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Abstract. During recent years much effort has been spent in incorporating prob-
lem specific a-priori knowledge into kernel methods for machine learning. A
common example is a-priori knowledge given by a distance measure between
objects. A simple but effective approach for kernel construction consists of substi-
tuting the Euclidean distance in ordinary kernel functions by the problem specific
distance measure. We formalize thisdistance substitutionprocedure and investi-
gate theoretical and empirical effects. In particular we state criteria for definite-
ness of the resulting kernels. We demonstrate the wide applicability by solving
several classification tasks with SVMs. Regularization of the kernel matrices can
additionally increase the recognition accuracy.

1 Introduction

In machine learning so called kernel methods have developed to state-of-the-art for a
variety of different problem types like regression, classification, clustering, etc. [14].
Main ingredient in these methods is the problem specific choice of a kernel function.
This choice should ideally incorporate as much a-priori knowledge as possible. One
example is the incorporation of knowledge about pairwise proximities. In this setting,
the objects are not given explicitly but only implicitly by a distance measure.

This paper focusses on the incorporation of such distance measures in kernel func-
tions and investigates the application in support vector machines (SVMs) as the most
widespread kernel method. Up to now mainly three approaches have been proposed for
using distance data in SVMs. One approach consists of representing each training ob-
ject as vector of its distances to all training objects and using standard SVMs on this
data [5, 12]. The second method is embedding the distance data in a vector space, regu-
larizing the possibly indefinite space and performing ordinary linear SVM classification
[5, 12]. These approaches have the disadvantage of losing the sparsity in the sense that
all training objects have to be retained for classification. This makes them inconvenient
for large scale data.

The third method circumvents this problem by using the Gaussian rbf-kernel and
plugging in problem specific distance measures [1, 4, 8, 11]. The aim of this paper is to
formalize and extend this approach to more kernel types including polynomial kernels.



The paper is structured as follows: We formalize distance substitution in the next
section. Statements on theoretical properties of the kernels follow in Section 3 and
comments on consequences for use in SVMs are given in Section 4. In Section 5 we
continue with SVM experiments by distance substitution and investigate regularization
methods for the resulting kernel matrices. We conclude with Section 6.

2 Distance Substitution Kernels

The termkernelrefers to a real valued symmetric functionk(x; x) of objectsx in a setX . A kernel function ispositive definite(pd), if for anyn, any objectsx1; : : : ; xn 2 X
and any vectorc 2 IRn the inducedkernel matrixK := (k(xi; xj))ni;j=1 satisfies

cTKc � 0. The larger set ofconditionally positive definite(cpd) kernels consists of
those which satisfy this inequality for allc with cT1 = 0. These pd/cpd kernel func-
tions got much attention as they have nice properties, in particular they can be inter-
preted/related to inner products in Hilbert spaces.

In distance based learning the data samplesx are not given explicitly but only by a
distancefunctiond(x; x0). We do not impose strict assumptions on this distance mea-
sure, but require it to be symmetric, have zero diagonal, i.e.d(x; x) = 0, and be
nonnegative. If a given distance measure does not satisfy these requirements, it can
easily be symmetrized by�d(x; x0) := 12 (d(x; x0) + d(x0; x)), given zero diagonal by�d(x; x0) := d(x; x0)� 12 (d(x; x)+d(x0; x0)) or made positive by�d(x; x0) := jd(x; x0)j.
We call such a distanceisometric to anL2-norm if the data can be embedded in a
Hilbert spaceH by � : X ! H such thatd(x; x0) = k�(x)� �(x0)k. After choice of
an originO 2 X every distanced induces a function

hx; x0iOd := �1
2(d(x; x0)2 � d(x;O)2 � d(x0; O)2): (1)

This notation reflects the idea that in case ofd being theL2-norm in a Hilbert spaceX ,hx; x0iOd corresponds to the inner product in this space with respect to the originO.
For any kernelk(kx� x0k) and distance measuredwe callkd(x; x0) := k(d(x; x0))

its distance substitution kernel(DS-kernel). Similarly, for a kernelk(hx;x0i) we call
kd(x; x0) := k(hx; x0iOd ) its DS-kernel. This notion is reasonable as in terms of (1)
indeed distances are substituted. In particular for the simple linear, negative-distance,
polynomial, and Gaussian kernels, we denote their DS-kernels by

klind (x; x0) := hx; x0iOd kndd (x; x0) := �d(x; x0)� ; � 2 [0; 2] (2)

kpold (x; x0) := �1 +  hx; x0iOd
�p krbfd (x; x0) := e�d(x;x0)2 ; p 2 IN;  2 IR+:

Of course, more general distance- or dot-product based kernels exist and corresponding
DS-kernels can be defined, e.g. sigmoid, multiquadric,Bn-spline [14], etc.

