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Abstract

The fast radial symmetry (FRS) transform has been

very popular for detecting interest points based on lo-

cal radial symmetry 1. Although FRS delivers good

performance at a relatively low computational cost

and is very well suited for a variety of real-time com-

puter vision applications, it is not invariant to per-

spective distortions. Moreover, even perfectly (radi-

ally) symmetric visual patterns in the real world are

perceived by us after a perspective projection. In

this paper, we propose a systematic extension to the

FRS transform to make it invariant to (bounded) cases

of perspective projection - we call this transform the

generalized FRS or GFRS transform. We show that

GFRS inherits the basic characteristics of FRS and

retains its computational efficiency. We demonstrate

the wide applicability of GFRS by applying it to a va-

riety of natural images to detect radially symmetric

patterns that have undergone significant perspective

distortions. Subsequently, we build a nucleus detector

based on the GFRS transform and apply it to the im-

portant problem of digital histopathology. We demon-

strate superior performance over state-of-the-art nu-

clei detection algorithms, validated using ROC curves.

1. Introduction

Symmetry of all kinds, including the visual, is ubiq-

uitous in our world. Indeed, visual symmetry can be

copiously seen in nature as well as in human creations:

buildings, objects, our works of art. Perception of vi-

sual symmetry is thought to play an important biolog-

∗Work performed at Siemens Corporate Research.
1The term radial symmetry is used in the sense of circular sym-

metry, as in the FRS paper [1].

ical and evolutionary role in humans as well in other

species (for examples, see [2],[3]). Perhaps due to this

importance of visual symmetry, humans seem to be

able to recover symmetry in shapes and random tex-

tures within 100ms [4].

This paper deals with symmetry of the radial kind.

Our world abounds in objects and structures that are

(partially) radially symmetric - natural objects includ-

ing the heavenly bodies, several fruits and vegeta-

bles, human heads, textured patterns like the spots on

a cheetah, a variety of man-made objects including

balls, coins, wheels, tapes, manholes, circular table-

tops, ends of cylindrical objects as well as innumerable

examples from works of art. Accordingly, computa-

tion of radial symmetry has attracted due interest from

the computer vision community (e.g. [5], [1], [6]). For

an excellent recent exposition, refer to [7].

However, the issue of perspective projection in

fast radial symmetry detection seems to have received

lesser attention - one work in this direction is [8]. Hu-

mans perceive objects after a perspective projection.

It is well known that under (bounded cases) of per-

spective projection, circles give rise to ellipses. Thus,

(roughly) radially symmetric visual patterns would be

perceived as elliptical by our eyes. To be able to handle

perspective projections, it is very important that radial

symmetry detectors principally incorporate detection

of elliptical radial symmetry in visual patterns.

We are interested in fast computation of radial sym-

metries. The best run-time [7] is achieved by the Fast

Radial Symmetry (FRS) transform proposed by Loy

and Zelinsky [1] in 2003. FRS uses a Hough Trans-

form [9] like voting scheme to detect points of lo-

cal radial symmetry. However, instead of using a 3-

dimensional parameter space for voting, it estimates
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the local differential properties of the image to reduce

the voting space to be 1-dimensional (scale/ radii axis).

For detecting circles of a give size, the algorithm is

O(N) where N is the number of image pixels.

We make the following contributions in this paper:

(1) We systematically extend the FRS transform to in-

corporate detection of elliptical symmetry while lever-

aging the very good complexity behavior of the FRS

algorithm. We extend the idea of using local differen-

tial structure of images (in FRS) to make it work for

a class of affine spatial transformations. The proposed

algorithm is parametrized to be able to use FRS as a

module and thus retains its attractive features like sim-

plicity and fast computational speed. We call the pro-

posed method - the Generalized Fast Radial Symmetry

(GFRS) transform. (2) We demonstrate the wide appli-

cability of GFRS by applying it to a variety of natural

images to detect radially symmetric patterns that have

undergone significant perspective distortions. (3) Fi-

nally, we quantitatively validate the novel GFRS trans-

form by applying it to the problem of (cell) nuclei de-

tection in histopathology slides - these nuclei are el-

liptical in nature. For this purpose, we train a sim-

ple nucleus detector based on the GFRS transform and

show superior performance over state-of-the-art nuclei

detection algorithms (including one based on the FRS

detector). We validate the performance through quan-

titative measurement of precision and recall.

