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Figure 1: Virtual unpacking: (a) all objects in packed positions; (b)-(g) images extracted from the animation of unpacking the red doll, which
first moves towards the camera, then it flies to the top-right corner of the image; and (e) most objects are in unpacked positions.

Abstract

We present a system for luggage visualization where any object is
clearly distinguishable from its neighbors. It supports virtual un-
packing by visually moving any object away from its original pose.
To achieve these, we first apply a volume segmentation guided by
a confidence measure that recursively splits connected regions until
semantically meaningful objects are obtained, and a label volume
whose voxels specifying the object IDs is generated. The origi-
nal luggage dataset and the label volume are visualized by volume
rendering. Through an automatic coloring algorithm, any pair of
objects whose projections are adjacent in an image are assigned dis-
tinct hues that are modulated onto a transfer function to both reduce
rendering cost as well as to improve the smoothness across object
boundaries. We have designed a layered framework to efficiently
render a scene mixed with packed luggage, animated unpacking ob-
jects, and already unpacked objects put aside for further inspection.
The system uses GPU to quickly select unpackable objects that are
not blocked by others to make the unpacking plausible.

1 Introduction

Luggage screening is unavoidable for either checked-in luggage or
carried-on baggages in order to detect threaten and forbidden items,
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which is especially true for aviation security. The most trustable
way is still physically opening the luggages and unpacking their
contents. This unfortunately is very inefficient and intrusive. With
modern scanning technology, such as computed tomography (CT),
it is possible to obtain detailed information of luggages that are suf-
ficient to reconstruct accurate geometric properties of the contained
objects. Naturally, a luggage is packed, which means that many ob-
jects are in close contact with each other and appear connected in
a scanned image. It usually involves human interaction to isolate
individual objects for better inspection.

In this paper, we describe a visualization work flow to assist lug-
gage screening. First, a volumetric representation of a luggage is
segmented into meaningful real-world objects. Then the segmented
objects are assigned distinguishable colors depending on the view-
ing parameters. The original luggage volume, the segmentation
results, and the automatically assigned colors are fed into a vol-
ume rendering system. For any user defined unpacking direction,
unpackable objects are determined and unpacking is visualized by
showing that the transition of the objects flying from its original
position to a unpacking destination. Unpacked objects can be ma-
nipulated individually, such as rotating, changing transfer function,
etc, for inspection. The system keeps packed luggage, already un-
packed objects, and the objects in transition in the same scene and
allows repacking. Figure 1 illustrates the main capabilities of the
system, where Figure 1(a) is a volume rendition of a segmented CT
scan of luggage. By comparing Figure 1 (a)-(h), we can observe
how the red doll first moves towards the eye, then flies to the top-
right corner of the image. Figure 1(h) presents a scene where many
objects are put at their unpacked positions. Please see the accom-
pany videos that better visualizes the unpacking transition.



For luggage segmentation, our system utilizes a state-of-the-art
graph partitioning approach[Grady and Schwartz 2006] enhanced
by a confidence measure of the quality of a segmentation. The
confidence measure gives high scores to semantic meaningful real-
world objects that are homogeneous and have well-defined bound-
aries against the surrounding segments, and it guides the segmen-
tation algorithm to recursively split connected objects in an input
volume until the segmentation quality can’t be improved any more.

In order to assign distinct colors to objects appearing adjacent in
an image, our system first generates a layered image of object IDs,
from which whether any pair of objects are interfering each other
is determined. A modified graph coloring algorithm is then per-
formed to ensure any interfering pair are assigned distinguishable
hues while the hue space is fully exploited. In order to reduce vol-
ume rendering cost as well as to keep smooth transitions across
touching objects, we adopt a tinting approach, in which the assigned
hues of an object is modulated onto a master transfer function.

To virtually unpack a luggage, instead of physically partitioning the
original volume, we perform volume rendering in multiple passes
and each pass is associated with the proper transfer function and ge-
ometric transformation. A brutal-force design requires the number
of rendering passes equals to that of the objects in the worst case.
This obviously is too expensive considering a typical luggage con-
tains several dozens of objects. To efficiently handle a scene mixed
with a volume of packed objects, unpacked objects, and the anima-
tion of objects being unpacked or restored, we have designed a lay-
ered approach. Each layer is responsible for rendering objects in a
particular state as well as caches and displays the previous rendered
images to avoid unnecessary rendering. The layer of unpacked ob-
jects is further decomposed into a set of 3D sprites to minimize
memory usage.

