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Zusammenfassung

Der Begriff Handschrifterkennung bezeichnet die Transformation einer Sprache, welche in
räumlicher Form von graphischen Markierungen vorliegt, in seine symbolische Darstellung.
Bei der on-line Handschrifterkennung wird dies gleichzeitig zum Schreibprozess durchge-
führt. Diese Dissertation behandelt Mustererkennungsmethoden, welche zur Lösung der on-
line Handschrifterkennung herangezogen werden.

On-line Handschriftdaten werden gewöhnlich als Vektorsequenz repräsentiert. Außer in der
Handschrifterkennung tritt die Vektorsequenz in einer Reihe von weiteren Mustererkennungs-
problemen auf, z.B. in der Spracherkennung, Genomverarbeitung, Wirtschafts- oder Medi-
zinanwendungen oder Robotik. Für die Formalisierung und Lösung dieser Probleme ist eine
direkte Modellierung der Vektorsequenz von entscheidendem Vorteil. In dieser Hinsicht lassen
sich die vorgestellten Techniken auf diese Reihe von allgemeinen Anwendungen transferieren,
deren Gemeinsamkeit der zugrundeliegende Datentyp der Vektorsequenz ist.

Die Dissertation führt zwei neuartige Methoden für die Klassifikation von Vektorsequenzen
ein. Die eine, genannt CSDTW, fällt in die Kategorie des sogenannten generativen, die andere,
genannt SVM-GDTW, in die des sogenannten diskriminativen Klassifikationsparadigma.

Das generative CSDTW (Cluster generative Statistical Dynamic Time Warping) ist ein ska-
lierbares Klassifikationskonzept für Vektorsequenzen, welches die Ideen von Häufungspunk-
tanalyse und statistischer Modellierung für Sequenzdaten zusammenführt. Gegenüber bisher
bekannten Methoden werden diese zwei Aspekte in einem gemeinsamen Merkmalraum ver-
bunden.

Von besonderer Bedeutung im Kontext der statistischen, generativen Herangehensweise des
CSDTW (und verwandten Verfahren wie z.B. HMM) ist das Modellieren von sogenannten
Richtungsdaten (d.h. Daten, die einer Richtung entsprechen, in 2D also einem Punkt auf dem
Einheitskreis entsprechen; im Gegensatz dazu verteilen sich Lineardaten auf dem reellen Zah-
lenstrahl). Auch bei der on-line Handschrifterkennung treten Richtungsdaten auf, speziell in
Form des Steigungswinkels des Schriftzugs. Diese Arbeit stellt ein Verfahren zur einheitli-
chen Modellierung von Richtungs- und Lineardaten innerhalb einer Wahrscheinlichkeitsdich-
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Zusammenfassung

tefunktion vor: die sogenannte “multivariate semi-wrapped Gauss” Wahrscheinlichkeitsdich-
tefunktion. Diese Verteilung zeigt — im Kontext der CSDTW Klassifikation — signifikante
Verbesserungen in der Genauigkeit, Berechnungs- und Speicheranforderung im Vergleich zu
bisher benutzten Ansätzen.

Als ein zusätzliches Konzept bei der Betrachtung der CSDTW Sequenzmodellierung wird
ein (Un-) Ähnlichkeitmaß zwischen zwei CSDTW-Modellen vorgestellt. Solch ein Maß kann
als Konvergenzkriterium im CSDTW Training, zur schnelleren Klassifikation, als Abstands-
maß im Kontext einer Häufungspunktanalyse von CSDTW Modellen oder als Optimierungs-
kriterium für ein diskriminatives CSDTW Training verwendet werden. Ähnlich der CSDTW
Klassifikation wird das vorgestellte Ähnlichkeitsmaß mit Hilfe dynamischer Programmierung
berechnet und kann folglich mit geringem Programmieraufwand in eine vorhandene Biblio-
thek für die Sequenzklassifikation integriert werden. Das vorgestellte (Un-) Ähnlichkeitmaß
basiert auf der Bayes Fehlerwahrscheinlichkeit. Dies macht es als Werkzeug zur Interpretation
von Fehlklassifikationen besonders interessant. Zu diesem Zweck durchgeführte Experimen-
te zeigen eine hohe Korrelation von ähnlichen und häufig empirisch verwechselten Klassen-
paaren. Das vorgestellte Ähnlichkeitsmaß lässt sich auf häufig verwendete Spezialfälle der
“Hidden Markov Modelle” (HMM) übertragen.

Als alternativer Ansatz zu der weithin verwendeten generativen Sequenzklassifikation wird
eine diskriminative Methodik vorgestellt, die das “Dynamic Time Warping” (DTW) und
“Support-Vektor-Machinen” (SVM) verbindet: SVM-GDTW. Diese Verbindung wird durch
die Formulierung eines neuen SVM-Kerns verwirklicht, genannt “Gauss Dynamic Time War-
ping” (GDTW) Kern. Da dieses Verfahren ein rein diskriminatives ist, trifft es keine Annah-
men über klassenbedingte Wahrscheinlichkeitsdichten. Stattdessen werden die Klassengren-
zen direkt optimimiert.

Diese Arbeit vergleicht CSDTW und SVM-GDTW in Bezug auf ihren theoretischen Hinter-
grund, Rechen- und Speicherkomplexität und Klassifikationsgüte. Experimente auf der Basis
eines Standard-Datensatzes der Handschrifterkennung zeigen überzeugende Resultate beider
Verfahren. CSDTW zeichnet sich durch eine hervorragende Klassifikationsgüte und eine Ska-
lierbarkeit auf auch schlankere Hardware aus. SVM-GDTW erzielt eine ähnlich hohe Klas-
sifikationsgüte, erfordert jedoch mehr Hardware-Ressourcen. Es birgt als Beispiel des relativ
jungen Gebietes der diskriminativen Sequenzklassifikation sehr viel Potential für zukünftige
Weiterentwicklungen.

Die praktische Relevanz der entwickelten Handschrifterkennung wird anhand einer Imple-
mentierung auf einem Linux Compaq iPAQ PDA demonstriert.
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Abstract

The term handwriting recognition (HWR) denotes the process of transforming a language,
which is represented in its spatial form of graphical marks, into its symbolic representation.
Online HWR performs this task concurrently to the writing process. The present thesis studies
high-accuracy recognition methods applied to online HWR. Those methods have been imple-
mented within the writer independent online HWR system frog on hand (f reiburg recognition
of on-line handwriting).

In online HWR, data are typically represented as vector sequences. In addition to HWR,
vector sequence data appear in a number of additional pattern recognition problems, for in-
stance, in speech recognition, genome processing, financial and medical applications, and
robotics. For those problems, designing classifiers that directly address the data’s natural rep-
resentation can greatly improve the recognition accuracy, compared to a potential pre-applied
transformation to vector space data. Beside introducing novel online HWR approaches, a con-
cern of this thesis is also to develop broadly applicable pattern recognition techniques, which
are generic to this bouquet of sequence data problems.

Emphasis is placed on classification. This thesis describes two complementary classification
methods, one of them (CSDTW) falling into the so-called generative, the other one (SVM-

GDTW) into the so-called discriminative classification category.
The generative CSDTW (cluster generative statistical dynamic time warping) is a scalable

sequence classification, which aims at holistically combining sequence cluster analysis and
statistical modeling. Contrary to previous approaches, these two aspects are embedded in
a single feature space and use a closely related distance measure. As will be shown, this
combined modeling leads to very accurate HWR results.

Particularly interesting in the context of statistical classification, like CSDTW, is the model-
ing of so-called directional data (i.e., data which corresponds to a direction, thus, in 2D is dis-
tributed on the unit circle; opposed to directional data, linear data is distributed along the real
line). In online HWR directional data appear as a valuable feature by means of the angular pen
trace direction. This thesis describes a unified modeling of directional and linear data within

vii



Abstract

one probability density function (PDF): the multivariate semi-wrapped Gaussian PDF. This
modeling applied to CSDTW classification shows significant improvements in recognition ac-
curacy, computational speed and memory requirements, compared to commonly employed
modeling approaches.

As an additional resource for the CSDTW sequence modeling, a (dis-) similarity measure
between a pair of CSDTW models is described. Such a measure can be used as a stop criterion
in the iterative CSDTW training, as a speed-up in classification, a distance measure in the con-
text of CSDTW model clustering or as an optimization criterion for a discriminative CSDTW
training. Likewise to the CSDTW scoring, this (dis-) similarity computation uses dynamic
programming as algorithmic framework and can thus be easily added to a given classifica-
tion implementation. It is based on the Bayes probability of error, and, hence, can be utilized
as a tool to interpret misclassifications. Experiments show a high correlation of similar and
frequently confused class pairs.

As a complementary approach to the widely employed generative sequence modeling, a
discriminative strategy of fusing dynamic time warping (DTW) and support vector machines
(SVM) is developed: SVM-GDTW. This fusion is realized by a formulation of a novel SVM
kernel, called the Gaussian dynamic time warping (GDTW) kernel. As this sequence classi-
fication approach is a pure discriminative one, it does not assume a model for the generative
class conditional densities. Instead, it addresses the direct creation of class boundaries.

This thesis compares CSDTW and SVM-GDTW in terms of theoretical background, ac-
curacy, and computational complexity. While CSDTW being the more efficient approach,
SVM-GDTW holds much potential for future research as an instance of the relatively recent
SVM based sequence classification.

The practical impact of the developed handwritten character recognition is demonstrated by
an implementation on a Linux Compaq iPAQ PDA environment.
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Notation

The general notation follows standard mathematical conventions. Specific variable names are
summarized in the following.

General mathematical and statistical notation:

R real numbers
x ∈ R

F , xT (feature) vector, transpose of a (feature) vector
F dimension of feature vector space
p (x) probability density function (PDF) of a continuous value ran-

dom (vector) variable x

P (x) probability of a discrete value random (vector) variable x

E [x] expectation value of a random (vector) variable x

X =
{
x(1), . . . ,x(M)

}
set of observations of a random (vector) variable x

M number of observations of a random variable
µx, Σx mean, covariance matrix of a random (vector) variable x

Nµx,Σx
Gaussian (normal) PDF with mean µx and covariance Σx

x = [x1, . . . ,xNx ] vector sequence
l ∈ {1, . . . , L} class index in an L-class classification problem
E error rate in a classification problem
C = [Cl′l]L×L classification confusion matrix in an L-class classification

problem
Pe (1, 2) Bayes error in a classification problem of two classes 1 and 2
med median
arg phase of a complex number
erf, erfc error function, complementary error function
diag (λ1, . . . , λM) matrix with diagonal elements λ1, . . . , λM and 0 elsewhere
‖x‖ L2-norm of vector x

xiii



Notation

|A| determinant of matrix A

CSDTW notation:

P set of alignment transitions
Φ = [φ1, . . . ,φN ] DTW alignment path
Φ∗ = [φ∗

1, . . . ,φ
∗
N ] DTW Viterbi path

αj (∆φ) SDTW transition probability of transition ∆φ reaching se-
quence element j

βj(x) SDTW PDF of a random vector x at sequence element j
R = [R1, . . . ,RNR ] SDTW sequence of statistical quantities Rj

Rj = (αj, βj) SDTW statistics associated with sequence position j
R

τ SDTW super reference pattern

d, d̃, d̂, d̄ local distance functions in (S)DTW Viterbi search
DΦ[d]

(
x,y

)
DTW alignment distance of two sequences x and y, based on
an alignment Φ and a local distance d

D̃Φ[d]
(
x,y

)
DΦ[d]

(
x,y

)
, normalized by the length of Φ

D∗[d]
(
x,y

)
DTW Viterbi distance of two sequences x and y, based on a
local distance d

D̃∗[d]
(
x,y

)
D∗[d]

(
x,y

)
, normalized by the length of Φ∗

k ∈ {1, . . . , Kl} sub-class (allograph) index of class l in a classification problem
C

lk sub-class (allograph) cluster k of class l
R lk sub-class (allograph) CSDTW model k of class l
Atot total number of sub-class (allograph) models in a CSDTW

classifier
A(l) number of sub-class (allograph) models for class l in a CS-

DTW classifier

SVM-GDTW notation:

wi SVM weight
Si binary class label Si ∈ {+1,−1}
K (·, ·) general SVM kernel
KGDTW (·, ·) SVM-GDTW kernel
ϕ (x) kernel mapping
MS number of support vectors in a binary SVM
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CHAPTER 1

Introduction

This chapter introduces online handwriting recognition (HWR). It motivates the use of HWR,

explains areas of application and the typical data representation. It gives a state of the art in

current research and commercial products. Finally, it states and outlines the objective of this

thesis.

1.1 Motivation

During recent years computers have moved continuously towards mobility. Prominent ex-
amples are laptops, personal digital assistants (PDAs) as well as a new generation of tablet
PCs and smart phones. This fundamental shift has accented the necessity for alternative input
methods, compared to the commonly used, predominant keyboard. Indeed, the keyboard is a
fast and unambiguous computer input instrument. It is often a preferable choice in environ-
ments that have no constraints on space and weight for the equipment. However, many mobile
computing applications demand a rather small and lightweight device, requirements that are
not fulfilled by the comparably spacious keyboard.