The rest of the paper is structured as follows: In

subsection 1.1, we place this work in context with the

state of art in computer vision. In Section 2, we present

the Generalized Fast Radial Symmetry (GFRS) trans-

form. We present experimental results on natural im-

ages in subsection 3.1, and subsequently, in subsection

3.2, we present the application of the ellipse detector

based on the GFRS transform to nuclei detection. We

summarize the contributions of the paper in Section 4.

1.1. Related Work

An area related to our work is that of affine invariant

interest point detectors or (local) feature detectors - for

an excellent survey, see [10]. Affine invariant detec-

tors like Harris-Affine and Hessian-Affine are local in

nature though they do respond to blob-like features as

well. These detectors only use the very local differen-

tial properties of the image. GFRS uses the local dif-

ferential image properties but agglomerates them us-

ing an underlying elliptical model. Even though many

of these invariant detectors analyze local second order

image properties and output elliptical representations,

these are based on a fitting process and not on detec-

tion of radial symmetry. Similar is the case with region

detectors like MSER [11].

More closely related is ellipse detection using Gen-

eralized Hough Transforms (GHT) [9]. However, this

requires dense sampling in the 5-dimensional parame-

ter space (cx, cy , θ, a, b) - which can be computation-

ally prohibiting. Indeed, to alleviate this problem, Loy

and Zelinski [1] proposed the Fast Radial Symmetry

(FRS) based on an efficient voting algorithm. It trans-

forms an input image to a transform image which high-

lights points of high radial symmetry. The algorithm

is very efficient with a complexity linear in the size

of the image (for each scale). However, it is not in-

variant to perspective distortions. Our work addresses

precisely this issue. We systematically extend the FRS

algorithm to detect radial symmetries while being in-

variant to perspective transformations.

More recently, Cornelius and Loy [8] proposed an

approach to detect radial symmetry under affine pro-

jections. However, their approach is computationally

intensive: affine invariant features are detected and

SIFT descriptors are computed for matching. Subse-

quently, all pairs of matched features are used to vote

for ellipse hypotheses. We, on the other hand, provide

a natural extension to the FRS transform retaining the

computational efficiency of the original algorithm.

2. Generalized Fast Radial Symmetry (GFRS)

Transform

2.1. Fast radial symmetry transform

We summarize here the fast radial symmetry trans-

form method. Interested readers may refer to [1] for

more details. For each radius n, the algorithm uses

image gradients to vote for both the positively-affected

and negatively-affected pixels which are defined as

p+ve(p) = p+ round

(

g(p)

||g(p)||
n

)

(1)

p−ve(p) = p− round

(

g(p)

||g(p)||
n

)

(2)

p+ve(p),p−ve(p) correspond to pixels with the gra-

dient g(p) pointing towards and away from the center



respectively. From those pixels, an orientation projec-

tion image On and a magnitude projection image Mn

are formed. Specifically, for each positively affected

pixel, the corresponding point p+ve in On and Mn is

increased by 1 and ||g(p)||, respectively. Similarly, for

the negatively affected pixel, the corresponding point

is decreased by the same quantity in each image.

The radial symmetry response map is defined as

Sn = Fn ∗ An (3)

where

Fn(p) =
Mn(p)

kn

(

|Õn(p)|

kn

)α

(4)

Õn(p) =
{

On(p), On(p) < kn
kn, otherwise

(5)

An is an isotropic Gaussian smoothing function, α is

the radial strictness parameter, and kn is a scaling fac-

tor across different radii.