Here are the main contributions of the paper:

• We propose the concept of virtual unpacking, which accord-
ing to our knowledge has not been presented in the literatures.

• We design the tinting approach which is very efficient for
rendering segmented volumes containing numerous labels, as
well as avoiding unsmoothness across object boundaries.

• We customize the graph coloring algorithm to automatically
assign colors to conflicting objects while fully utilizing the
color space.

• We present two GPU accelerated methods for determining un-
packable objects that are not blocked by others.

• We construct a layered rendering framework to efficiently vi-
sualize the unpacking.

In the remainder of this paper, we first review related work in sec-
tion 2; then we describe luggage segmentation in section 3. Next,
we present luggage visualization and virtual unpacking in sections
4 and 5 respectively, followed by implementation details and re-
sults in section 6. Finally, we conclude the paper with discussion
and future work (7).

2 Related work

2.1 Transfer function design

Our system automatically assigns colors to different objects, which
can be considered as a simplified version of automatic transfer func-
tion generation, which has been a popular topic and has attracted
numerous publications, e.g. [Zhou and Takatsuka 2009][Chan et al.
2009]. Most of these works focus on adjusting the opacity of the

transfer function so that most, if not all, the layered structures in a
volume are visible. This is more or less a balancing of the trans-
parencies of the structures. Adjusting transparency is also a com-
mon way of shifting highlights among objects. In luggage visual-
ization, we rely on unpacking to reveal occluded parts and would
like each object to have consistent appearance. Besides, without
additional information, each object is considered equally impor-
tant. We don’t want to artificially distract an observer’s attention by
highlighting any object. Therefore, our system is based on a user
customizable master transfer function, and just adjusts the hues of
different objects. Some previous work of transfer function design
also have an emphasis on aesthetics, such as assigning harmonic
colors. In contrast, we focus on the distinguishability of the shape
of an object from its background, and prefer to assign distinct hues
to neighboring objects.

2.2 Exploded views

Virtual unpacking can be considered as a variant to the generation
of exploded views of volumetric[Bruckner and Gröller 2006] or ge-
ometric[Li et al. 2008] datasets, in which an object is partitioned
and displaced to reveal hidden details. The way that an object
is splitted is based on a user’s input or follows an assembly se-
quence. Each exploded part is either a portion of an organic object
or designed to be assembled into a model of multiple parts. In ex-
ploded views, the context of each partition is extremely important
and should be carefully preserved, and its explosion path is highly
restricted. In contrast, for a packed luggage, there is usually no
meaningful correlation between objects, and we have much more
freedom in relocating them. Therefore our system prioritizes re-
moving occlusion over keeping context, although it reserves the ca-
pability of restoring any unpacked object to its original position to
deal with possible inaccuracy in a segmentation.

2.3 Visibility sorting and collision detection

Our unpackable object determination has certain similarity to GPU
accelerated visibility sorting [Govindaraju et al. 2005], [Callahan
et al. 2005] and collision detection [Govindaraju et al. 2003] in that
we both utilize GPU to resolve the spatial relationship among prim-
itives. In principle, an object is unpackable in a certain direction if
it is fully visible in an orthogonal projection when the viewing di-
rection is exactly the opposite of that of the unpacking. Naively,
such a visibility order can be used as the unpacking order for a give
direction. For our case, the unpacking direction can be frequently
changed according to an inspector’s interest. Therefore our algo-
rithm is customized to only search for the objects taking the first
place in the order. We also use occlusion ratio to deal with the sit-
uation that non object is fully unblocked. Similar to the mentioned
references, our multi-pass method uses occlusion queries to retrieve
the results of depth comparison of the rasterized primitives. But we
also propose a single pass algorithm that does not require occlusion
query.

3 Luggage Segmentation

The foundation of our approach for partitioning a luggage volume
into meaningful real-world objects is isoperimetric graph partition-
ing[Grady and Schwartz 2006]. On top of that, we utilize an exten-
sion[Grady et al. 2012] that computes the confidence of the quality
of a volume segmentation. Our focus in this paper is luggage visu-
alization. Therefore, we only outline the major steps of the luggage
segmentation approach we adopted. Please see [Grady et al. 2012]
for more details.