A number of innovative input approaches have been studied. A comprehensive overview
is given, for instance, by MacKenzie and Soukoreff [2002]. Among those, the most natural
method is handwriting. However, the interpretation of handwriting is not an unambiguous
mapping of user actions to a set of ASCII characters — contrary to the keyboard entry method.
It requires sophisticated solutions that map a handwriting into the domain of characters. This
procedure is called handwriting recognition (HWR). One goal of the present thesis is to de-
velop high-accuracy HWR. This task has been realized within the development of the HWR
project and prototype system frog on hand, an abbreviation for f reiburg recognition of on-line
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1 Introduction

FIGURE 1.1: Types of handwriting

handwriting.
Many of the solutions presented are not restricted to HWR, but can be applied to a variety

of additional pattern recognition problems.
A concise review of the HWR problem follows in the remainder of this chapter, with main

emphasis on Latin script. Although Latin and further (e.g., Chinese, Japanese, Hangul, and
Arabian) handwriting have things in common, basic differences exist that make it worthwhile
analyzing handwriting with respect to the structure of each language.

Further introductory HWR literature has been published, e.g., by Plamondon and Srihari
[2000], Suen et al. [2000], Plamondon et al. [1999], Guyon et al. [1997], Wakahara et al.
[1992] and Tappert et al. [1990].

1.2 State of the art in handwriting recognition

Plamondon and Srihari [2000] define HWR as “the task of transforming a language repre-
sented in its spatial form of graphical marks into its symbolic representation”.

The generality of this definition reflects the quality that HWR is not a single application
area, but quite versatile. Indeed, there are a number of sub-domains in HWR, each of it
requiring its own particular view and solution, as will be discussed subsequently.

1.2.1 Types of handwriting

Latin handwriting can appear in several contexts. In this respect, the following handwriting
types exist (cf. also Figure 1.1):

2



1.2 State of the art in handwriting recognition

Unconstrained script: This is the predominant type in everyday handwriting and consti-
tutes the most difficult recognition problem. Without constraints, people often write
with a mixture of cursive script and hand-printed characters.

One problem in unconstrained HWR is the huge variety in the writing of different peo-
ple. Another extreme difficulty is the so-called segmentation, that is, the process of
dividing an entire writing into sub-units (typically characters).

Cursive script: By definition, a cursive word is written with a single stroke. Although this
type of handwriting (with a few exceptions of, e.g., “i”-dots and “t”-dashes) is taught in
school, adult writers often lift the pen within a word. Thus, pure cursive script is found
very rarely in practice.

Also with cursive script a recognizer has to cope with the segmentation problem.

Hand-printed script: In the context of this handwriting type, the writing still represents an
entire word sequence, but succeeding characters are explicitly segmented by a pen lift.

Though, the character segmentation problem is still not solved as pen lifts can also occur
within a character.

Isolated characters: In this type of handwriting, the segmentation problem is already
solved, for instance by the acquisition interface and the cooperation of the writer. Graph-
ical boxes or timeouts are common interface techniques for this purpose. Nevertheless,
the recognition is still difficult due to a tremendous variability in handwriting among
writers.

“Unistrokes” characters: “Unistrokes” [Goldberg and Richardson, 1993] are a rather ar-
tificial type of handwriting. “Unistrokes” characters are specifically designed symbols
— one for each character — and are written within exactly one stroke. They aim to ease
both problems of segmentation and writing variability by addressing the cooperation of
the user.

This one-to-one correspondence between strokes and characters directly solves the char-
acter segmentation problem. Further, as each character is represented by only one rep-
resentative shape, the writing variability is trimmed to a minimum. Finally, while the
natural Latin alphabet of characters contains a number of ambiguities (e.g., “a” ↔ “u”,
“u” ↔ “v”, “e”↔ “l”, . . .), “unistrokes” characters are especially designed for an easy
discrimination between them. For instance, “u” and “v” are explicitly distinguished by
a special hook at the end of the “v”.

The recognition difficulty decreases from the first listed type to the last. Indeed, HWR systems
have a strong history in making use of this graduation in difficulty. They have aimed (and still
aim) at a reasonable user satisfaction by restricting the text input to a simpler handwriting type,
while simultaneously rewarding the user with recognition accuracy. In fact, the first widely

3



1 Introduction

successful HWR — Palm’s Graffiti1 — used the simplest handwriting type of “unistrokes”
characters.

1.2.2 Online vs. offline handwriting recognition

Another principal distinction is the one between online and offline HWR. The terms “online”
and “offline” describe the point of time in recognition: Online HWR performs the recognition
concurrently to the writing process, whereas offline HWR considerably afterwards.

This distinction has a number of consequences that further expose fundamental differences
between the “online” and “offline” HWR domains. Among others, these concern data acqui-
sition, data representation, typical application areas and the possibility of user interaction.

Data acquisition: In online HWR a typical data acquisition scenario consists of a writing
pad and a pen, the combination of which is capable of capturing the trace of the pen
movement. Technically, touch sensitive, electromagnetic or electrostatic sensors are
often integrated into the pad. Alternatively, sensors that capture the pen dynamics can
be built directly into the pen.

Offline HWR, on the other hand, acquires data typically by scanning paper documents.

Data representation: With respect to the above described data acquisition, online HWR
data is commonly a digitized representation of the pen movement. It generally contains
sequential information about position, velocity, acceleration, pressure, or even angle
and orientation of the pen as a function of time. Thus, it includes information about
the number, order and direction of strokes, as well as the writing speed. A problem of
this representation is its variety. Writings that appear similar on the “paper” can have a
substantially different trace. For example, a variety of traces for the character “x” exist,
or of words with “i”-dots and “t”-dashes.

Contrary to the online domain, offline data is typically represented by a 2D image ma-
trix. Figure 1.2 illustrates the different data representation for on- and offline data.

Applications: Online HWR is used in the context of user interfaces for computing devices.
In this environment, they often aim at the recognition of script. In recent years, the
recognition of additional pen input like gestures, graphics [Wenyin et al., 2001], mathe-
matical equations [Kosmala et al., 1999] or of whole page layouts [Shilman et al., 2003]
have become a new focus of interest. The term pen computing is often used to describe
an entire environment that comprises these ideas. The following list gives a number of
HWR application areas and a note on the state of the art:

Input for Tablet PCs: Handwriting is the main input method for the recently intro-
duced tablet PC. Tablet PCs are mobile laptop-sized computers with displays the

1http://www.palmone.com/us/products/input/
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1.2 State of the art in handwriting recognition

(a) online (b) offline

FIGURE 1.2: (a) Online handwriting data typically is a 1D sequence of coordinates. In this example green
points correspond to coordinates that were sampled when the pen touched the surface. Red points were sampled
while the pen was lifted. (b) Offline handwriting data typically is a 2D image matrix.

user can directly write on with a digital pen. They are designed for easy note taking
in business, office, clinic and industry environments.

The accuracy of today’s systems depends on many factors. Clear writing, the size
of a supporting dictionary, and a large amount of representative training data are
some of those. Commercial handwriting recognizers for tablet PCs are for instance
included in Microsoft Windows XP Tablet PC Edition2 or offered by third parties,
like Pen&Internet riteScript3. Under benign conditions, word recognition rates of
up to 95 % are reported.

Input for PDAs and smart phones: Character and word recognition solutions are
also used in PDAs and smart phones. In addition to common HWR difficulties, the
algorithms here have to cope with limited computational resources.

Commercial applications for several types of handwriting (cf. the previous sec-
tion) are, for example, the already mentioned Graffiti, Decuma Latin4 or Microsoft

Transcriber5. A recognition of “unistrokes” characters achieves a recognition rate
of up to 99 %. The recognition of unconstrained character and word input is still
not solved to full satisfaction. A comparison of different isolated character recog-
nition experiments from research systems is included on page 74.

Input for PCs: Handwriting can also be an appropriate input method for common
personal computers. This especially concerns languages with a large alphabet, for
instance, Chinese. Here, due to practical (and educational) circumstances those
symbols are difficult to be entered on a keyboard.

2http://www.microsoft.com/windowsxp/tabletpc/
3http://www.penandinternet.com/
4http://www.decuma.com/
5http://www.microsoft.com/windowsmobile/resources/downloads/pocketpc/transcriber.mspx
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An example for a commercial application is Synaptics QuickStroke.6

Signature verification: A variant of HWR is signature verification
[Plamondon and Srihari, 2000]. Handwriting is an acknowledged and legally
binding method for identification. An automatic signature verification system
for biometric identification has to recognize individual characteristics of the
writer and discriminate them from others. For this, many present systems rely on
acceleration and pen pressure as features.

These systems are, however, several orders of magnitudes away from the very high
accuracy demands that are given by, for example, financial domains.

Main applications for offline HWR are process automation for postal mail sorting, bank
check processing, office automation and reading aids for blind people.

User interaction: Online HWR applications can benefit from the online acquisition envi-
ronment by making use of the interaction with the user. The writer can instantly re-
spond to the system’s actions, for instance by correcting falsely recognized symbols
or by choosing out of a set of possible answers, if the input was ambiguous. On the
other hand, the direct user interaction imposes sharp time complexity constraints to the
algorithms.

As online data describes the whole history of the writing trace it holds more information than
offline data. Online recognition rates are typically higher than offline rates. It is straight-
forward to construct an offline image from an online trace [Manke et al., 1994]. The other
way round is principally not unambiguously possible. Though, researchers have studied ap-
proaches that reconstruct the online representation out of the offline, using biophysical prior
knowledge about the creation of the writing [Jäger, 1998, Lallican et al., 2000].

Notably, a merge of the traditionally independent development in on- and offline hand-
writing analysis methods can be observed. Online HWR approaches include “offline” image
bitmaps into the feature extraction [Manke et al., 1994], others combine the results of an on-
and an offline recognizer to improve overall recognition accuracy [Vinciarelli and Perrone,
2003]. Further, especially in the context of online note taking environments, image infor-
mation represents a valuable source for the recognition of the document layout structure
[Shilman et al., 2003].

1.3 Thesis problem statement

This thesis is concerned with the design of accurate HWR techniques. The presented methods
are specifically developed to cope with the huge amount of data variations that are present in
on-line handwriting. Emphasis is put on reliable recognition of isolated characters. Further,

6http://www.synaptics.com/products/quickstroke.cfm
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1.3 Thesis problem statement

the solutions should serve as basis for additional HWR domains, that is, hand printed words,
cursive script and unconstrained handwriting (cf. Section 1.2.1).

The work of this thesis is not limited to the use within HWR, but shall also be easily trans-
ferable to general pattern recognition problems. A discussion of the specific applicable fields
in pattern recognition shall be pursued in the following.

1.3.1 Thesis work in the pattern recognition context

The methods studied in this thesis are solutions to two general problems within pattern recog-
nition: (i) the classification of sequence data and (ii) the unified statistical feature space mod-
eling of linear and directional data.

Classification of sequence data: Many pattern recognition problems are based on vec-

tor space data. This means that data — or their feature representation — can be embed-
ded in a vector space of a fixed dimension (cf. Section 2.2 for details). For vector space
data, a huge collection of well-understood classification techniques exist.

However, additional problems exist, where data cannot be reasonably described by fixed
dimension vectors. For those, a more complex data type may be a better representation,
for example, a set, a tree, an incomplete or sparse vector — or a sequence. In this thesis,
the term sequence describes a variable-size series, say p, of observations. The observa-
tions in turn can be of arbitrary type, here they are vectors, that is p =

[
p1, . . . ,pNp

]

with pi = (pi1, . . . , piF )T ∈ R
F , i = 1, . . . , Np. Indeed, sequences are an ideal data

type for online HWR, because the acquired data themselves are sequences (cf. Sec-
tion 1.2.2).

Classifiers that are designed for vector space data cannot directly be applied to sequences
(or to the other mentioned data types) in general, because they most often rely on vector
space operators. For example, many classifiers use the Euclidean distance or the vector
space inner product (cf. Section 2.2) — operators that are not defined for non-vector
space data.

One can think of two different approaches to cope with this difficulty: One option is
to neglect the respective intrinsic data structure and map the data into a vector space
representation during pre-processing and feature generation. However, a drawback is
the high risk of loosing substantial information through this transformation. When the
loss is too severe, the alternative, more promising approach is to adopt the classifier to
support the original data type directly.

This thesis aims at the second procedure by the formulation of classification approaches
that are specifically designed for sequence data and their similarity relations.

The approaches are developed with application to online handwriting data. How-
ever, beside online HWR, a number of additional applications exist, where data
have this sequential nature. Prominent fields are, for instance, speech recognition
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[Rabiner and Juang, 1993], genome processing [Jaakkola et al., 1999], medical appli-
cations [Vullings et al., 1997] and robotics [Oates et al., 2000].

Feature space modeling of linear and directional data: Most often, patterns are rep-
resented in a feature space with linear variables, that is, variables that are distributed on
the real line R. For linear data, well understood methods for a statistical modeling exist.
Contrary to linear data, directional data originate from directions. In two dimensions,
directions may be visualized as points on the circumference of a circle and are thus in-
herently cyclic. Although not so well known, also for directional data techniques for
a statistical modeling exist. However, no solution was so far given in case the feature
space comprises both linear and directional data.

This thesis deals with the situation that linear and directional data occur in the context
of sequences. As sequence data being a generalization of vector space data, the methods
are certainly also applicable for the latter.

1.3.2 Original contributions of the thesis

The original contributions of the thesis concern solutions to the above described problems:

1. Two novel sequence classification environments are described: the generative CSDTW

and the discriminative SVM-GDTW classification.

CSDTW connects hidden Markov modeling with a scalable, hierarchical clustering. It
is the first approach where clustering and hidden Markov modeling are performed in the
same feature space, and the clustering gives a natural solution to the HMM topology
selection and initialization. Along with CSDTW, this thesis introduces a novel (dis-)
similarity measure between two generative sequence models.

SVM-GDTW integrates the discriminative support vector machine (SVM) and the dy-
namic time warping (DTW) technique by the formulation of a new type of SVM kernel,
called GDTW kernel. It is the first approach incorporating the powerful SVM technique
into the sequence-based on-line HWR.