3 Definiteness of DS-Kernels

The most interesting question posed on new kernels is whether they are (c)pd. In fact,
for DS-kernels given by (2) the definiteness can be summed up quite easily. The neces-
sary tools and references can be found in [14].



Proposition 1 (Definiteness of Simple DS-Kernels).The following statements are
equivalent for a (nonnegative, symmetric, zero-diagonal) distanced:

i) d is isometric to anL2-norm

ii) kndd is cpd for all� 2 [0; 2] iii) klind is pd

iv) krbfd is pd for all 2 IR+ v) kpold is pd for allp 2 IN;  2 IR+:
Proof. i) impliesii): [14, Prop. 2.22] covers the case� = 2 and [14, Prop. 2.23] settles
the statement for arbitrary� 2 [0; 2]. The reverse implicationii) ) i) follows by [14,
Prop. 2.24]. Equivalence ofii) andiii) also is a consequence of [14, Prop. 2.22]. [14,
Prop. 2.28] implies the equivalence ofii) and iv). Statementv) follows from iii) as
the set of pd functions is closed under products and linear combinations with positive
coefficients. The reverse can be obtained from the pd functions1 kpold . With p = 1 and

 !1 these functions converge tohx; x0iOd . Hence the latter also is pd.

Further statements for definiteness of more general dot-product or distance-based
kernels are possible, e.g. by Taylor series argumentation.

For some distance measures, the relation to anL2-norm is apparent. An example is
the Hellinger distanceH(p; p0) between probability distributions which is defined by

(H(p; p0))2 := R �pp�pp0�2 dx:However, the class of distances which are isometric
to L2-norms is much wider than the obvious formsd = kx� x0k. For instance, [2]
proves very nicely thatkrbfp�2 is pd, where

�2(x;y) := 1
2
X
i

(xi � yi)2xi + yi
denotes the�2-distance between histograms. Thus, according to Proposition 1,

p�2
is isometric to anL2-norm. Only looking at the�2-distance, the corresponding Hilbert
space is not apparent. In summary we can conclude that not onlyklinH (Bhattacharyya’s
affinity) andkrbfp�2 , but all DS-kernels given by (2) are pd/cpd when using

p�2 orH.

In practice however, problem specific distance measures often lead to DS-kernels
which are not pd. A criterion for disproving pd-ness is the following corollary, which is
a simple consequence of Proposition 1 asL2-norms are in particular metrics. It allows to
conclude missing pd-ness of DS-kernels that arise from distances which are non-metric,
e.g. violate the triangle inequality. It can immediately be applied to kernels based on
tangent-distance [8], dynamic-time-warping (DTW) distance [1] or Kullback-Leibler
(KL) divergence [11].

Corollary 1 (Non-Metricity Prevents Definiteness).If d is not metric then the result-
ing DS-kernelkndd is not cpd andklind ; krbfd ; kpold are not pd.

Note, that for certain values�; ; p, the resulting DS-kernels are possibly (c)pd. Remind
also that the reverse of the corollary is not true. In particular, theLp-metrics forp 6= 2
can be shown to produce non-pd DS-kernels.



4 SVMs with Indefinite Kernels

In the following we apply DS-kernels on learning problems. For this we focus on the
very successful SVM for classification. This method can traditionally be applied if the
kernel functions are pd or cpd. If a given distance produces DS-kernels which are pd,
these can be applied in SVMs as usual. But also in the non-pd case they can be useful,
as non-cpd kernels have shown convincing results in SVMs [1,4,8,11]. This empirical
success is additionally supported by several theoretical statements:

1. Feature space:Indefinite kernels can be interpreted as inner products in indefinite
vector spaces, enabling geometric argumentation [10].