To obtain a confidence measure, the algorithm annotates a large



number of good segments, that are homogeneous and have well-
defined boundaries with the surrounding segments. The annotated
segments are then fed into a model learning pipeline to train a con-
fidence measure. After annotation, various features are computed,
that include geometric properties (such as surface smoothness, cur-
vature volume) and appearance properties based on density distri-
bution (such as average L1 gradient, average L2 gradient, median
and mean intensities). The approach also uses boundary based fea-
tures such as the total cost of the cuts for isolating this segment from
neighboring segments. All the features are invariant to rotation and
translation. Each feature is further normalized to make it invariant
to scale and object types. A statistical normalization is also per-
formed by first computing the mean and the standard deviation for
all the features over all segments followed by normalizing the fea-
ture scores by subtracting the mean and dividing by the standard
deviation. Next, the method uses Principal Component Analysis
(PCA) to reduce the dimensionality of the data. In the final stage,
a Mixture of Gaussian model is fit over the PCA coefficients of
all the segments in the training set to approximate the distribution
of the good segments in the feature space. Once having a confi-
dence measure, for any given luggage segmentation, the approach
computes the PCA coefficients vector from the segmentation’s nor-
malized feature vector. Then a confidence score is obtained by cal-
culating the likelihood of the coefficient vector using the Mixture
of Gaussian stored in the segment oracle.

To perform luggage segmentation, first, a generic segmentation al-
gorithm [Grady and Alvino ] provides an initial segmentation that
roughly separates all the target objects inside the luggage from the
background voxels. A subsequent connected component analysis
then assigns not-connected foreground segments different labels.
Since most of them are still strong under-segmented, i.e. cover
groups of target objects, a recursive splitting algorithm is run for
each of those individual foreground segments. For every under-
segmented region, the isoperimetric algorithm generates several
different plausible binary separations. The confidence measure then
is used in conjunction with the isoperimetric ratio to decide if any
of the proposed splits generates sub-groups of objects that are suf-
ficiently close to individual objects.

4 Luggage Visualization

4.1 Volume rendering with tinted VOIs

Volume rendering combined with masks specifying volume-of-
interests (VOI) have been extensively deployed in volume visu-
alization. These VOIs are assigned optical properties different
than the rest of the volume, so that they are clearly distinguish-
able. Typically, each VOI is associated with a full color lookup
table[Hadwiger et al. 2003], which provides the most flexibility in
adjusting the appearance of the VOI.

It is a challenging task to figure out the true color of each segmented
object from a gray volume. Note that an artificial object may be
built with arbitrary optical properties, which is different than medi-
cal visualization. In our case, the most important requirement is that
the shape of each individual object is clearly recognizable, whereas
it is acceptable if the object is rendered with colors and opacities
different from its true appearance. Sometimes, it is even undesir-
able to assign an object its true color. For example, if two objects
of similar colors overlap in an image, we would like them to be
rendered with contrast colors.

The segmentation masks generated in section 3 are non-overlapping
binary volumes. That is, each voxel of the original gray volume
can only belong to a single VOI, and all sub-voxel boundaries are
rounded to the nearest voxel borders. All the binary volumes are

combined to form a label volume with each of its voxel storing the
ID (≥ 1) of the corresponding binary volume or a zero for back-
ground. Obviously, it is meaningless to interpolate between differ-
ent IDs. Therefore the label volume should be sampled with the
nearest neighbor method.

We rely on interpolated samples from the original density volume
and proper opacity assignment in the transfer function to hide the
unsmoothness of the boundaries of the binary masks. This requires
the opacity of the transfer function to be C0 continuous. Obviously,
there is no guarantee of such a property if each VOI is associated
with an independent color lookup table as in[Hadwiger et al. 2003].
Consequently, we choose the following tinting approach for the lug-
gage visualization.

• A master transfer function with C0 continuous opacities is as-
signed to the whole volume. The colors of the transfer func-
tion are preferably but not necessarily gray.

• Each visible VOI is assigned a tinting color that is multiplied
onto the color obtained from the master transfer function for
the samples falling into the VOI.

• If a VOI is set to be hidden, the corresponding tinting color
and opacity are set to (0, 0, 0, 0).

Note that hiding a VOI can introduce opacity discontinuity in the
transfer function. Hence the blockiness of the binary masks can be
noticeable if two objects have touched boundary of significant area
and one of them is hidden. Fortunately, this situation is rare even in
a tightly packed luggage. The opacities and colors of the transfer
function can be changed dynamically highlight interested objects
while keeps the tinting unchanged.