2. A solution for the unified statistical feature space modeling of linear and directional
data is proposed by the introduction of the approximated multivariate semi-wrapped

Gaussian distribution.

1.4 Thesis outline

The thesis is structured as follows. The following chapter begins with a review of general
pattern recognition techniques. Chapter 3 explains the underlying application, that is, online
HWR. It describes typical methods for data acquisition, pre-processing and feature extraction.
In Chapter 4 a general and flexible generative sequence classification approach is described. It
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1.4 Thesis outline

integrates clustering and generative statistical sequence modeling, and is named cluster gen-

erative statistical dynamic time warping (CSDTW). Chapter 5 discusses a solution for an issue
that is often present in pattern recognition: when part of the features correspond to directions
(instead of values on the real line), specific methods for a statistical modeling are required. For
this, it introduces the approximated multivariate semi-wrapped Gaussian distribution. Chap-
ter 6 further addresses the CSDTW classification by defining a (dis-) similarity measure for
its statistical models and the related hidden Markov models. A novel discriminative sequence
classification technique is introduced in Chapter 7, namely SVM-GDTW. This approach com-
bines dynamic time warping (DTW) and support vector machines (SVMs) by establishing a
new SVM kernel. Chapter 8 describes the implementation of one of the developed isolated
character recognizers on a PDA. Chapter 9 concludes this thesis.
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CHAPTER 2

Pattern recognition techniques

This chapter reviews a selection of general pattern recognition techniques. In particular, it

deals with supervised and unsupervised learning methods. First, supervised learning methods

where data is embedded in a vector space are reviewed. Emphasis is set on the differentiation

between the generative and the discriminative classification paradigm. Second, the paradigm

of supervised generative learning methods is transferred to sequence data. Dynamic time

warping (DTW) and hidden Markov modeling (HMM) constitute the center of interest. Third,

unsupervised learning will be reviewed by the description of an agglomerative hierarchical

clustering approach. All described methods will be applied in the remainder of this thesis.

2.1 Introduction

Pattern recognition is the collective name for a number of problems, the aim of which is to
assign objects into a set of categories. The objects are also referred to as patterns, the cate-
gories as classes. Humans are excellent in pattern recognition. For instance, we immediately
identify faces with persons, we recognize spoken words, traffic scenes, classify documents,
images and music, etc. Further, we have a distinct ability in the decoding of handwritten and
printed script. In handwriting, the human’s recognition system does extremely well, even in
situations when a writer has taken down his notes imperfectly, illegibly, without any order and
under difficult environmental conditions. The same is true in printed script, including the case
of irregular, playful fonts.

With the advent of computer power in recent decades the practical importance of
machine based pattern recognition systems has been raised. Attendantly, research has
been consolidated and a multitude of influencing books dealing with pattern recogni-
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tion published [Devijver and Kittler, 1982, Bishop, 1995, Ripley, 1996, Schürmann, 1996,
Theodoridis and Koutroumbas, 1999, Duda et al., 2001].

Today, a number of pattern recognition systems are present in every day applications. Ex-
amples are: industrial computer vision systems like automated visual inspection, systems
for a personal dictate and automated telephone directory enquiry using speech recognition,
sequence analysis systems in bioinformatics, document and multimedia classification in the
world wide web, biometric recognition for personal identification, etc. Further, HWR is used
in postal and form processing and facilitates the input in electronic devices such as PDAs,
smart phones and tablet PCs.

The major topic of the present thesis — online HWR — can be categorized as a pattern
recognition problem. Hence, when faced to the task of the design of a HWR system, it is pros-
perous to take advantage of general methods developed in pattern recognition. This section
describes issues that are very common and universal in pattern recognition and of considerable
interest also in online HWR and the present thesis. It is beyond the scope of the thesis to give
a complete illustration of these techniques. Instead, the focus lies on a sub-set of techniques
that will find application in the presented work.

In particular, main topics of this section are:

• the classifier design for vector space data (Section 2.2),

• the classifier design for sequence data (Section 2.3) and

• clustering (Section 2.4).

Further, additional important pattern recognition issues like pre-processing and feature extrac-
tion are not included in this general overview, but will be addressed instead in the context of
online handwriting later in Section 3.

For a further reading the above listed pattern recognition books are excellent literature.
Additionally, monographs [Rabiner and Juang, 1993, Schukat-Talamazzini, 1995] and review
papers [Jain et al., 2000] provide valuable information.

2.2 Classification of vector space data

Classification is part of almost every pattern recognition system. It denotes the step in the
recognition process which maps the feature representation of a pattern into one, say l̂, of a set
{1, . . . , L} of categories. The following deliberations assume a situation where the classifica-
tion takes place in a real valued vector space, that is, the feature representation x ∈ X of a
pattern is an element in an F -dimensional vector space of the real numbers: X = R

F . Fur-
ther, it shall be assumed that a set X =

{
X

(1), . . . , X(L)
}

of labeled training data is available,
where X

(l) =
{
x(l,1), . . . ,x(l,Ml)

}
⊂ X is the training set of class l.
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2.2 Classification of vector space data

2.2.1 The Bayes classifier

This section reviews a classifier that has a rather theoretical impact. It will turn out to be
optimal in a particular sense and is called the Bayes classifier.

We will approach a mathematical formulation of classification and assume that available
feature vectors have been generated by a double stochastic process. The first stochastic sub-
process produces a discrete class decision l with respect to fixed prior class probabilities
P (l) , l ∈ {1, . . . , L}. Standard stochastic constraints P (l) ≥ 0 and

∑L
l=1 P (l) = 1 are satis-

fied. Following, the second stochastic sub-process produces a vector observation t ∈ R
F , de-

pendent on the class decision l and the respective element of a set {p (x|1) , . . . , p (x|L)} , x ∈
R

F of class conditional probability density functions (PDFs), each of which is associated with
a particular class l.

In the context described above, classification is the solution to the task of revealing the
unobserved class label l with only the knowledge of t. A variety of classifiers tackles this task
with help of a set {u1 (x) , . . . , uL (x)} of real-valued functions called discriminants

ul : R
F → R, l = 1, . . . , L. (2.1)

The role of the discriminants in a classifier is the following. The classification of t (which
shall be an acronym for a test vector) is performed by choosing that class l̂, the discriminant
evaluation of which is maximal:

l̂ = argmax
l

{ul (t)} (2.2)

In this respect, the design of a pattern classifier consists of the formulation of
{u1 (x) , . . . , uL (x)}.

2.2.1.1 The Bayes decision rule

Studies in decision theory specify a solution to this goal which is optimal with respect to a
principle that is called classification risk minimization. It can be proven that ul (x) should be
chosen as the a-posteriori probability

ul (x) = P (l|x) , (2.3)

in order to achieve a minimal classification risk (which in many situations is equivalent to the
probability of a classification error Pe). A connection of the a-posteriori probability to the
prior probability and the PDF is given by the Bayes rule

P (l|x) =
P (l) p (x|l)

p (x)
. (2.4)

The denominator in Equation (2.4) can be decomposed as

p (x) =
L∑

l=1

p (x, l) =
L∑

l=1

P (l) p (x|l) , (2.5)
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FIGURE 2.1: A two-class classification in R
1 with the Bayes classifier. In the upper plot the densities p (x, 1) =

P (1) p (x|1) and p (x, 2) = P (2) p (x|2) are sketched, in the lower plot the a-posteriori probabilities P (1|x)
and P (2|x). (Figure reproduced from [Ripley, 1996].)

however, it does not depend on l and hence can ignored for the classifier’s decision.
A classifier that is based on Equations (2.2) and (2.3) is optimal with respect to the classifi-

cation risk minimization. Its decision rule can be simplified to

l̂ = argmax
l

{P (l|x)} = argmax
l

{P (l) p (x|l)} . (2.6)

It is usually called maximum-a-posteriori (MAP) or Bayes classifier.
In the case that prior probabilities are equal, P (l) = 1/l, l = 1, . . . , L, the decision rule of

Equation (2.6) reduces to
l̂ = argmax

l
{p (x|l)} , (2.7)

which is called maximum likelihood (ML) classification.
Details and a derivation of Equation (2.3) are presented in each of the mentioned pat-

tern recognition books [Ripley, 1996, Duda et al., 2001, Theodoridis and Koutroumbas, 1999,
Bishop, 1995, Schürmann, 1996, Devijver and Kittler, 1982].

An example for a simple Bayes classifier is illustrated in figure 2.1. The figure shows the
feature space of a two-class classification problem with feature space dimension F = 1. In
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2.2 Classification of vector space data

the upper sketch of the two densities p (x, 1) = P (1) p (x|1) and p (x, 2) = P (2) p (x|2) are
shown. The lower sketch illustrates the corresponding a-posteriori probabilities P (1|x) and
P (2|x). According to the argumentation made previously, the Bayes classifier chooses that
class, given the test pattern t ∈ R

1, for which p (t, l) or alternatively P (l|t) is maximal. These
two criteria give always the same decisions, in the example there is one decision boundary for
x ≈ 1.55.

2.2.1.2 The Bayes error

An element which will be of particular interest in Chapter 6 is the already mentioned proba-
bility of a classification error Pe (also called the Bayes probability of error, the Bayes error or
Bayes risk). It has already been mentioned that this quantity is minimized by the Bayes deci-
sion rule of Equation (2.3). However, it is worth emphasizing that Pe is not zero in general.
We shall briefly illustrate the background in the context of a two-class classification problem.

Let Xl denote the region of the feature space where the Bayes classifier makes a decision for
class l. Then, an error is made if x ∈ X1 although it belongs to class 2 or if x ∈ X2 although
it belongs to class 1. Thus, the probability of an error Pe (1, 2) for this two-class problem is

Pe (1, 2) = P (x ∈ X1, 2) + P (x ∈ X2, 1)

= P (x ∈ X1|2) P (2) + P (x ∈ X2|1) P (1)

= P (2)

∫

X1

p (x|2) dx + P (1)

∫

X2

p (x|1) dx

=

∫

X

min {P (1) p (x|1) , P (2) p (x|2)} dx

=

∫

X

min {p (x, 1) , p (x, 2)} dx. (2.8)

A geometrical interpretation of Pe (1, 2) can be taken from Figure 2.2. Due to the integration of
the minimum of the two functions p (x, 1) and p (x, 2) in Equation (2.8), Pe (1, 2) corresponds
to the area of overlap of p (x, 1) and p (x, 2), which is the dark shaded area in the figure.

2.2.1.3 Practical impact of the Bayes classifier

To come back to the general formulation of the classification task: at this stage it is solved
in theory by Equation (2.6). However, the essential point for a real world classification prob-
lem is that the Bayes classifier is founded on the knowledge of the a-posteriori probabili-
ties P (l|x) or alternatively the class conditional PDFs p (x|l) and prior probabilities P (l).
Unfortunately, these are not available in the majority of problems. Mostly, only a finite set
X

(l) =
{
x(l,1), . . . ,x(l,Ml)

}
of labeled observations is known. These can be used to obtain

at best estimates P̂ (l|x) or alternatively p̂ (x|l) and P̂ (l) of the quantities of interest. The
quality of the estimates depends on many factors, like the structure of X, the complexity of
the problem and modeling assumptions.
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FIGURE 2.2: The Bayes probability of error Pe (1, 2) equals the area of overlap, i.e., the dark shaded area.

After all, the conclusion that can be drawn here is that in real world problems one can only
get an approximation of the Bayes classifier. Approaches to this task mainly follow three
distinct paradigms:

1. the generative parametric paradigm,

2. the discriminative parametric paradigm or

3. the non-parametric paradigm.

In the present thesis two main handwriting (and general sequence) classification approaches
are studied. They address the first and second paradigm. In the following, some explanations
will be given to clarify the ideas and accent the differences of the generative and the discrim-
inative philosophies. The description of the third type, the non-parametric paradigm, will be
rather concise.

2.2.2 The generative classification paradigm

The generative classification approach solves the discriminant function approximation from
the perspective of the double stochastic, generative process, as it has been introduced in the
beginning of Section 2.2.1. It assumes that the prior probabilities P (l) and class conditional
PDFs p (x|l) can be estimated reliably. In this respect, a realistic assumption about a specific
function class for p (x|l) and a sufficiently sized and representative sample set X are required.

The Bayes rule is consulted for the transformation of p̂ (x|l) and P̂ (l) into P̂ (l|x). The
MAP classifier becomes in the context of the probability and PDF estimates

l̂ = argmax
l

{
P̂ (l) p̂ (x|l)

}
, (2.9)
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2.2 Classification of vector space data

and the ML classifier becomes

l̂ = argmax
l

{p̂ (x|l)} . (2.10)

A common method to estimate the PDFs is to assume a parametric function class. The most
widespread assumption about the underlying function class is the Gaussian (or normal) PDF

p (x|l) = N
µ

(l)
x

,Σ
(l)
x

(x) =
(∣∣2πΣ(l)

x

∣∣ exp
((

x − µ(l)
x

)T (
Σ(l)

x

)−1 (
x − µ(l)

x

)))−1/2

. (2.11)

With this particular choice the modeling of the density falls back to the estimation of the two
Gaussian parameters µ

(l)
x and Σ

(l)
x . This is often solved with help of the well-known ML

estimators

µ̂(l)
x =

1

M

M∑

m=1

x(l,m) (2.12)

Σ̂(l)
x =

1

M − 1

M∑

m=1

(
x(l,m) − µ̂(l)

x

) (
x(l,m) − µ̂(l)

x

)T
. (2.13)

In situations where a unimodal Gaussian function class is too restrictive, a mixture of Gaus-
sians

p (x|l) =
K∑

k=1

ckNµ
(l,k)
x

,Σ
(l,k)
x

(x) (2.14)

is a prominent choice. We refer to literature [Rabiner and Juang, 1993, Bishop, 1995,
Schukat-Talamazzini, 1995] for a more detailed description of these types of PDFs.