While [1] is very effective at detecting locii of cir-

cular radial symmetry, FRS is not invariant to spatial

transformations arising due to perspective projections.

In such cases the gradient direction deviates from the

radial vector, which leads to diffusion and dispersion

of the locus of symmetry in the object space [12].

In the case of bounded perspective projection, it is

well known that circular structures project as ellipti-

cal structures. Thus, to handle geometric distortions

due to perspective projections, there is a need to ex-

tend FRS to handle elliptical symmetries. We use here

a simple observation from geometry: an ellipse can

be represented as an affine transform of a unit circle.

Utilizing this affine relationship, we propose to get a

modified voting procedure to generalize the FRS al-

gorithm to render it invariant to (bounded) perspective

transformations. We describe the details below.

2.2. Generalized radial symmetry voting

Let p(φ) be the parametrization of a circle

p(φ) = (cos(φ)+cx, sin(φ)+cy)
T , 0 ≤ φ < 2π (6)

where c = (cx, cy)
T is the center of the circle. Then,

the ellipse q(φ) centered at c, with orientation θ and

semi-major and semi-minor axes (a, b) respectively,

can be obtained by a suitable affine transformation

G ∈ A(2),

q(φ) = G · (p(φ)− c) + c, G = R · S (7)

R =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

, S =

(

a 0
0 b

)

,

where R,S are the rotation and scaling matrix respec-

tively. We denote A(2) as the group of affine trans-

formation of the plane [13], and we restrict G to be a

member of A(2) to ensure the uniqueness of the affine

transformation [14].

Let the corresponding tangent and normal vectors

at p(φ) and q(φ) be Tp(φ), Tq(φ) and Np(φ), Nq(φ) re-

spectively. We derive two propositions following from

the simple fact that since G : R2 → R2 is a linear

transform, the relevant tangent and normal subspaces

are also related by the same transformation G.

Proposition 1. The tangent vector Tq(φ) at the point

q(φ) on the ellipse can be obtained through the affine

transform G of the tangent vector Tp(φ) at the cor-

responding point p(φ) on the circle, i.e., Tq(φ) =
G · Tp(φ).

Proof. Follows from differentiating (7): Tq(φ) =
∂φq(φ) = ∂φG · p(φ) = G · Tp(φ)

Proposition 2. The voting vector Vq(φ) toward the

centroid of the ellipse at point q(φ) can be obtained

through the affine transform G of the normal vector

Np(φ) of the corresponding point p(φ) on the circle,

i.e., Vq(φ) = G ·Np(φ).

Proof. Since Vq(φ) = c− q(φ) and Np(φ) = c− p(φ),
the result follows from (7).

This leads to the main result of our paper.

Proposition 3. Let T̂q(φ) be an unbiased estimator of

the tangent at q(φ). Then, the unbiased estimator of

the voting direction is given by

V̂q(φ) = G ·M ·G−1 · T̂q(φ) (8)

where M =

[

0 1
−1 0

]

.
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Figure 1. Voting direction Vq(φ) for the ellipse’s centroid

(in red) vs. Original normal vectors Nq(φ) on the ellipse (in

blue).

Proof. Vq(φ) = G ·Np(φ) = G ·M · Tp(φ) = G ·M ·
G−1 · Tq(φ).

The first equality follows from Proposition 2, the

second from the fact that M relates the tangent and

normal spaces and the third from Proposition 1.

In Figure 1, we illustrate that the voting vectors

V̂q(φ) (red lines), as computed by (8) have the correct

directions as they all correctly intersect at the center of

the ellipse. On the other hand, the voting directions of

FRS, aligned with the normal to the curve, are incor-

rect. These are depicted as dashed blue lines.