4.2 Color optimization

A typical luggage contains dozens of objects of various sizes. There
are many overlaps of the objects in a projected 2D image. We would
like to utilize color assignment to make overlapped objects visu-
ally separable. A natural choice is to use as many colors as the
number of objects, and assign the colors either sequentially or ran-
domly. However, it is difficult to distinguish two different but sim-
ilar colors. The situation is made worse by rendering effects, such
as alpha-blending, shading, and transparency.

If two objects are desired to have distinguishable colors, we declare
them as mutually interfering. We adopt graph coloring in which
each object is represented as a vertex, and any two interfering ob-
jects are connected by an edge. If the dataset can be viewed from
an arbitrary angle, any two objects can potentially interfere. There-
fore, it is rational to perform view-dependent color assignment.

We modify standard volume rendering to generate object ID images
in which each volume sample belonging to a visible object outputs
the object ID as its color, and all the samples are mapped with full
opacity. Figure 2 shows as examples two object ID maps that are
used for the scenes shown in Figure 1 and Figure 6 respectively.
Note that the true object ID maps contain the indices of objects.
Here we visualize the object IDs with their tinting colors. Each
pixel of the resulting image contains the ID of the nearest object
covering the pixel or the pixel is zero if no object projects onto
it. Similar to depth peeling[Everitt 2001][Nagy and Klein 2003],
we can generate multiple layers of these object IDs, by assigning
zero opacity to all the objects presented in the previous layers and
repeating the rendering until enough layers are generated.

We declare two objects, A and B, are interfering, if the following
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Figure 2: The first layer of object ID maps for (a) the luggage scene
in Figure1 and (b) the scene in Figure 6(b) respectively. Note that
the true object ID maps contain the indices of objects. Here we
visualize the object IDs with their tinting colors.

.

formula is true:

min
layer(pA)≤LT∧layer(pB)≤LT

(dist(pA, pB)) ≤ DT (1)

where pA and pB are pixels in an image projected from the front
faces of objects A and B respectively. dist(pA, pB) computes the
distance between the two pixels in image space. DT is a predeter-
mined distance threshold. layer(p) returns the layer index of pixel
p. LT restricts the computation to the first LT layers.

Obviously, if all objects are opaque, we only need the first layer. For
luggage visualization, objects are typically semi-transparent while
having sufficient opacities. In practice, only samples from the first
two layers present useful information, and a single-layer object ID
image works pretty well for most of the use cases.

We generate an interference map from the object ID images through
a 2D filtering where formula 1 is evaluated. The output is a 2D ta-
ble of which each row maps to an object ID. So is each column.
Initially, every cell of the table is cleared with the value false. If
two objects interfere, the corresponding cell is set to true. We
can read back the object ID images from the frame buffer into sys-
tem memory and perform the interference detection in CPU. Al-
ternatively, if scattering is supported, it can also be done on the
GPU and avoids the read back. In our implementation, we utilize
NV shader buffer load OpenGL extension to allow the writing to
the object interference table from the fragment shader. Other APIs
such as Cuda and OpenCL can do the same. One thing to notice is
that the table only have boolean values and any cell changes at most
once from false to true during the detection. It does not matter if
an entry is set to true multiple times. As a result, there is no need to
use any lock to synchronize reading or writing to the table.

Once the edges of interfering objects are determined, any graph
coloring algorithm can be utilized to determine the minimal num-
ber of colors, C. We choose the greedy algorithm that processes
vertices in decreasing order of degrees. One important difference
between our color optimization and standard graph coloring is that
we intend to fully utilize the color space, instead of minimizing the
number of colors. Therefore, we divide all the objects into C clus-
ters according to the output of the graph coloring. Then each cluster
is assigned one of the evenly partitioned regions in the color space.
To make the tinting approach more effective, the color optimization
is performed in HSV space, and only a hue (H) is assigned with S
and V stay at their maximal values. This reduces the color space
to an 1D circle. Next, the objects in a cluster is sorted according to
the number of interfering neighbors in the next cluster. The objects
are then evenly distributed in the color region assigned to the clus-
ter, with the object having the most interferences furtherest away

from the next cluster. Figure 3 illustrates such an assignment where
all the objects are grouped into six clusters with different number
of elements. Each object is assigned different hue with interfering
objects separated to different clusters.

Figure 3: Illustration of color assignment.

It is still possible that two interfering objects assigned to different
clusters are adjacent in the hue space. One option is to add addi-
tional hue margin between clusters. However, with the dataset we
tested, this does not present noticeable problem.