2.2.3 The discriminative classification paradigm

As was shown, the generative paradigm makes strict assumptions about the parametric func-
tion class of the generative source. In some situations these appear unrealistic with respect to
the questioned problem. Then, a more encouraging proceeding could be to directly address
a modeling of the discriminants {u1, . . . , uL} without the detour over the Bayes rule and the
PDFs. This is the aim of discriminative classifiers.

A few presumable benefits of the discriminative paradigm can be studied by looking at
Figure 2.1. Recall that the upper part illustrates the joint densities p (x, 1) and p (x, 2) and
the lower part the corresponding a-posteriori probabilities P (1|x) and P (2|x). The first is
the modeling basis of the generative philosophy, the latter of the discriminative one. We
enumerate some apparent benefits of the discriminative philosophy:

1. In the example, p (x, l) is a more complex function than P (l|x). This is especially
valid for the interval x ≥ 3. This observation gives reason for the assumption that an
approximation of P (l|x) might need fewer parameters compared to p (x, l) and is thus
less parameter dependent.
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2 Pattern recognition techniques

2. For the classification problem the function ul (x) is the function of interest. It is directly
addressed within the discriminative approach. A detour over p (x, l) may introduce
unnecessary inaccuracies into the classification solution.

3. An unappealing consequence of the detour is that actually the emphasis in the genera-
tive paradigm is set on the modeling of the regions of high probability and not of high
discriminative impact.

4. Most generative approaches (in particular in the context of the popular ML parameter
estimation) include solely the (positive) training vectors of class l in order to estimate
p (x, l).1 Contrary, discriminative classifiers always refine the discriminant function
using both positive and negative examples.

A predominant representative of discriminative classifiers in the 1980s and 1990s has been
the multi-layer perceptron (MLP), another example is the polynomial classifier [Schürmann,
1996].

A very interesting recent development in the context of the discriminative classification
paradigm is the support vector machine (SVM). Many theoretical and practical arguments
indicate advantages of the SVM over previous discriminative approaches. Thus, the SVM is
of particular interest as an approach for discriminative handwriting classification and shall be
reviewed in the following.

2.2.3.1 Support vector machine (SVM)

An SVM is basically a two-class classifier. Its concept is based on Vapnik’s structural risk

minimization principle [Vapnik, 1995]. Vapnik attributes the structural risk minimization to
the maximization of a quantity that is called margin. In its simplest form, the margin denotes
the width of the pattern-free area in the feature space around the decision boundary (cf. Fig-
ure 2.3). Given a decision boundary, the sub-set of training patterns that are closest to it is
clearly determined. These training patterns are called support vectors. Only these contribute
to the definition of the decision boundary and only these are used in classification. Their
number is generally limited to a fraction of all training patterns.

The emphasis of this section is rather to introduce the idea of the SVM, a nomenclature and
basic equations for training and classification. It abstains from a thorough treatment of the
theoretical background. Excellent literature exists [Vapnik, 1995, Schölkopf, 1997, Burges,
1998, Cristianini and Shawe-Taylor, 2000, Campbell, 2000, Schölkopf and Smola, 2002] that
deals with the latter issue.

1Although some estimators have been developed that address both positive and negative examples (e.g., max-
imum mutual information (MMI) or minimum classification error (MCE) [Bahl et al., 1986, Juang et al.,
1997]), training for these is much more complex compared to the ML training and prohibitive in many appli-
cations.
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2.2 Classification of vector space data

(a) linearly separable (b) linearly non-separable

FIGURE 2.3: Principles of SVM discrimination. Part (a) shows the linearly separable case, part (b) the linearly
non-separable. The discriminating region is represented by three lines. The middle line is the SVM discrim-
ination boundary, the other two are the boundaries of the margin. No training vector resides in the margin.
Support vectors are distinguished from the additional training vectors by white frames. (Figures produced by a
Matlab-SVM implementation [Gunn, 1998])

In order to introduce the nomenclature, a two-class classification problem is consid-
ered. Aberrant to the previous convention, the labeled training set in this two-class prob-
lem shall here be represented as X =

{
x(1), . . . ,x(M)

}
with its corresponding binary labels

{S1, . . . , SM}. The label Sm = 1 denotes the “positive” and Sm = −1 the “negative” class.

SVM classification First consider a linearly separable problem, such as the one in Fig-
ure 2.3 (a). An SVM assigns a label Ŝ to a test vector t by evaluating

f (t) =
∑

i

wiSi

〈
t,x(i)

〉
+ b and Ŝ = sign (f (t)) . (2.15)

The operator 〈·, ·〉 denotes the inner product. The weights wi and the bias b are SVM para-
meters that are adopted during training (details will follow). Usually wi = 0 for the majority
of i and thus the summation in Equation (2.15) is limited to a subset of X, which therefore is
called the set of support vectors.

In the following the nonlinear case shall be described. There, per definition the vector set
X cannot be separated by a linear formulation such as Equation (2.15). However, it may
be linearly separable after being mapped to a different, usually higher dimensional (Hilbert)
space, say H, with respect to a nonlinear transformation

ϕ : X → H. (2.16)

When this transformation is integrated into the classification, it becomes

f (t) =
∑

i

wiSi

〈
ϕ (t) , ϕ

(
x(i)
)〉

+ b and Ŝ = sign (f (t)) . (2.17)
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Indeed, employing a nonlinear transformation of nonlinearly separable data is a procedure
which is followed as well by other classification approaches, e.g., with the polynomial clas-
sifier. The SVM approach, however, incorporates a particular understanding, which is known
as the so-called kernel trick: Instead of explicitly evaluating the transformation ϕ and subse-
quently the term

〈
ϕ (t) , ϕ

(
x(i)
)〉

in Equation (2.17), the inner product is implicitly computed
by a so-called kernel evaluation K

(
t,x(i)

)
that obeys

K (x,y) = 〈ϕ (x) , ϕ (y)〉 . (2.18)

Hence, Equation (2.17) changes to

f (t) =
∑

i

wiSiK
(
t,x(i)

)
+ b and Ŝ = sign (f (t)) . (2.19)

The short cut over K : X × X → R in place of ϕ : X → H and 〈·, ·〉 : H×H → R requires
only the existence, however not the explicit knowledge of ϕ and H. Some more remarks about
this issue will be pursued later in Section 7.5 on a concrete example, the Gaussian dynamic
time warping kernel.

Many implementations of kernels have been proposed so far, one popular example is the
Gaussian radial basis function (RBF) kernel

K (x,y) = exp
(
−γ ‖x − y‖2) . (2.20)

others are the sigmoid kernel

K (x,y) = tanh (κ 〈x,y〉 − δ) (2.21)

or the polynomial kernel

K (x,y) = (〈x,y〉 + 1)p . (2.22)

SVM training For an effective use of SVM classification, the learning of the parameters wi

and b, as they appear in Equation (2.19), from the set of training observations
{
x(1), . . . ,x(M)

}

and {S1, . . . , SM} remains to be explained. The SVM framework gives a precise answer for
this task. They are a unique solution to the objective of maximizing the quadratic function

LD =
∑

i

wi −
1

2

∑

i,j

wiwjSiSjK
(
x(i),x(j)

)
(2.23)

under the constraints
0 ≤ wi ≤ C and

∑

i

wiSi = 0, (2.24)

with C a positive constant. The purpose of C is to weight the influence of training errors (see
e.g., [Burges, 1998] for details). A solution for the wi implies a value for b.

If the validity of Equation (2.18) can be ensured, Equations (2.23)–(2.24) define a convex
quadratic optimization problem, for which the convergence towards the global optimum is
guaranteed. However, obtaining this solution for real-world problems can be quite demanding
and requires sophisticated optimization algorithms like chunking, decomposition or sequential

minimal optimization [Platt, 1999, Cristianini and Shawe-Taylor, 2000].
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2.2 Classification of vector space data

SVM and the Bayes classifier In the explanations made above the connection of SVMs
to the framework of the Bayes classifier, that is, Equations (2.1) and (2.2) is not directly obvi-
ous, since discriminants were not explicitly defined. The following argumentation shall give
a hint how the SVM classification of Equation (2.19) can be identified with Equations (2.1)
and (2.2).

Consider a decomposition of Equation (2.19) to

f (t) =
∑

i,Si=+1

wiK
(
t,x(i)

)
−
∑

i,Si=−1

wiK
(
t,x(i)

)
+ b

= u+1 (t) − u−1 (t) (2.25)

with the identifications

u+1 (t) =
∑

i,Si=+1

wiK
(
t,x(i)

)
+ b (2.26)

u−1 (t) =
∑

i,Si=−1

wiK
(
t,x(i)

)
(2.27)

From this background the SVM classification rule

Ŝ = sign (f (t)) (2.28)

is equivalent to the discriminant maximization

Ŝ = argmax
S∈{+1,−1}

{uS (t)} , (2.29)

which is obviously compatible with Equation (2.2). In this context, it is worth mentioning
that the SVM discriminants u+1 (t) and u−1 (t) do not have the semantic of the a-posteriori-
probabilities p (+1|t) and p (−1|t), as the Bayes classifier suggests. This can indeed seen as
an unfortunate situation in some cases. Also, the context of HWR on a word-level basis (in
Section 7.7) it will turn out as a disadvantage.

Apart from this disadvantage, SVMs have achieved excellent recognition results in various
pattern recognition applications [Cristianini and Shawe-Taylor, 2000]. Also in offline optical
character recognition (OCR) they have been shown to be comparable or even superior to the
generative approaches or MLPs [DeCoste and Schölkopf, 2002]. They generalize very well,
as the implicit regularization of the classifier’s complexity avoids overfitting. Some further
properties are commonly seen as reasons for the success of SVMs in real-world problems: the
optimality of the training result is guaranteed and little a-priori knowledge is required.

2.2.3.2 Multi-class SVM

The present explanations assumed a two-class classification problem. Extensions of the two-
class to multi-class situations are suggested and compared in several publications [Burges,
1998, Platt et al., 2000, Hsu and Lin, 2001]. Three solution are most commonly used:
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FIGURE 2.4: A DAG-SVM for an L (=4)-class classification problem. In the graph each node corresponds to a
two-class SVM, indicated by the class index pair within the node. A classification of a test vector corresponds to
a path through this graph. At every node one class is excluded from the set of class hypotheses by the respective
two-class classifier’s decision. The figure denotes the remaining classes by the list of class indices left to the
node. As the path traverses L− 1 nodes, exactly one of the L classes remains in the set of hypotheses as the final
solution. (Figure reproduced from [Platt et al., 2000].)

One-against-all: For an L-class problem L two-class SVMs are trained. The positive ex-
amples of the l-th SVM are the observations of class l, the negative ones the remaining
examples of all other classes. In classification the class with maximal f (t) wins.

Max-wins: For an L-class problem L · (L − 1) /2 two-class SVMs are trained, one for each
class pair. In classification all SVMs are evaluated and the class with the maximal
number of two-class hits wins.

DAG-SVM: Training is equal to the “max-wins” approach. During classification L − 1 two-
class SVM evaluations are combined using a decision directed acyclic graph (DDAG)
topology. Figure 2.4 explains details of this algorithm.

2.2.4 The non-parametric classification paradigm

The last section has argued that discriminative classifiers do not assume a particular structural
constraint for the generative source. However, also in the discriminative paradigm modeling
assumptions are made. This generally concerns a particular function class and parameters
of the discriminants. E.g., for the SVM this is the case with the selection of a particular
kernel function and the error penalty C. If also this procedure is too daring in the context
of the underlying problem, a third paradigm can be pursued, the paradigm of non-parametric

classification.
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Non-parametric classifiers address the approximation of the PDFs p (x|l) on the basis of lo-
cal accumulations in the training set X

(l) =
{
x(l,1), . . . ,x(l,Ml)

}
. Unlike generative classifiers

they do not aim to map X
(l) to any parameterization, but they assume that the whole train-

ing set is present during classification. Given a “reasonable” dissimilarity function D (t,x)
of two vector space elements t and x, particular classification rules which are based on the
dissimilarity of the test vector and all training patterns, are employed. A popular choice is the
k-nearest-neighbor rule. For the special case of k = 1 this one reduces to the nearest-neighbor
rule and has the form

l̂ = argmin
l∈{1,...,L}

min
m∈{1,...,Ml}

{
D
(
t,x(l,m)

)}
. (2.30)

One obvious problem of the non-parametric paradigm in real world applications is its time
and memory complexity. This unfortunate fact is due to the required omni-presence of the
whole training set, as noted.

2.3 Classification of sequence data

The prerequisite of the classifier descriptions made in the previous section was that the fea-
ture representation of all patterns can mathematically be treated as an element in a (shared)
vector space. In particular, this includes a common dimension F of all vectors. It has been ar-
gued in Section 1.3.1 that such an assumption does not cover all practical problems in pattern
recognition. Online HWR belongs to the category of problems, where data are usually vector
sequences of different lengths. Such problems require a special treatment.

A driving source for the development of sequence classifiers has been the research in speech
recognition. Starting in the 1960s a number of approaches have been developed. Historically,
speech recognition systems were firstly implemented using template based methods. In par-
ticular, this was solved by the use of an “elastic match” of two sequences and the dynamic
time warping (DTW) algorithm. Later, the classifiers were formulated from a statistical per-
spective, which gave rise to the huge success of hidden Markov models (HMMs).

