight learning is to
use the positive predictive value (PPV) of the rule as
its weight. Given training data in the form of ob-
served facts, ground truth annotations, and a rule of
the form A ← B1,B2, · · · ,Bn, a confidence value of〈
F (A|B1,B2, · · · ,Bn),F (¬A|B1,B2, · · · ,Bn)

〉
is computed.

F (A|B1,B2, · · · ,Bn) is the fraction of times A coincides
with the ground truth when B1,B2, · · · ,Bn is true. As the
name suggests, this value computes a measure of the frac-
tion of the time, a rule that has fired, is expected to be correct
with respect to ground truth. This measure is learnt individu-
ally for each rule. Typically a multiplicative constant is also
employed to scale down all rule weights, if needed, to pre-
vent saturation of the final uncertainty value of the inferred
proposition, when multiple rules are combined. The results
reported in the previous section of this paper, Section 5, have
been generated using rule weights learnt using the PPV.

There are a number of issues with using the rule’s PPV
as its weight.
1) The PPV depends on the ground truth annotations w.r.t.
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inferred variables for the observed facts. Often, however,
ground truth is only known for rules that infer the output
node. Deeper nodes (i.e., input or hidden nodes) usually lack
this information, and hence, defy PPV based weight adapta-
tion.
2) Joint optimization of rules is not possible. Each rule
weight is learnt individually, ignoring possible support or
opposition of adjacent rules.
3) Uncertainty values of the final inferred proposition can
saturate to the maximal contradictory state of the bilattice,
especially when multiple rules are combined, again because
each rule weight is learnt individually. To handle this typi-
cally an appropriate multiplicative constant needs to be cho-
sen.
4) An inherently frequentist interpretation of the rules
weights may not be optimal, due to the fact that the pattern
grammar formulation itself may not be complete and may
contain contradictions.

6.2 Knowledge based Artificial Neural Networks

In this section, we present a rule weight learning method
that attempts to address these issues. This approach (a) casts
the instantiated inference tree from the logic program as a
knowledge-based neural network, (b) interprets uncertain-
ties associated with logical rules as link weights in this neu-
ral network and (c) applies a constrained, modified back-
propagation algorithm to converge upon a set of rule weights
that give optimal performance. The back-propagation algo-
rithm has been modified to allow computation of local gra-
dients over the bilattice specific inference operation.

The issues raised above are handled in the following
manner:
1) Similar to the error back-propagation algorithm with
multi-layer perceptrons, ground truth is only required for
rules that infer the output variable. As will be shown, the
algorithm then “back-propagates” the computed error (of
ground truth versus observed activation) to the deeper nodes
of the rule hierarchy.
2) Due to the choice of t-norm and t-conorm for the bilattice
and the formulation of the weight optimization as a gradient
descent algorithm, optimization of individual rule weights
is tempered by the contributions of adjacent rules that have
fired for a given hypothesis.
3) Further in the gradient descent formulation, it is straight-
forward to include a regularization term in the error
expression that penalizes extremely large or extremely
small rule weights thus obviating the need for an external
multiplicative scaling constant.
4) Due to the fact that the KB may be incomplete or
inconsistent, a gradient descent based approach might
converge upon a set of rule weights that provide a favorable
performance as compared to a PPV based measure.

Traditionally, artificial neural networks (ANNs) are
modeled as black boxes. Given a set of input and output
variables, and training data, a network is created in which
the input nodes correspond to the input variables and the

output nodes correspond to the output variables. Depending
on the nature of the problem to be solved and a priori as-
sumptions, a number of nodes are introduced between the
input and output nodes that are termed hidden nodes. Each
link connecting two nodes is assigned a link weight. Learn-
ing in an ANN implies optimizing link weights to minimize
the mean squared error between the network predicted out-
put and ground truth, given input data. In such networks,
the intermediate hidden nodes don’t necessarily have to be
meaningful entities.

In knowledge based ANNs (KBANN) [45,28], unlike
traditional ANNs, all nodes, hidden or not, have a seman-
tically relevant interpretation. This semantic interpretability
arises out of careful construction of the KBANN. In our
case, we construct the KBANN from the rule base of the
logic program. Each node of the KBANN therefore directly
corresponds to each instantiated atom of the logic program
while links weights correspond to rules weights. Given a
logic program, optimizing the rule weights thus is a two
step process. Step 1 is to use the rules and facts to cre-
ate a KBANN and step 2 is to use a modified version of
the standard backpropagation algorithm [34] to optimize the
link weights of the KBANN, thus in turn optimizing the rule
weights in the original logic program.