5 Virtual unpacking

The goal of virtual unpacking is to visually separate individual ob-
jects without actually modifying the original volume. A typical
work flow is to unpack objects one-by-one or group-by-group. The
occlusion of the remaining objects reduces as the number of un-
packed objects increases. Unpacked objects stay visible in the scene
reminding users of the history, and can be individually inspected
with standard volume rendering operations.

It is desirable to visualize the transition from packed to unpacked
positions, so that the context of any object can be examined, and the
impact of potential false segmentation is minimized. For a similar
reason, our system also provides animated restoring if a user wants
to repeat inspecting an unpacked object in its original environment.

5.1 Unpackable object determination

Only unblocked object can be unpacked. Otherwise, an object be-
ing unpacked may pass through others. To determine whether an
object is unpackable along a certain direction

→
D, we first gener-

ate an object ID image Ioid use the opposite direction of
→
D as the

viewing direction. Then we perform another pass of modified vol-
ume rendering using the same viewing direction. Both of the two
rendering passes use orthogonal projection. The goal of the second
pass is to compute the occlusion ratio of each object A according
formula 2:

∑
sA∈A∧A 6=objectId(proj(sA))(1)∑

sA∈A(1)
(2)

where sA is a volume sample enclosed by A, and
objectId(proj(sA)) is the object ID in Ioid where sA is
projected onto the image plane. Basically, formula 2 computes the
ratio of occluded samples versus the total samples of object A.
Obviously, a zero ratio indicates that A is unoccluded. Because
each object can have arbitrary shape, it is possible that every object



is blocked by others for a given direction. In the extreme, one
object may be blocked in all the directions. When there is no object
having zero occlusion ratio, the system either asks users to choose
a different unpacking direction or select the object with the least
occlusion ratio as unpackable.

One unpacking option is to use the up direction when a suitcase lies
on its largest surface as the

→
D, which emulates the scenario of tak-

ing object out from an opened luggage. Another choice is to use the
opposite of the viewing direction as the unpacking direction, which
is roughly equivalent to unpacking the front-most object in the cur-
rent view. Although it is different than an actual unpacking, this
choice could be more useful for virtual unpacking. For example, a
user may rotate a suitcase so that an interesting object is rotated to
the front or at least with occlusion reduced. It is natural that the in-
terested object be unpacked within the next few steps. As discussed
in section 5.3, unpacking from the viewing direction also simpli-
fies rendering. In this paper, we restrict our implementation to only
perform unpacking in this direction.

The occlusion ratio table of all the objects that are still packed is
updated whenever the unpacking direction is changed or when all
the unpackable objects determined in the previous update are un-
packed. We utilize GPU to accelerate the process. Depending on
hardware capability, we have designed two approaches. The first
approach exploits occlusion query that counts the number of frag-
ments passed to the frame buffer. The following pseudo-code is
executed in the fragment shader:

f i r s t I d = I o i d [ f r agmen tCoord ] ;
void f i n d 1 s t O c c l u d e d ( )
{

i f ( idOf ( sample ) != q u e r i e d I d ) d i s c a r d ;
i f ( q u e r i e d I d == f i r s t I d ) d i s c a r d ;
i f ( ! f i r s t S a m p l e O f ( q u e r i e d I d ) ) d i s c a r d ;

} ;

The modified volume rendering is performed N times, where N
is the number of visible objects that are still unpacked. In each
pass, queriedId equals to the ID of the object being queried. Only
the front-most samples belonging to the object pass if queriedId
is different than the corresponding value, firstId, in Ioid. Oc-
clusion query returns the sum of occluded first-hit samples of
objectqueriedId. The total samples of the object can be evaluated
similarly using only the first if statement of the above code. In prac-
tice, we just use the front face area of the bounding box of the object
for approximation.

Each pass is optimized to only render the sub-volume defined by
the bounding box of objectqueriedId. But the accumulated time of
tens of rendering passes may still introduce noticeable delay. There-
fore, we also come up with a singe pass method taking advantage
of the scattering and atomic counter capabilities of modern GPUs.
The following pseudo-code is executed for each ray in a ray-casting
setup.

void coun tOcc ludedSamples ( )
{

c u r r e n t I d = −1;
sample s = 0 ;
f i r s t I d = I o i d [ f r agmen tCoord ] ;
whi le ( moreSamples ) {

i d = idOf ( sample ) ;
i f ( i d == f i r s t I d ) c o n t i nu e ;
i f ( i d == c u r r e n t I d ) samples ++;
e l s e {

u p d a t e C o u n t e r ( c u r r e n t I d , s amples ) ;
c u r r e n t I d = i d ;

samples = 1 ;
}

}
u p d a t e C o u n t e r ( c u r r e n t I d , s amples ) ;