However, in the classification of sequence data the discriminative idea was not so thoroughly
developed as in the case of vector data. Discriminative approaches are limited to a discrimina-
tive parameter estimation of generative models, e.g. the maximum mutual information (MMI)
[Bahl et al., 1986] or minimum classification error (MCE) [Juang et al., 1997] training criteria
that are especially utilized with HMMs. Indeed, one contribution of the present thesis aims to
close this gap by the formulation of a sequence compatible SVM (Chapter 7).

Nevertheless, the formalisms of DTW and HMMs are very fundamental ones in sequence
modeling, are also utilized in the present work and shall be described in the following.

2.3.1 Dynamic time warping (DTW)

DTW is a concept that allows an elastic match of two sequences. A definition of a distance
measure is based on this match. Details about DTW are described in literature, e.g., in the
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textbook of Rabiner and Juang [1993, Chapter 4.7]. Here we want to review the basic con-
cepts.

Suppose that the following is given:

• two vector sequences t = [t1, . . . , tNt ] and r = [r1, . . . , rNr ] with ti, rj ∈ R
F ; one can

think of t being a “test” and r being a “reference” sequence

• a so-called alignment (or warping) path Φ = [φ (1) , . . . ,φ (N)] with φ = (φt, φr) :
{1, . . . , N} → {1, . . . , Nt} × {1, . . . , Nr}, the purpose of which is to define an align-
ment of corresponding regions in t and r

• a distance function d : R
F ×R

F → R of two sequence elements; d shall be called local

distance

Then, the alignment distance DΦ[d] (t,r) is defined as the sum of all distances between the
elements of t and r with respect to d and the particular alignment path Φ

DΦ[d] (t,r) =
N∑

n=1

d
(
tφt(n), rφr (n)

)
. (2.31)

Note that the parameterization of DΦ by d is quite unusual in literature, however it will prove
to be practical in the remainder of this thesis.

Further, the DTW (Viterbi) distance D∗[d] (t,r) is defined as the alignment distance ac-
cording to the Viterbi path Φ∗. The Viterbi path is the optimal alignment path in the sense that
it minimizes DΦ[d] (t,r):

D∗[d] (t,r) = DΦ∗ [d] (t,r) = min
Φ

{DΦ[d] (t,r)} . (2.32)

In situations when emphasis is set on a specific Viterbi path that comes from the alignment of
a particular t and r , the notation Φ∗

t,r instead of Φ∗ will be used.
It is convenient to model Φ as a sequence of transitions from a transition set P, i.e.,

∆φ (n) = φ (n) − φ (n − 1) ∈ P, n = 2, . . . , N . We use the ones which are known as
Sakoe-Chiba transitions in literature [Rabiner and Juang, 1993, Chapter 4.7]. These only al-
low forward steps of size 1 in t, r or in both of them, i.e.,

P = {(1, 0) , (0, 1) , (1, 1)} . (2.33)

The alignment paths are constrained to include the endpoints of both t and r , i.e., φ (1) =
(1, 1) and φ (N) = (Nt, Nr).

In literature often the Euclidean distance or its square

d (ti, rj) = ‖ti − rj‖2 (2.34)

is used for the local distance of the sequence elements.
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FIGURE 2.5: DTW aims to align corresponding sample points in two vector sequences. Found identifications
are shown by the dashed lines in part (a). Note the nonlinear alignment with the 3rd, 5th and 6th sample points
in r . The correspondences found can also be illustrated through an entry in a matrix, shown by part (b). In this
respect, an entry at element (i, j) means that sample i of sequence t is identified with sample j of sequence r .
(Illustration of part (a) reproduced from [Tappert et al., 1990].)

Sometimes it turns out that a modification of the DTW distance

D̃∗[d] (t,r) =
1

N∗
D∗[d] (t,r) , (2.35)

which is normalized by the Viterbi path length N∗, is more successful in classification. This
is especially true if sequences that represent similar patterns have largely varying lengths. In
online handwriting data such a situation occurs when data comes from a variety of sensors
that have different sampling rates.

An example of the DTW (Viterbi) distance computation is given in Figure 2.5. It shows an
elastic match of two patterns that both represent the digit “3”.

There exist efficient solutions for the minimization of Equation (2.32), as will be pointed
out in Section 2.3.3.

It is straightforward to define a (simple) sequence classifier based on the DTW distance.
The nearest-neighbor rule of Equation (2.30) in combination with Equation (2.32) is a typical
and historically early employed example for a non-parametric sequence classifier. However,
the drawbacks mentioned for this paradigm (time and memory complexity) especially count
for the rather expensive DTW distance computation.

2.3.2 Hidden Markov modeling (HMM)

Hidden Markov models (HMMs) have largely contributed to the success of many speech and
HWR systems. Also in other sequence data based applications like bioinformatics, robotics,
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etc., they have been widely used.
Due to a large existing literature that deals with HMMs the review given in the following is

rather concise. The nomenclature is taken from a number of publications [Rabiner and Juang,
1993, 1986, Schukat-Talamazzini, 1995, Rabiner, 1989, Elms, 1996, Jäger, 1998, Jelinek,
1998]. In some situations a preparation for subsequent sections is intended and thus it was
deviated from the notion of the mentioned publications.

First, Markov chains will be introduced. HMMs will follow.

2.3.2.1 Markov chains

Consider a finite set
S = {s1, . . . , sNS

} (2.36)

of states and a discrete stochastic process

q = [q1, . . . , qN ] , qn ∈ S, (2.37)

the elements of which are taken from S. At every time step n the stochastic process produces
an observable state.

A state transition is defined as a successive tuple (qn, qn+1) of two states. It shall be assumed
that the transition probabilities of the stochastic process are invariant in n and only depend on
the previous state, more formally expressed by the equation

P (qn+1|qn, . . . , q1) = P (qn+1|qn) . (2.38)

With this property, the transition probabilities can be expressed as an NS × NS matrix

A = [aij]NS×NS
with aij = P (qn+1 = sj|qn = si) . (2.39)

Its elements obey the standard stochastic constraints aij ≥ 0 and
∑

j aij = 1.
Further, in order to provide a well defined stochastic initialization of the process, the NS

dimensional vector

π = (π1, . . . , πNs
)T with πi = P (q1 = si) and

NS∑

i=1

πi = 1 (2.40)

summarizes the state probabilities at the initial time step n = 1.
Equation (2.38) is called first order Markov property and the discrete process of Equa-

tion (2.37) that satisfies the first order Markov property is called first order Markov chain or
Markov model.

A first order Markov chain is entirely defined by the tuple

κ = (π,A) . (2.41)

The choice of the term “first-order” implies the presence of “second-”, “third-”, etc. order
Markov chains. Indeed, the order number indicates the memory of the process, i.e., the number
of previous states on that a transition depends with respect to Equation (2.38). However,
Markov chains of a higher order than one are not considered in the present work.
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2.3.2.2 Continuous density hidden Markov model

A more sophisticated model than the Markov chain is the HMM. In this section the focus shall
address continuous density HMMs. In addition to these constructs, semi-continuous density

and discrete HMMs exist, among others. The principle concept of these types, however, is very
similar to the continuous case. Readers with particular interest in those models are referred to
literature [Rabiner and Juang, 1993, Schukat-Talamazzini, 1995].

For the formulation of (continuous density) HMMs a second stochastic process is intro-
duced on top of the Markov chain. Let this stochastic process produce, dependent of the cur-
rently occupied state si, a random vector out of R

F . Hidden Markov modeling assumes that
a hypothetic observer of the process solely perceives a sequence t = [t1, . . . , tN ] , ti ∈ R

F

of these random vectors and not the state sequence q = [q1, . . . , qN ] directly. It is further
assumed that this second stochastic process is independent of the t and q history, i.e., obeys
the property

p (tn|tn−1, . . . , t1, qn, . . . , q1) = p (tn|qn) . (2.42)

Its characteristic can thus be summarized by a sequence

b = [b1, . . . , bNS
] (2.43)

of PDFs, each element bj corresponding to a PDF associated with state sj

bj (x) = p (x|qn = sj) , x ∈ R
F , j = 1, . . . , NS (2.44)

The complete double stochastic process is entirely defined by the tuple

λ =
(
π,A,b

)
(2.45)

and called continuous density hidden Markov model.
If all elements of A are non-zero, an HMM is called fully connected or ergodic. An ergodic

HMM is illustrated in Figure 2.6 (a). For speech and HWR applications ergodic models have
been shown to be too complex. A number of HMM specializations have thus been studied.
These are usually not fully connected and include a preferential transition direction, corre-
sponding to a rather sparse occupation of the state transition matrix A. A typical instance is
the linear HMM, sketched in Figure 2.6 (b). For linear HMMs only the transitions ajj and
aj(j+1) (for j = 1, . . . , NS − 1) and aNSNS

have non-zero values.

2.3.2.3 The three basic problems with HMMs

So far, the notation of HMMs has been introduced. An application of the HMM con-
cept requires some further recipes for common problems associated with HMMs. Litera-
ture distinguishes between three basic problems. We enumerate the problems and briefly
sketch a solution. Detailed information is given in literature [Rabiner and Juang, 1993,
Schukat-Talamazzini, 1995].
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b1 (x) b2 (x) b3 (x) b4 (x)

µ1 µ2 µ3 µ4
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(a) ergodic HMM

  

b1 (x) b2 (x) b3 (x) b4 (x)

µ1 µ2 µ3 µ4

a11 a22 a33 a44
a12 a23 a34

s1 s2 s3 s4

xxx x

(b) linear HMM

FIGURE 2.6: Examples of HMMs. Part (a) shows an ergodic HMM. Here, every state is possibly connected
with every other state. For speech and handwriting recognition applications, the ergodic topology is mostly too
complex. Usually, much more sparse HMMs like the linear one shown in part (b) are employed.

1. Probability scoring: Given an observation sequence t, what is the probability score
p (t|λ) that t has been produced by an HMM λ? An answer for this problem is given
by the forward-backward algorithm [Rabiner and Juang, 1993, Section 6.4.1].

2. Uncovering the most probable hidden state sequence: Given an observation sequence
t, what is the most likely state sequence q∗ that an HMM λ may have produced? The
Viterbi algorithm [Rabiner and Juang, 1993, Section 6.4.2] solves this issue. It will be
described in Section 2.3.3.1. As the nomenclature indicates, q∗ is the HMM counterpart
to the DTW Viterbi path Φ∗.
The so-called Viterbi score p

(
t,q∗|λ

)
scores a test pattern t solely with respect to the

most probable state sequence q∗. In literature, p
(
t,q∗|λ

)
is often named a “decision-

directed” or “state-optimized” variant of p (t|λ). It has been shown that in many
real world applications p

(
t,q∗|λ

)
is highly correlated to the probability score p (t|λ)

[Merhav and Ephraim, 1991]. Since it benefits from a lower computation complexity,
many HMM implementations use it as a substitute for p (t|λ).

3. Parameter estimation: Given a set of observed sequences X =
{
x(1), . . . ,x(M)

}
,

what is the most likely HMM λ, which has been the source of these observations?
This problem is often solved by the Baum-Welch algorithm [Rabiner and Juang, 1993,
Section 6.4.3], also known as EM-algorithm. This algorithm iteratively estimates
model parameters based on the ML criterion (which means that the objective L (λ) =∑M

m=1 ln P
(
x(m)|λ

)
is maximized).

Also for parameter estimation, a decision-directed variant exists. This variant is

solely based on the Viterbi state sequences
(
q∗
)(m)

. It maximizes L∗ (λ) =
∏M

m=1 P
(
x(m),

(
q∗
)(m) |λ

)
instead of L (λ), again with the advantage of a lower com-

plexity. This training method is known as Viterbi training (or segmental K-means algo-

rithm) [Schukat-Talamazzini, 1995, Juang and Rabiner, 1990]) and will be described in
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2.3 Classification of sequence data

more detail in the context of CSDTW (cf. Chapter 4).

2.3.2.4 HMM classification and training

With a solution to the basic three problems a generative sequence classification framework
can be stated.

For training, HMM parameters λl =
(
π(l),A(l),b(l)

)
are estimated from the training set

X
(l) =

{
x(l,1), . . . ,x(l,Ml)

}
of observations for each class l, employing either the Baum-

Welch or the Viterbi training (problem 3).

For classification, the probability score p (t|λl) or substitutively the Viterbi score
p
(
t,q∗|λ

)
construct an ML classifier according to Equation (2.7),

l̂ = argmax
l

{p (t|λl)} (2.46)

or

l̂ = argmax
l

{
p
(
t,q∗|λl

)}
, (2.47)

respectively.

Of course, the MAP classifier can also be employed, however not always is more accurate
in real world problems.

2.3.2.5 HMM — an example

Following this rather theoretical review of HMM a concrete example with an explicit link to
online HWR might be illustrative. Figure 2.7 provides an example and also shows a connection
to the DTW framework, in particular to Figure 2.5. In figure 2.7(a), the left hand side shows
the state and transition topology. The reader can verify that the HMM chosen is a linear
one. Each of the five states s1, . . . , s5 points to a PDF bj which in the example is a unimodal
Gaussian in R

2 (as shown by the pseudo-color plot). To the right a test sequence t is plotted.
A dashed line between a sequence element ti and the HMM states sj means that ti is produced
by the PDF bj with respect to the Viterbi state sequence q∗. Figure 2.7(b) shows q∗ in a matrix
(or “trellis”) representation.