2. Optimal hyperplane classifier:SVMs with indefinite kernels can be interpreted as
optimal hyperplane classifiers in these indefinite spaces [7].

3. Numerics:Convergence of SVM implementations to a (possibly local) stationary
point can be guaranteed [9].

4. Uniqueness:Even with extreme non-cpd kernel matrices unique solutions are pos-
sible [7].

5 Experiments

We performed experiments using various distance measures. Most of them were used in
literature before. We do not explicitly state the definitions but refer to the corresponding
publications. For each distance measure we used several labeled datasets or several
labelings of a single dataset.

The datasetkimia (2 sets, each 72 samples, 6 classes) is based on binary images of
shapes. The dissimilarity is measured by the modified Hausdorff distance. Details and
results from other classification methods can be found in [12]. We applied a multiclass-
SVM. The datasetproteins(226 samples) consists of evolutionary distances between
amino acid sequences of proteins [6]. We used 4 different binary labelings correspond-
ing to one-versus-rest problems. The datasetcat-cortex(65 samples) is based on a ma-
trix of connectivity strengths between cortical areas of a cat. Other experiments with this
data have been presented in [5, 6]. Here we symmetrized the similarity matrix and pro-
duced a zero diagonal distance matrix. Again we used 4 binary labelings corresponding
to one-versus-rest classification problems. The datasetsmusic-EMDand music-PTD
are based on sets of 50 and 57 music pieces represented as weighted point sets. The
earth-mover’s distance (EMD) and the proportional transportation distance (PTD) were
chosen as distance measures, see [16]. As class labels we used the corresponding com-
posers resulting in 2 binary classification problems per distance measure. The dataset
USPS-TD(4 sets, 250 samples per set, 2 classes) uses a fraction of the well known
USPS handwritten digits data. As distance measure we use the two-sided tangent dis-
tance [15], which incorporates certain problem specific transformation knowledge. The
setUNIPEN-DTW(2 sets, 250 samples per set, 5 classes) is based on a fraction of the
the huge UNIPEN online handwriting sequence dataset. Dissimilarities were defined by
the DTW-distance [1], again we applied a multiclass-SVM.

These different datasets represent a wide spectrum from easily to difficultly separa-
ble data. None of these distances are isometric to anL2-norm. The restricted number



of samples is consequence of the size of the small original datasets or due to the fact,
that regularization experiments presented in Section 5.2 are only feasible for reasonably
sized datasets.

5.1 Pure Distance Substitution

In this section we present results with pure distance substitution and compare them
with the 1-nearest-neighbour and best k-nearest-neighbour classifier. These are natural
classifiers when dealing with distance data.

We computed the leave-one-out (LOO) error of an SVM while logarithmically vary-
ing the parameterC along a line, respectivelyC;  in a suitable grid. For thekpold kernel
a fixed polynomial degreep amongf2; 4; 6; 8g was chosen after simple initial experi-
ments. The originO was chosen to be the point with minimum squared distance sum to
the other training objects. As12kndd with � = 2 andklind are equivalent in SVMs (which
follows by plugging (1) in the SVM optimization problem and making use of the equal-
ity constraint), we confine ourselves to using the former. We report the best LOO-error
for all datasets in Table 1. Note that these errors might be biased compared to the true
generalization error, as we did not use training/validation partitions for parameter opti-
mization.

Table 1.Base LOO-errors [%] of classification experiments

dataset kndd k
pol
d

krbfd 1-nn k-nn

kimia-1 15.2811.114.17 5.56 5.56
kimia-2 12.50 9.72 9.72 12.5012.50

proteins-H-� 0.89 0.89 0.89 1.33 1.33
proteins-H-� 3.54 2.21 2.65 3.54 3.54
proteins-M 0.00 0.00 0.00 0.00 0.00
proteins-GH 0.00 0.44 0.00 1.77 1.77

cat-cortex-V 3.08 1.54 0.00 3.08 3.08
cat-cortex-A 6.15 3.08 4.62 6.15 6.15
cat-cortex-S 6.15 3.08 3.08 6.15 3.08
cat-cortex-F 7.69 6.15 4.62 4.62 3.08

dataset kndd k
pol
d

krbfd 1-nn k-nn

music-EMD-1 40.0022.0020.00 42.0042.00
music-EMD-2 42.1143.8610.53 21.0521.05
music-PTD-1 34.0030.0032.00 46.0034.00
music-PTD-2 31.5833.3328.07 38.6038.60