} ;

void u p d a t e C o u n t e r ( c u r r e n t I d , s amples )
{

i f ( c u r r e n t I d > 0)
atomicAdd(& c o u n t e r [ c u r r e n t I d ] , s amples ) ;

}

The pseudo-code counts contiguous samples belonging to an oc-
cluded object, and adds the partial sum to the counter table shared
across all fragment shaders if the end of the ray is reached or the
current object Id changes.

5.2 Volume rendering

The rendering of one or more objects moving from their original
packed positions in the context of others that are still packed faces
the same challenge as exploded views of volume data [Bruckner
and Gröller 2006], multi-object or multi-modality volume render-
ing[Bruckner and Gröller 2005][Beyer et al. 2007], and multi-layer
volume rendering [Kainz et al. 2009][Li 2010]. Because of the dis-
placement of some portion of a volume, we can’t infer visibility
order of samples from their volume coordinates. The boundaries of
the moving portions and the bounding box of the original volume
partition the space into multiple regions. For a volume ray cast-
ing, rays are divided into segments each has different parameters
from its predecessor and successor on the same ray. In the case of
one object or volume portion overlaps with other non-empty part of
the volume, multi-volume or fused volume rendering [Grimm et al.
2004][Bruckner and Gröller 2006] is required.

The fragmentation of rays introduces a lot of branches into the ren-
dering code that severely degrades the performance. Besides, al-
lowing one object to overlap and to pass through others is also not
visually plausible for unpacking. In our implementation, we restrict
the unpacking path to always start in the opposite of the viewing di-
rection. Note that we use orthogonal projection when determining
the unpackability. For a fully unblocked object, the displacement
in the opposite of the viewing direction guarantees that the object
being unpacked is alway in front of the objects that are still packed,
either the camera is in perspective or orthogonal projection. Until
the object being unpacked is completely outside the bounding box
of the volume, it moves towards its unpacking location. As shown
in Figure 1, the red doll first moves towards the camera as it appears
larger in Figure 1(b) than (a) due to the perspective projection of the
camera, than it moves in the up-right direction of the image space.

5.3 Unpacking animation

To efficiently visualize unpacking, we divide the whole scene into
three layers. As shown in Figure 4, the first layer (4(a)) contains
all the objects still unpacked and any background image plus dec-
orations. The second layer (4(b)) is responsible for showing the
animation of unpacking of individual objects, as well as allowing
user to interactively inspect any unpacked object. The third layer
(4(c)) shows all the unpacked objects as 3D sprites. Adding the
three layers together produces the visualization in Figure 4(d).

To animate the unpacking of an object O, such as the brown box in
Figure 4, we set its tinting color to be zero and perform the tinted
volume rendering described in section 4.1, which essentially hides
O in this layer. Next we continuously apply certain geometric trans-
formation, such as translation and rotation on the whole volume,
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Figure 4: Virtual unpacking. (a) Layer of packed objects. (b) Transition layer of objects being unpacked. (c) 3D sprites of unpacked objects.
(d) Compositing of the three layers in (a) - (c) to efficiently visualize the unpacking.

.

and perform the tinted volume rendering multiple times onto the
animation layer, but this time setting the tinting color of all the ob-
jects except O to zero. If there are multiple objects being unpacked
simultaneously, the rendering to the animation layer is applied mul-
tiple times at every animation step, one for each unpacking object.
The sprite layer simply displays the 3D sprites of unpacked objects.
The final image in the animation layer of an unpacking object is
used to create a sprite of the object and added to the sprite layers.

The location of any volume sample v is transformed by cascaded
matrices to generate a window coordinate w:

w = V × T ×M × v (3)

where M is the model matrix, and T specifies additional transfor-
mation. Their combination transforms from volume coordinates
to world coordinates. T defines additional transformations, while
view matrix V transforms from world coordinates to camera coor-
dinates. All the three layers share the same camera. The desired
unpacked locations are given in eye coordinates as they should be
independent on view directions, whereas the system changes the T
to T ′T to displace objects. For an object O, its unpacked displace-
ment in volume coordinates T ′ is given by 4

T ′ = (V ×M)−1(u− V ×M × o) (4)

where u is the desired unpacked location in camera coordinates,
and o is the offset vector of O pointing from the volume center to
the center of the bounding box of O. (•)−1 computes the inverse
of a matrix. Considering the offset vector o ensures the center of
O is aligned with the desired unpacked location, regardless of its
original position in the volume. A sprite is visualized by putting a
camera-space rectangle mapped with the sprite image centered at
its desired location u. The sprites always face the camera and align
their vertical edges with the up vector of the camera. In addition,
the sprites also scale accordingly as the camera zooms.