When comparing this illustration with Figure 2.5, common characteristics are apparent.
The reference samples rj in the DTW context have counterparts in the HMM states sj and
their attached PDFs bj . The DTW transitions ∆φ (n + 1) have correspondences in the HMM
transitions (qn, qn+1). However, the transition set of the HMM is more restricted than the
DTW Sakoe-Chiba transitions of Equation (2.33) in the sense that it lacks a transition (0, 1),
as can be seen in a comparison of both figures. A further unifying study of DTW and HMM
will follow in Section 4.3.1.4.
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FIGURE 2.7: An example for an HMM:(a) To the left the state and transition topology of a linear HMM is
shown. Each of the five states s1, . . . , s5 points to a PDF bj which in the example is a unimodal Gaussian in R

2.
To the right a test sequence t is plotted. A dashed line between a sequence element ti and the HMM states sj

means that ti is produced by the PDF bj with respect to the Viterbi state sequence q∗. 2.7(b) q∗ is shown in a
matrix (or “trellis”) representation. A comparison of this figure with Figure 2.5 reveals basic correspondences
between HMM and DTW.

2.3.3 Search strategies for complexity reduction

When solving Equation (2.32) in the DTW or the forward-backward algorithm in the HMM
context, a naive optimization procedure is prohibitive, as the complexity increases exponen-
tially with the pattern lengths. Therefore, it is common and advantageous to apply techniques
like dynamic programming and beam search in order to achieve a complexity reduction. The
following explanations orientate at the DTW framework. However, in the hidden Markov
modeling the situation is very similar and a transfer of the explanations to this concept is
straightforward [Rabiner and Juang, 1993].

2.3.3.1 Dynamic programming

A central element in dynamic programming (DP) is the Viterbi matrix, i.e., the matrix
D∗ =

[
D∗

ij

]
Mt×Mr

of the prefixes’ Viterbi distances D∗
ij = D∗[d] ([t1, . . . , ti] , [r1, . . . , rj]).

DP’s basic idea is to recursively develop D∗ in order to compute D∗[d] (t,r) (cf. Fig-
ure 2.8 (a)), exploiting Bellmann’s optimality principle [Bellmann, 1957]. In the DTW context
this principle allows the computation of D∗ with help of the following recursion:

D∗
ij = d (ti, rj) + min






D∗
(i−1)j

D∗
i(j−1)

D∗
(i−1)(j−1)




 , i = 1, . . . , Nt, j = 1, . . . , Nr (2.48)

and the initializations
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FIGURE 2.8: (a) Dynamic programming: The Viterbi matrix D
∗ is computed by the recursion scheme of

Equation (2.48). (b) A typical beam search scheme: With each step, only promising hypotheses are developed,
indicated by the forward arrows. Here, the search is performed frame-synchronous, i.e., concurrent hypotheses
are pruned along a time frame (the dashed vertical lines).

D0,j = Di,0 = ∞, i = 1, . . . , Nt, j = 1, . . . , Nr

D0,0 = 0. (2.49)

The recursion computation can practically be implemented in correspondence with various
geometrical schemes, e.g., by a row-, column- or diagonal-wise expansion of D∗. Algorithm 1
summarizes the column-wise dynamic programming algorithm.

Algorithm 1 Dynamic programming

Variables:

D∗
ij: element (i, j) in Viterbi matrix

1: Initialize D∗
ij according to Equation (2.49)

2: for i = 1, . . . , Nt

3: for j = 1, . . . , Nr

4: compute D∗
ij according to Equation (2.48)

5:

6: D∗[d] (t,r) := D∗
NtNr

As the resulting computational cost is proportional to the Viterbi matrix size, DP reduces

the complexity of Equation (2.32) from O(|P|Ñ) of a naive algorithm to O(|P| Ñ2), with Ñ
the average sequence length.
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2.3.3.2 Beam search

Beam search [Schukat-Talamazzini, 1995, Jelinek, 1998] denotes the strategy of eliminating
path hypotheses, which are unlikely to turn out as the final, optimal solution at a specific
“level” k in the DP search. A criterion for the assessment of a path hypothesis is a comparison
of its accumulated distance to the best so-far developed concurrent hypothesis. In this respect,
a hypothesis is eliminated if its distance

D > Dk + sbeam, (2.50)

where Dk is the distance of the best concurrent hypothesis at level k and sbeam a threshold
variable. The hypotheses remaining from the elimination are called active hypotheses. For
an effective beam search algorithm, one has to define a reasonable strategy, at what stage
concurrent hypotheses should be compared. Most beam search algorithms handle this issue
frame-synchronous, i.e., they compare and eliminate hypotheses along a line φt (n) = k (each
dashed vertical line in Figure 2.8 (b)). The most promising hypotheses are managed in terms
of an entry in a list Ai of active states.

Algorithm 2 summarizes a typical beam search algorithm. Regard that here the list of active
states is organized such that the most promising hypothesis is evaluated first, in order to get
early a good estimate of Dk.

Beam search can further reduce the computational complexity of Equation (2.32) to
O(|P| Ñ), however may lead to a sub-optimal solution, if the optimal one has been elimi-
nated due to high local distances in early regions of the sequences. Nevertheless, in practice,
beam search has been shown to be a successful heuristic.

2.4 Clustering

The classification techniques described in Sections 2.2 and 2.3 can be summarized with the
term supervised learning, because they rely on labeled data. More specifically, they assume
that a classifier can be learned from data that occur together with information on the respective
class membership. If these memberships are not known other techniques have to be employed.
These techniques are generally summarized under the terms unsupervised learning. Cluster-

ing is one instance of unsupervised learning.
According to Theodoridis and Koutroumbas [1999, Chapters 11–16], the term clustering

describes the task of “ ‘revealing’ the organization of patterns into ‘sensible’ clusters (or
groups)”. A specification of the term “sensible” is highly dependent on factors like the un-
derlying pattern dissimilarity measure, the clustering criterion and the clustering algorithm,
among others. Since these factors are application dependent, it remains to the clustering de-
signer to define them properly with respect to prior knowledge about the problem.

Mathematically speaking, a clustering C is a partitioning of a set X =
{
x(1), . . . ,x(M)

}

into a set
{
C

1, . . . , CK
}

of nonempty, pairwise disjoint sets, such that
⋃K

k=1 C
k = X. In this

notation, C
k is the k-th cluster of C.
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Algorithm 2 Frame-synchronous beam search

Variables:

Ak: list of active states in column k
D: new accumulated distance

Dij: smallest distance for matrix element (i, j)
Dk: smallest distance for column k
sbeam: pruning threshold

1: A1 := [1];
2: Dij := ∞, ∀i = 1, . . . , Nt, j = 1 . . . , Nr ;
3: D(1)(1) := D1 := d (t1, r1)
4: Dk := ∞, ∀k = 2, . . . , Nt;
5: for i = 1, . . . , Nt % columns

6: for all j ∈ Ai % active states

7: for all ∆φ ∈ P % transitions

8: (k, l) := (i, j) + ∆φ; % goal matrix element of ∆φ
9: D := Dij + d (tk, rl); % new accumulated distance

10: if D > Dk + sbeam % distance exceeds beam criterion

11: continue; % with next ∆φ
12: if (l ∈ Ak) ∧ (D > Dk) % another path hypothesis has smaller distance

13: continue; % with next ∆φ
14: Dkl := D; % D is new smallest distance for matrix element (k, l)
15: if D < Dk % D is new smallest distance for column k
16: Dk := D;
17: if (l /∈ Ak)
18: if (D < Dk)
19: Ak := [l] + +Ak; % prepend l to list of active states of column k
20: else

21: Ak := Ak + + [l]; % append l to list of active states of column k
22:

23: D∗[d] (t,r) := DNt ;

A number of different clustering algorithms have been developed in pattern recognition.
Theodoridis and Koutroumbas [1999, Section 12.2] primarily discriminate between the fol-
lowing types:

1. Sequential algorithms: Observations are presented to the algorithm in a sequence and
the clustering result depends an the order of the sequence. These types produce a single
clustering.

2. Hierarchical algorithms: Here, a sequence of clusterings is produced. The granularity
of the clustering, i.e., the number of clusters, can be flexibly specified by the selection
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of one particular clustering among the sequence. An appealing property of some of the
hierarchical algorithms is that they only depend on distance relationships of the patterns
and not on the patterns itself.

3. Algorithms based on cost function optimization: In these schemes, a cost function is to
be optimized. One popular representative hereof is the k-means algorithm. The number
of clusters is here mostly kept fixed.

One idea in this thesis (Chapter 4) will benefit from the utilization of the agglomerative hier-
archical clustering. It will be described in the following.

2.4.1 The agglomerative hierarchical clustering algorithm

A hierarchical clustering algorithm produces a hierarchy of nested clusterings [C1, . . . ,CM ].
The term “nested” defines the property that each cluster in Cm−1 is a sub-set of a cluster in
Cm and at least one of these sub-sets is a proper one. The hierarchy is generated iteratively in
M steps, a clustering at step m is obtained from the clustering produced at the previous step
m − 1.

An agglomerative hierarchical clustering algorithm starts the iteration with a fine granular-
ity of M clusters and ends with one cluster, i.e., C1 =

{{
x(1)
}

, . . . ,
{
x(M)

}}
divides X into

the trivial set of M clusters, C2 into M − 1 clusters, etc., until CM =
{{

x(1), . . . ,x(M)
}}

.
Given a dissimilarity function D

(
C

k, Ck′
)

of two clusters, it uses the general approach, sum-
marized in Algorithm 3.

Algorithm 3 Hierarchical agglomerative clustering [Theodoridis and Koutroumbas, 1999].

Variables:

Cm: clustering at iteration m
C

k: cluster k
D
(
C

k, Ck′
)
: dissimilarity between cluster k and k′

1: Initialize the clustering C1 =
{{

x(1)
}

, . . . ,
{
x(M)

}}

2: for m = 2, . . . ,M
3: (kmin, k

′
min) := argmin(k,k′),k 6=k′ D

(
C

k, Ck′
)

4: obtain the new clustering Cm by merging clusters C
kmin and C

k′

min of Cm−1

2.4.2 Cluster and point dissimilarities

The hierarchical clustering algorithm relies on cluster distances (or dissimilarities)

D
(
C

k, Ck′
)
. One possibility to define these is to use the dissimilarity of its elements

D
(
x(k),x(k′)

)
x(k) ∈ C

k, x(k′) ∈ C
k′

. More specifically, Theodoridis and Koutroumbas
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[1999, Chapter 11] suggest several particular combination methods like min, max or average

dissimilarity. The average dissimilarity

D
(
C

k, Ck′

)
=

1

Ok · Ok′

∑

xk∈Ck

∑

xk′∈Ck′

D
(
x(k),x(k′)

)
, (2.51)

gives a favor to compact clusters. Here, Ok denotes the cardinality of C
k.

If data are embedded in a vector space, one popular choice for point dissimilarity

D
(
x(k),x(k′)

)
is the Euclidean distance or its square

D
(
x(k),x(k′)

)
=
∥∥∥x(k) − x(k′)

∥∥∥
2

. (2.52)

2.4.3 Cluster representatives

In many cases, it is useful to define a cluster representative. In general, a cluster representative
can be a point in the cluster space, a hyperplane or a hyperspherical representative. A suit-
able choice for compact clusters are point representatives x̃(k). Theodoridis and Koutroumbas
[1999] describe different criteria for selecting point representatives, however favor the median

center for the case that the dissimilarity of two points is not a metric. The median center
x̃(k) ∈ C

k is defined by the property that it is the element with the smallest median distance
with respect to the remaining cluster elements, i.e.,

med
x∈Ck,x6=x̃(k)

(D(x̃(k),x)) ≤ med
x∈Ck,x6=x′

(D(x′,x)), ∀x′ ∈ C
k. (2.53)

2.4.4 Determining the number of clusters

The result of an agglomerative hierarchical clustering algorithm can be visualized by a binary
tree, a so-called dissimilarity dendrogram. Figure 2.9 shows an example of a dissimilarity
dendrogram for the clustering of five two dimensional vectors

{
x(1), . . . ,x(5)

}
in the context

of the squared Euclidean distance and the average dissimilarity.
A closer look at Figure 2.9 reveals a strategy to determine a proper number of clusters.

Instead of iterating all M steps in Algorithm 3, the merging can be stopped, when the clus-
ter dissimilarity exceeds a threshold Dmax, i.e., D

(
C

kmin , Ck′

min

)
> Dmax. Metaphorically,

this approach cuts the dissimilarity dendrogram at the height Dmax and uses the clustering
assignment obtained from below that level.

2.5 Summary

This chapter has reviewed important, general techniques in pattern recognition. First, the
supervised learning of both vector data and sequences has been described.

Particular emphasis was put onto the differentiation between the generative and the dis-
criminative classification paradigms. The generative classifier was explained with respect
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FIGURE 2.9: An example for a hierarchical clustering. (a): Five data points
{
x

(1), . . . ,x(5)
}

in R
2

are illustrated. (b) The clustering is represented with help of the dissimilarity dendrogram with respect to{
x

(1), . . . ,x(5)
}

, using the squared Euclidean distance (Equation (2.52)) and average dissimilarity. Each leaf
in the tree represents the lower subscripted vector; a node denotes a merge step of two particular clusters in

algorithm 3. The level of the node on the ordinate corresponds to the cluster dissimilarity D
(
C

k, Ck′

)
during

merging.

to a Gaussian distribution classifier, the discriminative one with respect to a support vector
machine (SVM) classifier. Benefits of both fundamental classification philosophies were op-
posed. Summarized, benefits of the generative approach are:

Modularity of the training: Each class is trained individually, thus the training complexity
is usually smaller.

Flexibility: As each class is trained individually, new classes can be added spontaneously
without re-training the whole classifier.

Probabilistic framework: The discriminants always have the semantic of a PDF or an a-
posteriori probability. Hence, one can benefit from a probabilistic post-processing. In
this respect, many speech and handwriting recognition systems integrate a generative
classifier into probabilistic language modeling.