USPS-TD-1 10.40 5.20 3.20 3.60 3.60
USPS-TD-2 14.40 7.60 2.40 3.20 3.20
USPS-TD-3 12.80 6.80 4.00 5.20 5.20
USPS-TD-4 10.80 6.40 3.20 4.40 4.00

UNIPEN-DTW-1 14.40 6.00 5.20 5.60 5.60
UNIPEN-DTW-2 10.80 7.60 6.00 7.20 6.40

The identical low errors of the 1-nn and k-nn in the datasetskimia, proteins, cat-
cortex, USPS-TD,andUNIPEN-DTWdemonstrate that the data clusters well with the
given labeling. For the music data sets the labels obviously not define proper clusters.

As SVMs with kernelskndd , � = 2 can be interpreted as linear classifiers [7], the
good performance of these on proteins and cat-cortex data is a hint on their linear sep-
arability. Simultaneously, the sets with higher error indicate that a nonlinear classifier
in the dissimilarity space has to be applied. Indeed, the polynomial and Gaussian DS-
kernel improve the results of the linear kernel for most datasets. The Gaussian DS-
kernel even slightly outperforms the polynomial in most cases.

Compared to the nearest neighbour results, the nonlinear distance substitutions com-
pare very favorable. The polynomial kernel can compete with or outperform the best k-



nn for the majority of datasets, The Gaussian DS-kernel competes with or outperforms
the best k-nn for all but one dataset.

For the last two distance measures, large scale experiments with certain distance
substitution kernels have already been successfully presented in [1, 8]. In this respect,
scalability of the results to large datasets is expected. To summarize, the experiments
demonstrate the effectiveness of distance substitution kernels despite producing indef-
inite kernel matrices. The result is a sparse representation of the solution by training
examples, that is, only a small subset of training objects has to be retained. Thus, it is
particularly suited for large training sets.

5.2 Regularization of Kernel Matrices

In this section we investigate different regularization methods to eliminate the negative
eigenvalues of the kernel matrices. Similar regularizations have been performed in liter-
ature, e.g. regularizing linear SVMs [5, 12] or embedding of non-metric data [13]. The
method denoted off-diagonal addition (ODA) simply adds a suitable constant on the off-
diagonal elements of the squared distance matrix, which results in a Euclidean distance
matrix and therefore can be used for distance substitution resulting in pd kernels. Two
other methods center the kernel matrix [12] and perform an eigenvalue decomposition.
The approach (CNE) cuts off contributions corresponding to negative eigenvalues and
(RNE) reflects the negative eigenvalues by taking their absolute values.

These operations particularly imply that the same operations have to be performed
for the testing data. If the testing data is known beforehand, this can be used during
training for computing and regularizing the kernel matrix. Note that this isnot training
on the testing data, as only the data points but not the labels are used for the kernel
computations. Such training is commonly calledtransductivelearning. If a test sample
is not known at the training stage, the vector of kernel evaluations has to undergo the
same regularization transformation as the kernel matrix before. Hence the diagonalizing
vectors and eigenvalues have to be maintained and involved in this remapping of each
testing vector. Both methods have the consequence that the computational complexity is
increased during training and testing and the sparsity is lost, i.e. the solution depends on
all training instances. So these regularization methods only apply, where computational
demands are not so strict and sparsity is not necessary. For the experiments we used the
transductive approach for determining the LOO errors.

If one can do without sparsity, another simple method is used for comparisons:
Representing each training instance by a vector of squared distances to all training
points makes a simple linear or Gaussian SVM applicable. We denoted these approaches
as lin-SVM resp. rbf-SVM in Table 2, which lists the classification results.