6.2.1 Building the KBANN

The first step in the learning algorithm is to convert the rule
base to a representation of a knowledge-based artificial neu-
ral network. Consider a set of rules, such as those depicted
in Figure 5. Given a set of training data, in the form of ob-
served logical facts and associated ground truth, the first step
is to generate a grounded, propositional, representation for
each of the rules. Below is one such set of propositional rule
representation.

φ( j ← o11,o12,o13) = w+
j1

φ( j ← o21,o22) = w+
j2 (5)

φ(¬ j ← o31,o32) = w−j3
where each term, j, o11, o12, etc, represent grounded
atoms such as human(23,47,0.4), head(43,55,0.9), etc.
The weights associated with these propositional rules cor-
responds to the evidence f or component of the original
rules6. This grounded, propositional, rules representation
can now be directly used to construct the artificial neural
network. In such a network, observed features (logical facts)
become the input nodes, while propositions corresponding
to the rule heads become output nodes and are placed at the
top of the network. Rule weights become link weights in the
network.

6 Recall that for a given rule, only the evidence for component of
the uncertainty attached to the rule is relevant. The evidence against
component of the rule weight gets discarded during inference due to
the disjunction with 〈0,0〉 (see (4)). Given a proposition, j, to be rea-
soned about, positive rules will contribute evidence supporting j, while
negative rules will contribute evidence refuting it. The evidence for
component of the negative rule will contribute to the evidence against
component of the proposition to be reasoned about due to the negation.
Please refer to the example in Table 1 for more details.
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Figure 12 A simple ANN

Figure 13 shows the KBANN derived from the set of
grounded, propositional rules from (5). It is important to
note that conjuncts within a single rule need to first pass
through a conjunction node before reaching the consequent
node where along with the weights they would get com-
bined with contributions from other rules in a disjunction. In
Figure 13, the links connecting the conjuncts to the product
node are depicted using solid lines. This indicates that this
weight is unadjustable and is always set to unity. Only the
weights corresponding to the links depicted in dotted lines
are adjustable as they correspond to the rule weights.

6.2.2 Computing gradients

The approach proposed in this paper is inspired by the back
propagation algorithm from neural networks, specifically,
knowledge based artificial neural networks (KBANN) intro-
duced by [45] and applied by [28].

Consider a simple ANN as shown in Figure 12. In tradi-
tional back propagation, the output of an output node is

d j = σ(z j) =
2

1+ e−λ (z j)
−1 (6)

where σ is the sigmoid function and where

z j = φ( j) = ∑
i

w jiσ(φ(oi)) (7)

The error at the output node is

E =
1
2 ∑

j
(t j−d j)2 (8)

where t j is the ground truth for node j. Based on this mea-
sure of error, the change of a particular link weight is set to
be proportional to the rate of change of error with respect to
that link weight. Thus

∆w ji ∝− ∂E
∂w ji

(9)

Using standard backpropagation calculus, the change in link
weight can be computed to be

∆w ji = ηδ jσ(φ(o j)) (10)

where

δ j = (t j−d j)
∂σ(z j)

∂ z j
(11)

if j is an output node and

δ j =
∂σ(z j)

∂ z j
∑

k∈DS( j)
δkwk j (12)

if j is a non-output node, where DS( j) is the set of nodes
downstream from j.

We now need to extend these equations to the KBANN
depicted in Figure 13. This involves computing gradients
over the bilattice specific inference operation. Recall that in
the bilattice based logical reasoning approach, inference is
performed by computing the closure over a logic program
using (4). This equation can be simplified as

z j = φ( j) =
+ve⊕

i

w+
ji ∧ [

∧

l

φ(oil)]⊕¬
−ve⊕

i

w−ji ∧ [
∧

l

φ(oil)]

(13)

Note that this equation represents a general form of the
closure operation before a commitment has been made on
the underlying lattice structure and its corresponding glb and
lub operators. Once the choice of the underlying lattice and
corresponding operators has been made, in conjunction with
(8), (9) and (13), it should be possible to compute the rate of
change of each of the rule weights.