Advantages of the discriminative approach can be seen as the following:

Smaller complexity of the addressed function: The class boundaries are usually less
complex than class conditional PDFs. In this sense, a discriminative classifier can be
less wasteful with parameters.
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Direct modeling of discriminants: The discriminative approach directly models the
quantity of interest, i.e., the discriminants. Its focus concerns the modeling of the deci-
sion boundaries, not of the class regions.

Further, supervised (generative) classification methods were transferred to situations where
data can not be embedded in a feature space of fixed dimension, but are sequences of vectors.
In particular, the concepts of DTW and HMM have been introduced.

Finally, we have reviewed unsupervised learning. One instance of a clustering method, the
agglomerative hierarchical clustering was introduced, preparatory for later chapters.

All of the methods will be useful in the remainder of the thesis. The generative classifica-
tion paradigm will be picked up again and combined with an adapted sequence clustering in
Chapters 4 and 6. The discriminative classification paradigm will be pursued by establishing
a sequence compatible SVM kernel in Chapter 7.
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CHAPTER 3

Data, pre-processing, and feature extraction

in online HWR

This chapter describes the stages in the recognition process that are specific to the underlying

application of online HWR. In particular, it addresses the online handwriting data format,

data acquisition and data collections, as well as pre-processing, and feature extraction.

3.1 Introduction

As noted above, online handwriting data are typically sequences of coordinates, digitized by
means of an electronic tablet and a pen. As with many pattern recognition problems, the raw
data is not directly used as input for the classifier. One potential problem are noise artifacts in
the raw data. Then, the raw data are not invariant with respect to simple transformations such
as change of position or scale. In order to cope with these issues, a pre-processing and feature
extraction are employed prior to classification.

In general, pre-processing addresses the problems of segmentation, noise reduction and
normalization. Feature extraction generates a set of characteristics that shall allow for robust
discrimination of patterns of one category against those of others.

In the remainder of this chapter, we start with a brief review of commonly employed pre-
processing and feature extraction methods in online HWR. Afterwards, we discuss the partic-
ular concepts and techniques that are pursued in frog on hand: the underlying UNIPEN online
data representation and collection, the chosen pre-processing, and feature extraction.
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3.2 Literature review

Pre-processing and feature extraction for online HWR have been widely studied. Com-
prehensive overviews exist, for example, in a number of review articles [Plamondon et al.,
1999, Guerfali and Plamondon, 1993, Tappert et al., 1990]. Further ideas can be found in the
above mentioned HWR system descriptions [Hu et al., 2000, Seni et al., 1996, Kosmala, 2000,
Manke et al., 1995, Schenkel et al., 1995, Guyon et al., 1991].

3.2.1 Pre-processing

Pre-processing addresses the following problems:

(Pre-) Segmentation: Segmentation is the process of dividing an entire writing into
smaller pieces (i.e., segments). Segments can be, e.g., text lines, words, characters,
strokes (i.e., connected lines), or atomic sub-strokes (i.e., parts of a stroke, that occur in
different characters, but have a similar shape). In case the segmentation is completed en-
tirely during the pre-processing, one speaks of “external segmentation”. More often, the
problem is too challenging for an external segmentation. In those situations, a number
of segmentation hypotheses are generated during the pre-processing. The hypotheses
are later refined in combination with the classification. However, it is also common to
abstain from a pre-segmentation and solve this task implicitly during classification. In
this case, one speaks of “internal segmentation”.

Both, temporal as well as spatial information is used in (pre-) segmentation
[Plamondon et al., 1999].

Noise reduction: In handwriting, noise is commonly present due to hardware limitations
or difficult writing conditions. Frequently observed imperfections are a shaky writing,
hooks at the beginning or end of characters and sporadic wild points (i.e., outliers far
away from the pen trace). Further, a single stroke is sometimes incorrectly broken into
two pieces during the data acquisition [Plamondon et al., 1999].

Many approaches [Hu et al., 2000, Kosmala, 2000] deal with the problem of high-
frequency noise in the writing curve by employing a spline approximation. Next, the re-
sulting functional spline curve is often re-sampled in order to obtain a smoother coordi-
nate sequence. The problems of de-hooking, wild point correction and break correction
are mostly addressed by filtering and by heuristic methods [Guerfali and Plamondon,
1993].

Normalization: Normalization is applied in order to reduce the amount of variability in
the patterns prior to classification and thus to simplify the further recognition process.
Typical sources for variability are the following: One can often observe a vertical drift
of the imaginary baseline over time (also called writing skew). A normalization step
re-aligns the writing with respect to an estimate of the baseline. Further, different users
write with different slant and scale.
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Normalization algorithms for a skew correction are based, for instance, on regres-
sion [Seni et al., 1996], the Hough transform [Hu et al., 2000] or projection histograms
[Kavallieratou et al., 1999, Kosmala, 2000]. Slant correction algorithms employ, for
example, an extreme point analysis [Brocklehurst and Kenward, 1988, Hu et al., 2000]
or, also, projection histograms [Kavallieratou et al., 1999, Kosmala, 2000]. The writing
scale and position is commonly normalized with respect to the writing’s bounding box
or estimated reference lines.

After all, a large amount of parameter fine-tuning is required for most parts of the pre-
processing, which often follows heuristic approaches. One resulting problem is that pre-
processing can irrevocably cross out valuable discriminative information. This issue is even
more important when data of different quality is present. For example, an exaggerated smooth-
ing can eliminate cusps, which often are the only distinctive marks between characters (as in
the case of “u” and “v”).

3.2.2 Feature extraction

Following a definition of Devijver and Kittler [1982], the term feature extraction in a pattern
recognition problem denotes the process of “extracting from the raw data the information
which is most relevant for classification purposes, in the sense of minimizing within-class
pattern variability while enhancing the between-class pattern variability.”

Although some general methods exist (principal component analysis, linear discriminant
analysis, etc.; cf. Jain et al. [2000]), feature extraction is still a challenging problem in most
pattern recognition contexts. In many cases, the system designer can improve the recogni-
tion performance by developing individual features, that include prior knowledge about the
underlying application and typical data variability.

Feature extraction methods that have been specifically studied in the online HWR context
can roughly be assigned to one of the following categories:

Temporally local features: Temporally local features are most often part of a dynamic
feature representation, that is, a sequence t = [t1, . . . , tN ] of feature vectors ti, each of
it computed from the sample point i or its direct temporal vicinity. Temporally local fea-
tures are often based on differential geometry characteristics of planar curves [Carmo,
1976]. Common choices are normalized representations of the coordinates and their
first and second order derivatives [Hu et al., 2000, Manke et al., 1995].

Spatially local features: For online handwriting data, the spatial vicinity does not always
coincide with the temporal vicinity. For example, at the crossings in the “t”, “x” or “f”
two samples can indeed cover each other spatially but come from different parts in the
writing trace. Similar deliberations are true for contact points in many characters like
“a”, “b”, “d”, etc. In order to increase the influence of spatial relations, researchers
[Manke et al., 1995, Kosmala, 2000] have introduced so-called context bitmaps. These
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are low-resolution images of the spatial vicinity of each sample point i, and are in-
cluded into the feature vector ti. Further, binary features that indicate the presence of
a cusp, loop or crossing in the vicinity of sample point i, have been included into ti

[Schenkel et al., 1995, Hu et al., 2000].

Global features: A global feature combines long-range information about the pattern into
one feature value. In online HWR, global features have been studied in the context of
Fourier coefficients or the presence or numbers of ascenders, descenders or diacritical
marks in the writing [Tappert et al., 1990]. Plamondon et al. [1999] use the vector be-
tween starting point and the last vertical maximum in the trajectory as a global feature.
In general, it can be stated that global features are more informative than local features,
but less robust.

3.3 Online handwriting data

Online handwriting data is typically a dynamic, digitized representation of the pen trace, con-
taining sequential information about position, velocity, acceleration or pen angles as a function
of time.

3.3.1 Data acquisition

Online handwriting is usually acquired with a writing pad and a pen. Two different digitizing
technologies are dominant nowadays:

1. Touch sensitive sensors are installed beneath the surface of PDAs and smart phones.
They are able to sense and digitize the contact of any pen alike object, thus they do not
require a special pen.

2. Electromagnetic sensors are mostly employed in writing tablets and tablet PCs. They
work only in combination with a special pen, and also catch the pen signal when it
hovers in a range of up to approximately 1cm above the surface. In contrast to touch
sensitive sensors, the user can lay his hand onto the surface without disturbing the ac-
quisition.

3.3.2 Data format

The most prominent online handwriting data format in research is the UNIPEN format
[Guyon et al., 1994].1 Simply speaking, UNIPEN treats handwriting as a sequence p =
[p1, . . . ,pN ] of sample points pi of pen tip information. The sampling may or may not be
regular (in time).

1Currently, a new standard InkML (http://www.w3.org/TR/InkML/) is being developed and expected
to replace UNIPEN.
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Category key / Category # data samples

1a / isolated digits 15953
1b / isolated upper case 28069
1c / isolated lower case 61351
1d / symbols (punctuation, etc.) 17286
2 / isolated characters, mixed case 122628
3 / isolated characters in context of words or text 67352
4 / isolated printed words, not mixed with digits or symbols 0
5 / isolated printed words, full character set 0
6 / isolated cursive or mixed-style words (w/o digits or symbols) 75529
7 / isolated words, any style, full character set 85213
8 / free text of minimum two words 14544

TABLE 3.1: UNIPEN categories and their sizes in the “Train-R01/V07” data collection.

In this thesis, pi = (xi, yi, si)
T comprises the plane coordinates (xi, yi) and the pen status

si ∈ {0, 1}. The latter is a boolean value indicating if the pen touches the pad (si = 1) or is
lifted (si = 0) (see Figure 3.2(a)). The term component is used to denote a connected sample
point sequence with equal pen status.

Additional information like velocity, acceleration and pen angles — although included in
the UNIPEN data format — is generally present only in a few samples of common databases.
As it is not clear how much it contributes to a successful recognition, and in order to have
access to the largest amount of data, it is not taken into account in this work.

3.3.3 Data collections

The name UNIPEN is also associated with an online handwriting data collection. Parts of it
have become the most popular non-proprietary database in online handwriting research. It is
publicly available within the “Train-R01/V07” database, distributed by the INTERNATIONAL

UNIPEN FOUNDATION.2 Additional UNIPEN databases exist, but are not publicly available.
Table 3.1 summarizes different handwriting categories and their sizes in “Train-R01/V07”.

3.4 Data pre-processing

It has been argued in Section 3.2.1 that pre-processing is very sensitive to the underlying data,
among other things its quality. It is further true that the viability of individual pre-processing
steps strongly depends on the handwriting type. For example, skew slant and reference line
estimation are very unreliable for isolated characters, as they would be based on only a few

2http://unipen.nici.kun.nl/cdroms/
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data points. In fact, experiments have shown [Simon, 2002] that an extensive pre-processing
leads to a degraded recognition accuracy in the character recognition context.

In this respect, the pre-processing in frog on hand is treated differently for the various hand-
writing types. In the present work, HWR is being applied to isolated characters and words.
A detailed description of the character pre-processing will follow in the next section. As the
word classification will be treated rather marginally, the description of word pre-processing
methods will be more concise. A more detailed description of word preprocessing is given by
Simon [2003].

3.4.1 Data pre-processing for isolated characters

Pre-processing for isolated characters consists of two steps: elimination of spurious sample
points and normalization.

Removal of pen-up components: The writing’s pen-up samples pi (samples with si =
0) are eliminated. The remaining pen-down samples (i.e., samples with si = 1) are
concatenated to a single coordinate sequence p′ = [p′

1, . . . ,p
′
N ′ ].

Duplicate removal: The UNIPEN database includes a number of writings that contain rep-
etitions of coordinates, that is, p′

i = p′
i+1 = . . . = p′

i+d for some i and d. When
computing differential features, these co-occurrences can cause singularities. Thus, the
extra occurrences p′

i+1, . . . ,p
′
i+d are removed. The new representation shall be named

p′′ = [p′′
1, . . . ,p

′′
N ′′ ]

Position and scale normalization: The writing’s position and scale are normalized by

x̃i =
xi − µx

r
(3.1)

ỹi =
yi − µy

r
(3.2)

Here, µ = (µx, µy)
T = 1

N ′′

∑N ′′

i=1 p′′
i denotes the sample mean and r = σy =√

1
N ′′−1

∑N ′′

i=1 (µy − yi)
2 the (vertical) y standard deviation of the character’s sample

points.

Further character pre-processing has also been studied [Simon, 2002]. In these studies the
writing was approximated by a cubic spline, re-parameterized by the arc length and equidis-
tantly re-sampled. Simon [2002] found that the recognition accuracy decreases with this pre-
processing. Hence, this further, expensive pre-processing step is skipped in the isolated char-
acter context. Instead, the classifier copes with the associated variations.
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(a) original (b) smoothed and re-sampled (c) normalized skew

(d) normalized slant

ascender line

core line

base line

descender line

(e) estimated boundary lines

-0.5

0.5

(f) normalized position/scale and
re-sampled

FIGURE 3.1: Pre-processing steps for handwritten words. (Figures taken from [Simon, 2003].)

3.4.2 Data pre-processing for words

If handwriting data correspond to entire words, a more complex preprocessing is worthwhile,
because:

1. Compared to isolated characters, the skew, slant and the reference lines of a handwritten
word can be estimated more accurately. This suggests to make use of those parameters
during normalization.

2. Empirical studies indicate that reference lines can be estimated even more accurately, if
the writing is available at a higher sampling rate and with equidistant arc length. Thus,
the writing should be re-sampled prior to the reference line estimation.

Word pre-processing for frog on hand has been developed by Simon [2003]. A concise review
of all steps is given in the following:

Removal of pen-up components and duplicates: These procedures are the same as
for isolated characters (cf. previous section).