The experiments demonstrate that regularization of kernel matrices can remarkably
improve recognition accuracies and compete with or outperform SVMs on distance-
vectors. The ODA regularization can increase accuracies, but it is clearly outperformed
by the CNE and RNE methods which maintain or increase accuracy in 52 resp. 50 of
the 60 experiments. Regularization seems to be advantageous for linear and polynomial
kernels. For the Gaussian DS-kernels only few improvements can be observed. A com-
parison to the last columns indicates that the (non-ODA) regularizedkndd classifiers can
compete with the linear SVM. The latter however is clearly inferior to the regularized



Table 2.LOO-errors [%] of classification experiments with regularized kernel matrices

kndd k
pol
d

krbfd

dataset ODA CNE RNE CNE RNE CNE RNE lin-SVM rbf-SVM

kimia-1 13.89 8.33 4.17 8.33 4.17 4.17 4.17 8.33 6.94
kimia-2 16.67 9.72 8.33 9.72 8.33 9.72 8.33 8.33 8.33

proteins-H-� 0.44 0.89 0.89 0.89 0.89 0.89 0.89 1.33 0.44
proteins-H-� 3.10 3.54 3.98 2.21 2.21 2.65 2.65 5.75 2.65
proteins-M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
proteins-GH 0.00 0.00 0.00 0.44 0.44 0.00 0.00 0.00 0.00

cat-cortex-V 6.15 3.08 3.08 3.08 3.08 1.54 3.08 4.62 3.08
cat-cortex-A 6.15 4.62 6.15 4.62 6.15 4.62 6.15 1.54 1.54
cat-cortex-S 6.15 3.08 4.62 3.08 3.08 3.08 3.08 3.08 3.08
cat-cortex-F 6.15 4.62 4.62 4.62 4.62 4.62 4.62 1.54 1.54

music-EMD-1 44.0038.0040.00 30.0040.00 30.0030.00 44.00 20.00
music-EMD-2 42.1115.7921.05 12.2812.28 14.0410.53 21.05 15.79
music-PTD-1 38.0044.0040.00 40.0038.00 32.0032.00 40.00 28.00
music-PTD-2 47.3729.8238.60 26.3222.81 28.0717.54 29.82 21.05

USPS-TD-1 9.60 4.00 6.00 4.80 4.00 3.20 3.20 6.80 4.80
USPS-TD-2 14.40 9.60 7.20 5.60 4.00 2.40 2.40 6.00 4.40
USPS-TD-3 12.00 6.80 8.00 4.00 4.40 4.00 4.40 6.80 4.40
USPS-TD-4 11.20 7.60 6.40 5.20 5.60 3.20 3.20 7.20 1.60

UNIPEN-DTW-1 13.20 8.40 8.40 5.20 5.60 4.40 4.80 8.00 6.80
UNIPEN-DTW-2 11.20 7.60 9.60 6.80 6.40 6.00 5.60 9.60 8.40

nonlinear DS-kernelskpold andkrbfd . In comparison to the rbf-SVM thekndd experiments
can not compete. Thekpold -CNE experiments also perform worse than the rbf-SVM in
12 cases. But thekpold -RNE,krbfd -CNE resp.kndd -RNE settings obtain identical or better
results than the rbf-SVM in the majority of classification problems.

6 Conclusion and Perspectives

We have characterized a class of kernels by formalizing distance substitution. This has
so far been performed for the Gaussian kernel. By the equivalence of inner product
andL2-norm after fixing an origin, distances can also be used in inner-product kernels
like the linear or polynomial kernel. We have given conditions for proving/disproving
(c)pd-ness of the resulting kernels. We have concluded that DS-kernels involving e.g.
the�2-distance are (c)pd, and others, e.g. resulting from KL-divergence, are not.

We have investigated the applicability of the DS-kernels by solving various SVM-
classification problems with different data sets and different distance measures, which
are not isometric toL2-norms. The conclusion of the experiments was, that good clas-
sification is possible despite indefinite kernel matrices. Disadvantages of other methods
are circumvented, e.g. test-data involved in training, approximate embeddings, non-
sparse solutions or explicit working in feature space. This indicates that distance substi-



tution kernels in particular are promising for large datasets. In particular the Gaussian
and polynomial DS-kernels are good choices for general datasets due to their nonlin-
earity. If sparsity of the solution is not necessary and computational demands during
classification are not so strict, then regularizations of the kernel matrices and the test-
kernel evaluations can be recommended. It has been shown that this procedure can sub-
stantially improve recognition accuracy for e.g. the linear and polynomial DS-kernels.

Perspectives are to apply distance substitution on further types of kernels, further
distance measures and in other kernel methods. This would in particular support recent
promising efforts to establish non-cpd kernels for machine learning [3].
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