Consequently, for a given G, we can use local dif-

ferential image characteristics to vote for the ellipses

of that particular shape. Therefore, for a point sampled

from the constrained affine group A(2), we transform

the image gradient voting vector g(p) via

V̂q(φ) = G ·M ·G−1 ·M−1 · g(p) (9)

and modify the voting scheme as described by Eqs (1)

and (2) using the new voting directions:

p+ve(p) = p+ round

(

V̂q(φ)

||V̂q(φ)||
n

)

(10)

p−ve(p) = p− round

(

V̂q(φ)

||V̂q(φ)||
n

)

(11)

Then, each value of G provides us with a response

map, which captures evidence for ellipses of that par-

ticular size, shape, and orientation. Note that G in-

duces a natural parametrization for the space of el-

lipses and a consequent generalization of the FRS al-

gorithm (GFRS). We can now span the desired range

of the 3D parameter space of A(2), compute the GFRS

map for each parameter and use the resultant stack of

response maps as an interest point map for ellipses of

all desired sizes, shapes and orientations. The final re-

sponse map is obtained through maximization at each

pixel location among all the response maps.

We now consider two practical aspects.

Normalizing factor kn: As the length of the ma-

jor/minor axis of ellipse changes, so does the number

of gradient votes from the perimeter of the ellipse. To

alleviate this bias, we follow the suggestion in [1], and

empirically determine the normalizing factor kn (see

4) for ellipse across different affine transformation pa-

rameters a and b.

Smoothing: We modified the smoothing performed

in (3) to be consistent with the chosen affine transfor-

mation. This is motivated by the observation that, un-

der noise, the deviation of the voting location from the

true center is proportional to the length of Vq(φ). Thus,

we choose a 2d Gaussian blurring kernel, specified by

affine transform parameters θ, a, and b.

3. Experimental Validation

In previous sections, we extended the

computationally-efficient FRS algorithm to get

affine invariance. We now experimentally validate this

contribution: we apply the GFRS transform for radial

symmetry detection in a variety of real world images

as well as for nuclei detection in histopathological

images.

3.1. Real world images

In the introduction, we argued that our world

abounds in radially symmetric objects and their (per-

spectively projected) images. Since there are no stan-

dard ellipse detection benchmark datasets, we se-

lected a variety of everyday images to demonstrate the

breadth of applicability of GFRS and to qualitatively

compare the results with the baseline FRS. The exam-

ples we present contain wheels from different kinds

of vehicles, as well as other objects like tomatoes and



coins. In Figure 2, we show the response map from

GFRS in the top row and the corresponding image

overlaid with detections in the bottom row. We ob-

serve that the GFRS response maps capture locations

of radially symmetric structures very effectively, de-

spite perspective transformations and other challeng-

ing conditions, e.g, cluttered background, partial oc-

clusion of objects’ elliptical-arcs, lack of contrast in

regions of interest etc. The high response regions coin-

cide well with locations of radially symmetric objects

like wheels, coins etc. Note that the range of scales

of the sampling points from A(2) is chosen to not tar-

get very small objects to avoid cluttering the qualita-

tive results. We observe that the overlaid ellipses also

coincide well with the boundaries of the radially sym-

metric objects. This shows that GFRS is also able to

estimate the affine parameters quite accurately.

For comparison, we applied FRS to some images of

Figure 2. The results are shown in Figure 3. As ex-

pected, GFRS is able to detect radial symmetry in the

presence of significant perspective distortions while

FRS doesn’t do quite as well in these scenarios.

3.2. Nuclei detection

We now access the performance of GFRS for de-

tecting nuclei in biopsy samples from histopatholog-

ical images. Nuclei detection is a fundamental step

in the automatic prognosis of breast cancer. Different

methods have been proposed in the literature, for e.g.,

a linear SVM approach [15], a Hessian matrix based

approach [16], a circular Hough transform based ap-

proach [17] etc. In this paper, though, we exploit the

a-priori knowledge that nuclei are usually elliptical in

shape, and apply the GFRS transform to extract those

elliptical regions of interest. Sampling of the 3d affine

transformation space is done by the following param-

eter values: a=[6, 8, 10, 12, 14, 16], b=[4, 6, 8], θ

= [i*π/8,i=0,1,...,7]. Then from the output response

map, we retain as interest points all non-maximally

suppressed locations above a certain threshold value.