Note that the image of the unpacked volume layer is cached and
reused during the animation. Actually, it is not updated until an ob-
ject is unpacked or restored, or an user changes the position or ori-
entation of the volume. The transformation for the rendering of the
unpacking animation layer follows a predefined path that contains
a few key frames. At each key frame, a transformation composed
of translation and rotation is defined. The transformation applied
to an unpacking object is simply interpolated from the adjacent two
key frames. For the sprite layer, our system stores a set of sprites,
instead of a big image composing all the them. The reasons for
making such a decision are: 1) each object showing in a sprite usu-
ally only occupies a small portion of the view port, and distributed

sparsely, as showing Figure 4 (c). Storing the sprites separately re-
quires less memory than storing a big image covering the whole
view port; 2) The system needs frequently adding new sprites, hid-
ing or removing existing sprites. Storing them separately facilitates
such management.

User may select any sprite for inspection. In that case, the corre-
sponding sprite is hidden, and a volume rendering of the object is
created in place of the sprite, again by setting the tinting colors to
zero for all the objects except O. Users can perform standard ma-
nipulation, such as rotation, zoom, and changing transfer function,
on O. When user exits the inspection mode, the final image is used
to update the sprite.

5.4 Interaction behavior

By analyzing the typical requirements of unpacking interaction, as
well as exploiting the capabilities of our system, we design our sys-
tem to respond to user interactions in the following way:

• Requirement for rotation and translation are considered oper-
ations to the current active object, which is determined by the
position of mouse cursor when the left button is clicked. If a
ray pick originated from the position hits any sprite, then the
corresponding object becomes active. Otherwise, the active
object is the whole volume composed of the objects that still
packed.

• A double click of the left mouse button attempts to pick a
sprite as in the previous case. If such a sprite is found, the
system gets into the inspection mode, for which the volume
rendering camera will automatically pan and zoom to make
the active object appear in the center of the scene with com-
fortable zoom, in addition to forwarding all rotation and trans-
lation requests to the object.

• Whenever the viewing direction of the packed volume
changes, a computation to determine unpackable objects as
described in section 5.1 is performed, and their IDs are put
into an unpackable object queue.

• If an unpacking requirement is received, the first one or more
unpackable objects in the queue are unpacked and the process
is animated as described in 5.3.

• If an restoring requirement is received, the latest unpacked
objects are added back to the head of the queue, and their
transitions from unpacked location to the packed volume are
animated.



• A user zoom request is considered as an operation of the cam-
era. Therefore all the three layers are zoomed in a synchro-
nized fashion.

In our system, the sprites are not affected by any rotation or trans-
lation performed on the packed volume, which is evident by com-
paring Figure 5(a) and (b). Similarly, non active sprites are not
affected by the manipulation on an active unpacked object either.
All these transformations are applied in object space to the active
object or the packed volume. In contrast, all the objects in a scene
are zoomed together, as shown in Figure 5(c).

(a) (b) (c)

Figure 5: Unpacked objects are shown as 3D sprites. (a) A screen
shot in the middle of unpacking. (b) Sprites are invariant to the
rotation and translation in the volume rendering of the packed ob-
jects; (c) The response of sprites to zoom operation.

.

6 Results

We have implemented the described virtual unpacking system on a
Windows-based PC. The visualization computation is mainly per-
formed on an Nvidia Geforce GTX 480 card. The volume ren-
derer is developed using C++ and glsl. Luggage datasets are output
from simulations to resemble the appearance of typical luggages
going through CT scanners. Although they are not “real” luggage
scans, we argue they pose similar challenges to the segmentation
and the visualization. A typical luggage volume is of the size of
512 × 512 × 1024 with each voxel occupies 2 bytes. The dataset
has significant object variations from soaps to bottled water, wax
candles to boots, different clothing etc.