Consistent with Section 3.2, for the rest of this section,
we choose the underlying lattice to be L = ([0,1],≤) and
choose the t-norm to be T (a,b)≡ a∧L b = ab and t-conorm
as S (a,b)≡ a∨L b = a+b−ab. As defined in Section 3.2,
the glb and lub operators for each axis of the bilattice B can
then be defined as per (1). Plugging these operator instanti-
ations in the (13), we can further simplify it to

z j =
+ve⊎

i

w+
ji ∏

l
φ(oil)−

−ve⊎

i

w−ji ∏
l

φ(oil) (14)

where a]b = a+b−ab.
Note that, unlike the traditional output equation for back

propagation (7), this formulation is slightly more complex
due to the combination of observation nodes via the con-
junction (product) node and then further combination of out-
puts of multiple rules via disjunction (probabilistic sum). A
key point to note is that the probabilistic sum of weights,⊎

i wi, can be easily differentiated, with respect to given
weight wk, as follows:

∂
⊎

i wi

∂wk
= 1−

⊎

i 6=k

wi (15)

Using (14) and (15), we can compute the gradients to be

∂E
∂w+

ji
=−(t j−d j)

[
∏

l
φ(oil)

][
1−

⊎

m6=i

w+
jm ∏

l
φ(oml)

]

(16)
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Figure 13 Example of a knowledge based artificial neural network
representing rules depicted in (5).

∂E
∂w−ji

= (t j−d j)

[
∏

l
φ(oil)

][
1−

⊎

m6=i

w−jm ∏
l

φ(oml)

]
(17)

We can now compute the rate of change of each rule weight
as follows

∆w+
ji = ηδ j

[
∏

l
φ(oil)

][
1−

⊎

k 6=m

w+
jm ∏

l
φ(oml)

]
(18)

∆w−ji =−ηδ j

[
∏

l
φ(oil)

][
1−

⊎

k 6=m

w−jm ∏
l

φ(oml)

]

where

δ j = t j−d j (19)

if j is an output node and

δ j = ∑
m∈DS( j)

δmwm j ∏
l 6= j

φ(o jl)

[
1−

⊎

k 6= j

wmk ∏
l

φ(okl)

]
(20)

if j is a non-output node, where DS( j) is the set of nodes
downstream from j.

Once we analytically compute the gradient there are a
number of techniques we can adopt to perform the actual op-
timization. In this work, we choose to perform online weight
update, where for each data point we computed the gradient
and used it to instantaneously modify the rule weight. This
is in contrast to a batch approach where the cumulative gra-
dient of a batch of data points is used to update the weights.
We believe an online approach such as the one adopted is
better suited for applications with limited access to anno-
tated data as has been suggested in [55].

7 Evaluation II

In this section, we evaluate the proposed rule weight op-
timization algorithm for the bilattice based logical reason-
ing framework. For the purpose, we have chosen the hu-
man detection problem and not the SAM site detection prob-
lem. Our decision was influenced by the amount of available
training data. There are practical difficulties in accessing a
large amount of SAM site data due to its sensitive nature.
This results in difficulty in setting up training, testing and
validation subsets of any meaningful sizes.

Given the fact that the final accuracy of the overall
framework is a function of the performance of the low level
detectors in addition to how well the optimization algorithm
optimizes rule weights, we attempt to isolate the perfor-
mance of the optimization algorithm in two ways: 1) By
fixing the rule set and performing multiple runs. For each
run, the weights are randomly initialized and performance is
measured both with the random initialization as well as after
optimization. 2) By measuring performance improvements
on simulated data. Working with simulated data allows us to
model varying degrees of low level detector noise and evalu-
ate performance of the optimization algorithm as a function
of the detector noise.

7.1 Experimental methodology

The experimental methodology we adopt is the repeated ran-
dom sub-sampling based two-fold cross validation. We ran-
domly split the data into two sets, training and testing, for
the training set, we randomly initialize the rule weights, we
then perform the proposed optimization with the random
weights as a starting point and finally measure performance
for the optimized weights on the testing dataset. To isolate
the performance improvement attained by the optimization
algorithm, we also measure the performance on the testing
set with the initial random weights. This procedure is re-
peated multiple times, each time selecting different random
training and testing subsets from the full dataset and each
time, initializing the rule weights to different random val-
ues. Performance for a given set of rule weights is measured
as the area under the ROC (AUROC) curve for the problem
of human detection.

7.2 Pedestrian dataset

We applied our framework to the set of static images taken
from USC-CAVIAR dataset. Figure 14 displays the results
of the each of the 242 randomly initialized runs on the
USC CAVIAR dataset. The red circles represent the AU-
ROC for a random weight initialization, say w0, while the
blue diamonds directly above the red circle represents the
AUROC for the optimized rule weights w with w0 as the
initial starting point.

As can be seen from both the graphs, optimizing the
rule weights using the proposed approach significantly im-
proves the overall results as well as significantly reduces the
variance of the results over multiple runs as compared to a
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Figure 14 Plot showing area under ROC curve for random initial-
ization of rule weights and trained rules for multiple runs on the
USC CAVIAR dataset.