Each interest point is associated with a confidence

value and an elliptical region which is described by

five ellipse parameters.

We carried out experiments on nuclei detection us-

ing 512 × 512 image patches that were taken from

large (several GPixel) H&E stained "virtual slides".

These slides were sampled at 0.47 microns/pixel, cor-

responding to 40X objective scan. Figure 4 shows

the nuclei detection results from a typical histopatho-

logical image. We show the response map on the

left, and the extracted nuclei on the right. We plot

ellipses on top of the detected nuclei, and the color

of the ellipses represents the confidence value. We

observe that GFRS can effectively detect nuclei with

various shapes, even in challenging cases of touch-

ing/overlapping nuclei. In addition to identifying the

nuclei centers, GFRS provides additional information

about the size and orientation of the nuclei from the

extracted elliptical region. This side information can

be used to facilitate follow-up processing and analysis

for segmentation, linking, and detection of other con-

ditions like malignancy.

We also carried out quantitative evaluation and

comparison of the GFRS based nuclei detector. For

this purpose, we constructed a ground truth dataset by

manually annotating all nuclei centroids from five im-

ages of size 512 × 512 — in all, 2555 nuclei were

annotated.

We then applied GFRS and evaluated its perfor-

mance using precision-recall curves. We compared

our results with those from related state of the art -

radial symmetry transform [1], Hessian matrix based

detection [16], SVM based detection [15]. We plot

the precision and recall curves in Figure 5. GFRS

clearly achieves the best performance among all the

algorithms that were tested on this problem. For ex-

ample, for a recall of 95%, only every 13th detection

corresponds to a false alarm. None of the other ap-

proaches achieves comparable performance.

3.3. Computational complexity

In our experiments, it takes around 20ms for

each sampled affine transform, Gi, to generate a re-

sponse map for a 375x250 image (~16ms for FRS).

The number of parameters sampled from 3d affine

space for each image varies from 50 to 200. How-

ever, with application-specific priors, e.g., rough

knowledge of camera height and viewing angle in a

surveillance/traffic-like static camera setting, GFRS

reduces to almost the same sampling set size as FRS

(1d scale space). Since GFRS is highly parallelizable

(as is FRS), multicore-CPU/ GPU targeted implemen-

tations can make the algorithm practically real-time.



GFRS

Figure 2. GFRS applied to real world images. Each pair of images shows the GFRS response map and the most confident

detections corresponding to ellipses after thresholding the GFRS response map and non-maximum suppression.



FRS

Figure 3. FRS applied to different real world images. Compared to Figure 2, many of the (elliptical) structures are not

properly detected.

Figure 4. Nuclei detection of one histopathological image. Left: response map from GFRS; Right: detected nuclei.

4. Conclusions

In this paper, we have presented a novel and fast

GFRS transform to detect radial symmetry in presence

of (bounded) perspective transformations. We system-

atically extended the FRS transform for affine invari-

ance while retaining linear complexity in image size.

We also showed that it suffices to sample transforma-

tions from a (3d) subset of affine transformations (and

not the larger space of perspective transformations).

The wide applicability of GFRS to computer vision

is demonstrated by applying it to a variety of every-

day images. Further, we developed a GFRS nucleus

detector for the important task of cell nuclei detection

in biopsy samples from histopathology images. This

is an important first step in automatic determination of

presence and malignancy of cancer. The comparison

between the GFRS nucleus detector and other state of

the art detectors using ROC curves showed that GFRS

achieves the best results reported to date.
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