Figure 6 compares the results before and after color optimization.
The white rectangle in Figure 6(a) highlights areas where different
objects present visually identical colors, although they are different,
whereas there is no such an issue in 6(b).

The scene in Figure 6 is composed of 27 labeled objects. Rendering
with such a transparency setting to a 10242 view port takes about
70ms. The animation of unpacking a single object in a view similar
to Figure 4 takes about 50ms for a single frame. It is faster than
rendering the packed volume, because only the unpacking object is
rendered and the bounding box of the object is usually significantly
smaller than the full volume. Restoring animation has similar per-
formance to unpacking. Manipulating the packed volume in a scene
similar to Figure 5 reaches about 20 fps. This is also slightly faster
than the cases in Figure 6, because users usually would zoom out
to make the unpacked objects visible in the scene, and this reduces
the time for rendering the packed volume.

Figure 7 shows the data of unpackable object determination during
a serial process of unpacking. We utilized the multi-pass occlusion
query approach. Only one object is unpacked at each step. The X
axis is the index of the unpacking step. The two series show the
occlusion ratio in percentage of the objects being unpacked and the
time (in 100 milliseconds) for determining unpackable objects at
each unpacking step. There are zeros for the time series as the pre-

(a) (b)

(c) (d)

Figure 6: Luggage visualization without ((a) and (c)) and with (((b)
and (d) color optimization. Note that in the areas highlighted by
white rectangles in Figures (a) and (c) different objects have in-
distinguishable color hues. In contrast, Figures (b) and (d) do not
have this issue.

.

vious step finds more than one unpackable object, and there is no
need to run the query for the steps following immediately. Exclud-
ing those zeros, the time generally decreases monotonically, be-
cause the number of packed objects and the query passes decrease
as the unpacking proceeds. Even at the beginning of the unpack-
ing, where the system performs the query 26 times, the overall time
is just slightly more than 50 ms, which is about the time for a full
quality volume rendering with the same viewing parameters. This
because the query pass for any object is restricted to the bounding
box of the object, which is usually much smaller than that of the
whole volume. Moreover, a querying ray terminates after reach-
ing the first sample of the object. Whereas for a scene with a lot
of transparency as in Figure 6, a ray travels a much longer dis-
tance. The single pass approach for determining unpackable object
requires the sampling of non-empty volume, which is similar to that
of rendering a mostly transparent volume. Therefore, the single
pass method can be slower than the multi-pass approach. Note that
in Figure 7 there are non-zero values at some steps, which means
that no object is fully unblocked, although the ratio is only 0.3% at
most.
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Figure 7: Performance of determining unpackable objects

Figure 8 presents the time for computing an single layer interfer-
ence map of objects that is used for color optimization through an
unpacking process. For timing purpose, color optimization is ap-
plied after the unpacking of every object, which is obviously unnec-
essary in practice. The average time is about 110 ms, that includes
the rendering of an image of object IDs Ioid, the read back of Ioid
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Figure 8: Time for computing an single layer interference map of
objects in an unpacking sequence

from GPU to system memory, and the evaluation of formula 1.

Please check the accompany videos that have better presentations
of the performance and dynamics of the unpacking and restoring
processes.

7 Conclusion and Future Work

In this paper, we present the design of a fully workable system for
luggage visualization and virtual unpacking. The key components
of the system includes, a recursive segmentation method guided
by a confidence measure, an efficient volume rendering approach
that can visualize many segmentation masks, a method that auto-
matically assigns distinctive colors to interfering objects as well
as exploiting the full color space, GPU accelerated approaches for
quickly determining unpackable object from any angle, a layered
framework that minimizes the cost of combining unpacked vol-
ume, packed objects, and animations of objects being unpacked.
Although some of the individual components may have appeared
with similar form in the literature, our customization and integra-
tion of these approaches have not been reported are proved to work
well.

One limitation of the our unpacking is that no collision detection
is performed. In theory, an object may pass through others during
the transition. We choose a work-around to avoid this overhead
as well as to simplify rendering efforts. Obviously, it would be
more realistic to consider collision and even allow interaction and
deformation of objects when unpacking and packing objects. We
would expect this to be accelerated on GPU as well.

Our current color optimization does not consider any the previous
color assignment. It is unavoidable to have abrupt color changes
when rotating to a different angle. It would be desirable that the
new color assignment keeps the change to the minimum by assign-
ing identical or similar hues to objects whenever possible. We ex-
pect such an optimal algorithm to be NP-hard, but wish to find an
approximate but fast method in the future.
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