Average AUROC for randomly initialized
rule weights 0.7084

Average AUROC for optimized rule weights 0.8519
% change in AUROC 20.2659 %

Variance of AUROC for randomly initialized
rule weights 0.0230

Variance of AUROC for optimized rule weights 0.000903
% change in variance -96.0695 %

AUROC for Positive Predictive value based
rule weight initialization 0.8073

Table 3 Table showing average increase in AUROC and reduc-
tion in variance after optimization over random initialization on the
USC CAVIAR .

purely random initialization. This trend is numerically pre-
sented in Table 3. It can be seen that the proposed optimiza-
tion approach increases the average AUROC by about 20%
while reducing the average variance by 96%. We also com-
pare in 3, the AUROC results for rule weight obtained in
a frequentist manner by computing the positive predictive
value. As can be seen, the proposed optimization approach
also outperforms in this case.

7.3 Simulated data

We also evaluate the optimization algorithm on simulated
data. Figure 15 depicts the approach adopted by us to gener-
ate the simulated data.

We first start by building a randomly initialized globally
consistent world model of humans standing on the ground
plane 15(a). We then transform this world model into camera
coordinates to render the humans from a simulated camera’s
field of view 15(b). We then generate body part responses
respecting any inter-human/human-scene occlusions 15(c).
These responses represent the ideal, noise free detector re-
sponse. We then introduce noise into these responses that
results in the introduction of false positives and missed de-
tections as well as a reduction in separability between the
positive and negative class. The detector response is mod-

Figure 15 Figure showing the approach adopted to generate simulated
data

eled using an exponential distribution conditioned to lie be-
tween [0,1] for the negative class. For the positive class the
distribution is mirrored around 0.5. This exponential distri-
bution is characterized by parameter λ . The higher the λ the
lower the false positives and missed detections and better the
separability, while the converse is true for a small λ .

Varying λ allows us to represent a range of simulated
detector performance over which we can evaluate the op-
timization algorithm as well as the overall bilattice based
logical reasoning approach. For each λ , we executed multi-
ple runs randomizing both over the training/testing dataset
as well as initial starting rule weights. The results of each of
these runs is shown in Figure 16. As can be seen from the re-
sults, as expected as the amount of detector error increases,
it gets harder to separate out the two classes and therefore
overall AUROC is low. As the low level detectors are made
stronger, AUROC improves significantly. In all these cases,
applying the proposed rule weight optimization algorithm is
clearly advantageous.

8 Conclusions

In this paper, we presented a predicate logic based reason-
ing approach that provides a means of formally specifying
domain knowledge and manipulating symbolic information
to explicitly reason about the presence of different patterns
of interest. Such logic programs help easily model hierar-
chical, compositional patterns to combine contextual infor-
mation with the detection of low level parts via conjunc-
tions, disjunctions and different kinds of negations. First or-
der predicate logic separates out the name, property or type
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Figure 16 Plot showing mean AUROC and associated variance on
simulated data for varying values of λ

of a logical construct from its associated parameters and
further, via the use of existential and universal quantifiers,
allows for enumeration over its parameters. This provides
for a powerful language that can be used to specify pattern
grammars to parse a set of image features to detect the pres-
ence of the pattern of interest. In order to admit stochastic
definitions of visual patterns and to reason in the presence
of uncertainty in facts (observations), we used the bilattice
formalism as proposed by Ginsberg [17]. We believe that
this framework is uniquely suited for high level reasoning
in vision applications as it provides a means to (a) formally
specify (stochastic) domain knowledge; (b) handle uncer-
tainty in observations; (c) reconcile contradictory evidence
(d) perform layered (hierarchical) inference; and, (d) explic-
itly generate justification for accepting/rejecting a pattern
hypothesis.

We made several contributions in this paper: We pro-
posed using of first order predicate logics, extended with a
bilattice based uncertainty handling formalism, as a means
of formally encoding pattern grammars, to parse a set of
image features, and detect the presence of different pat-
terns of interest. We then proposed a rule weight optimiza-
tion method which casts the instantiated inference tree as a
knowledge-based neural network, interprets rule uncertain-
ties as link weights in the network, and applies a constrained,
back-propagation algorithm to converge upon a set of rule
weights that give optimal performance within the bilattice
framework. Finally, we evaluated the proposed predicate
logic based pattern grammar formulation via application to
the problems of (a) detecting the presence of humans under
partial occlusions and (b) detecting large complex man made
structures as viewed in satellite imagery. We also evaluated
the optimization approach on real as well as simulated data
and showed favorable results.
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