45



3 Data, pre-processing, and feature extraction in online HWR

Smoothing and re-sampling: As indicated above, smoothing and re-sampling are em-
ployed mainly with the aim of a more accurate reference line estimation (cf. Fig-
ure 3.1 (c)). The procedure comprises the following steps:

1. Cusps are detected by thresholding the difference of two consecutive angles.

2. Each stroke, that is, a line segment between two cusps (or the starting/end point of
a component), is approximated by a cubic B-spline [deBoor, 1978]. This approxi-
mation results in a moderate smoothing.

3. The writing is re-parametrized by the arc length and equidistantly re-sampled.

A smoothed and re-sampled writing, named p′′′, is shown in Figure 3.1 (b).

Skew correction: The aim of the skew correction is to estimate the angle α̂skew of the main
writing direction and to rotate it according to α̂skew. The employed solution uses projec-
tion histograms and its rough idea is as follows:

1. Rotate the re-sampled writing p′′′ by α ∈ {−45◦,−44◦, . . . , 44◦, 45◦}. Denote an
α-rotated writing p(α).

2. Compute the y-histogram of all p(α) and low-pass filter it. A filtered y-histogram

is named P
(α)
y .

3. It can be argued that the y-histogram of a horizontally oriented writing has min-
imum entropy. Thus, compute the entropy H(α) for each P

(α)
y and estimate

α̂skew = argminα

{
H(α)

}
.

4. Correct the writing skew by rotating p′′′ about −α̂skew.

Slant correction: The aim of the slant correction is to remove the main slant of the writing.
A similar algorithm as the one for the skew correction can be used. Two main differences
address: (1) an x-histogram is used instead of the y-histogram and (2) the writing is
sheared by the angles α ∈ {−45◦,−44◦, . . . , 44◦, 45◦} instead of rotated. A slant-
corrected writing is shown in Figure 3.1 (d).

Reference line estimation: Latin handwriting extends across three horizontal zones. Ide-
ally, those zones are limited by four parallel reference lines: the descender line, base

line, core line and ascender line (cf. Figure 3.1 (e)). These lines, especially base and
core line, contain valuable information for position and scale normalization. A simpli-
fied variant of the algorithm proposed by [Simon, 2003] works as follows:

1. Compute the writing’s y-histogram and low-pass filter it. Denote the filtered y-
histogram Py.

2. Compute the first derivative ∂
∂y

Py.
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3. Compute the height of the base line, ŷbase, and of the core line, ŷcore, from the
extreme points of ∂

∂y
Py, respectively:

ŷcore = argmin
y

{
∂

∂y
Py

}
(3.3)

ŷbase = argmax
y

{
∂

∂y
Py

}
(3.4)

Position and scale normalization: The writing’s position and scale are normalized by
the coordinate transformations

x̃′
i =

xi

r
(3.5)

ỹ′
i =

yi − ybase

r
− 1

2
. (3.6)

Here, xi and yi denote the coordinates of the so far pre-processed writing. The scaling
factor r = ycore − ybase is the height of the so called core zone. The normalization is
illustrated in Figure 3.1 (f).

Re-sampling: The writing is re-sampled a second time to facilitate classification: A lower
sampling rate reduced the number of sample points. A scale-normalized and re-sampled
writing is shown in Figure 3.1 (f).

3.5 Feature extraction

The feature extraction used in this work is based on temporally local features and transforms
p into a dynamic representation, that is, a sequence t = [t1, . . . , tN ] of feature vectors ti =

(ti1, . . . , tiF )T ∈ R
F .

Like the pre-processing, the feature extraction is different for isolated characters and for
words.

In what follows p = [p1, . . . ,pN ] denotes the pre-processed writing.

3.5.1 Feature extraction for isolated characters

Several features have been studied with frog on hand [Simon, 2002], inspired by recent
publications [Guyon et al., 1991, Schenkel et al., 1995, Seni et al., 1996, Hu et al., 2000,
Jäger et al., 2000]. Those studies include a normalized representation of the coordinates, a
representation of the tangent slope angle, a normalized curvature, the ratio of tangents, etc.
The best character recognition rates — in combination with the classification described in
Chapter 4 — have been observed with the following simple features:
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(c)

FIGURE 3.2: (a) A sample of a UNIPEN character p of class “b”. Coordinates are illustrated by a circle for pen-
down and by a point for pen-up components. (b) Illustration of a feature sequence t and the features x̃i, ỹi and
θi: x̃i and ỹi are plotted according to their value in the x̃-ỹ-plane. The dashed lines illustrate θi by the direction
of the tangent. (c) The tangent slope angle is approximated by the secant, approximating the neighboring sample
points.

ti1, ti2 — normalized horizontal and vertical coordinates. With

ti1 = x̃i (3.7)

ti2 = ỹi, (3.8)

as defined in Section 3.4.1, a normalized representation of the plane coordinates is in-
corporated into the feature vector. Both features are invariant with respect to position
and scale.

ti3 — tangent slope angle. The feature

ti3 = θi = arg ((xi+1 − xi−1) + J · (yi+1 − yi−1)) , (3.9)

with J2 = −1 the imaginary unit and “arg” the complex phase, is an approximation of
the tangent slope angle at point i (cf. Figure 3.2 (c)). θi is also invariant with respect to
position and scale. Results about the relevance of θi in the context of x̃i and ỹi will be
given in Section 5.6.

Since θi is a directional quantity, a special treatment for the computation of probabilities,
statistics and distances is necessary. A detailed discussion of this issue is provided in
Chapter 5.

To summarize, a writing’s feature representation is defined as t = [t1, . . . , tN ], where ti =
(x̃i, ỹi, θi)

T for i = 1, . . . , N . Figure 3.2 (b) illustrates the feature representation for isolated
characters.
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3.5.2 Feature extraction for words

In the context of an unsegmented writing, no information about the horizontal character
boundaries is available. In this respect, no straightforward (position and scale) normalization
of the x-coordinate exists.

The situation is different for the y-coordinate. With accurate estimates of the reference lines,
there are parameters for a normalization of the vertical coordinate available. The variable ỹ′

i,
as defined in Equation (3.6), is invariant with respect to position and scale. Further, the tangent
slope angle θi is invariant with respect to position and scale.

In summary, each feature vector ti of the vector sequence t = [t1, . . . , tN ] comprises two
elements in the context of words:

ti1 — normalized vertical coordinate. ti1 = ỹ′
i, as defined in Section 3.4.2

ti2 — tangent slope angle. ti2 = θi, as defined in Section 3.5.1.

3.6 Summary

Data acquisition, pre-processing and feature extraction are the first steps in nearly every pattern
recognition system. This chapter has addressed these issues for online HWR. First, typical
online HWR pre-processing and feature extraction methods have been reviewed.

Following, the data, pre-processing and feature extraction, as employed in the context of
frog on hand, have been described. It has been argued that it is worthwhile to optimize both
pre-processing, and feature extraction for the respective handwriting type, either isolated char-
acters or words.

Nevertheless, both procedures have in common that the resulting feature representation is
given as a sequences of vectors, t = [t1, . . . , tN ]. This enables the use of uniform classifica-
tion approaches for characters and words.
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CHAPTER 4

CSDTW — A generative sequence

classification framework

This chapter describes the generative classification framework cluster generative statistical
dynamic time warping (CSDTW). CSDTW is a general, scalable approach for variable-sized,

sequential data that holistically combines cluster analysis and statistical sequence modeling.

It can handle general classification problems that rely on this sequential type of data. Contrary

to previous attempts to a common clustering and statistical modeling combination these two

issues are embedded in a single feature space and use a closely related distance measure.

Character recognition experiments with CSDTW indicate that the recognition accuracy is

significantly higher than reported results of other handwriting recognition systems.

4.1 Introduction

The difficulty of designing a writer independent HWR system is commonly explained as fol-
lows. First, typical target devices like PDAs and smart phones have limitations in computa-
tional power and memory size, which is cumbersome in the system design for these devices.
Second, for a writer independent solution the system has to discriminate between a large va-
riety of different writing styles which are present in the target group of users. Even more
difficult for online recognition, a writing which looks similar in a graphical (i.e., offline) rep-
resentation, can have a different sequential (i.e., online) representation.

Thus there is demand for a HWR system which is efficient, scalable to the device’s capa-
bility, accurate and which can deal with the natural handwriting of a wide range of different
writers and writing styles.

Cluster generative statistical dynamic time warping (CSDTW) [Bahlmann and Burkhardt,
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4 CSDTW — A generative sequence classification framework

2004] is a generative, holistic approach that aims at coping with these difficulties. Like all gen-
erative approaches (cf. Section 2.2.2) it models the class conditional PDFs for each character
class. As the difficulties with generative methods is often the complexity of the generative
functions (cf. Figure 2.1), CSDTW aims to decompose classes into smaller sub-classes. For
this purpose it employs a hierarchical clustering (cf. Section 2.4). A beneficial characteristic
of CSDTW’s procedure over previous methods is that the combination of cluster analysis and
generative statistical sequence modeling is treated holistically, i.e., a closely related dissimi-
larity measure is utilized in both stages.

Another attractive property of CSDTW is its scalability. By adjusting particular parameters
the system designer can straightforwardly find a compromise between the classifier size and
the recognition accuracy.

4.2 Literature review

In order to argue the particular advance by CSDTW over previous attempts to the combination
of clustering and statistical modeling in the context of sequential data, the philosophy of those
shall be reviewed. Previous methods follow mainly two different philosophies:

1. A powerful classifier (e.g., a hidden Markov model, HMM) uses cluster information
which has been revealed in a different feature space and with a different assump-
tion about (dis-) similarity [Connell and Jain, 1994, Oates et al., 1999, Lee et al., 2000,
Smyth, 1997]. Hence, those algorithms cannot be certain that the clusters found in the
cluster space correspond to well-formed clusters in the classifier space.

2. Clustering and classification are performed in the same feature space, however the clas-
sifier uses simple, limited techniques like template matching [Vuurpijl and Schomaker,
1997, Prevost and Milgram, 1999, Vuori et al., 2001].

A deviation from these two philosophies exists. Perrone and Connell [2000] embed a cluster-
ing/HMM hybrid in the single feature space of the HMM parameters. However, this approach
lacks a generic quality, since their (iterative) clustering relies on a reasonable initialization,
which the authors perform by a manual adjustment.

4.3 CSDTW modeling

This section explains the general concept of CSDTW. In the context of HWR, the phi-
losophy of CSDTW is to model each different character writing style by a distinct gen-
erative statistical model. In literature the terms allograph [Vuurpijl and Schomaker, 1997,
Prevost and Milgram, 1999, Plamondon et al., 1999, Perrone and Connell, 2000, Schomaker,
1993, Bercu and Lorette, 1993] or lexeme [Connell and Jain, 1994] have been evolved to de-
scribe such a distinct character style. With CSDTW, the scope of the term allograph can be
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flexibly implemented. Adaptable to the classification background, CSDTW includes a mecha-
nism to specify whether just large data variations (e.g., culturally conditioned) or additionally
smaller variations (e.g., due to different writer habits or the word context in that a character is
written) shall be regarded for the generation of the distinct allograph models.

In the proposed CSDTW framework, both clustering and statistical modeling are embed-
ded in a single feature space — the space of the training samples. As will be shown, they
assume a closely related distance measure, while retaining a powerful, HMM-alike classifi-
cation scheme. Additionally, the CSDTW approach includes a strategy to an open question
in statistical sequence modeling research — the problem of dimensioning and initializing the
statistical models in the context of the commonly used iterative classifier training. Thus, no
manual dimensioning or initialization has to be employed.

4.3.1 CSDTW classification

The aim of this section is to describe the classification part of CSDTW. At this point it shall be
assumed that a classifier has already been trained from a set X =

{
X

(1), . . . , X(L)
}

of labeled
characters, where X

(l) =
{
x(l,1), . . . ,x(l,Ml)

}
is the training set of class l. The DTW and

HMM concepts, as introduced in Section 2.3, will play a central role in these deliberations.

4.3.1.1 DTW distance

DTW has been introduced in Section 2.3.1 with the squared Euclidean distance d (ti, rj) as the
local distance measure. In the context of CSDTW a different choice of local distance is more
profitable. We anticipate our choice at this point, however motivate it later in Section 4.3.1.4.
So, instead of the squared Euclidean distance an adaptation of it

d̃ (ti, rj) =
1

2

(
ln (|2πΣ|) + (ti − rj)

T
Σ−1 (ti − rj)

)

+ ln (|P|) (4.1)

will be utilized in the CSDTW context (in particular in the clustering, Section 4.3.2.1). Here,
|P| denotes the cardinality of the transition set P and Σ a global covariance matrix of dimen-
sion F × F . Σ can be used to model prior knowledge, e.g., about expected variances σ2

f of
the feature dimension f , i.e., Σ = diag (σ2

1, . . . , σ
2
F ). Alternatively, if no prior knowledge is

given, it can be set to unity, i.e., Σ = I , or a scalar multiple of it.
At this point we can benefit from the parameterization of D∗[d] by the local distance func-

tion d. In this respect, D∗[d̃] describes the DTW distance with d̃ as local distance.

4.3.1.2 Statistical DTW (SDTW) distance

In the SDTW modeling, a character reference will not be represented by a sequence r =
[r1, . . . , rNr ] of feature vectors, as with DTW, but by a sequence R = [R1, . . . ,RNR ] of a
tuple Rj of statistical quantities.

This comprises, similar to HMMs:
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1. discrete probabilities, say αj : P → [0, 1], for the statistical modeling of the transitions
∆φ ∈ P reaching the sequence’s sample point j, and

2. a continuous PDF βj : R
F → R, that models the feature distribution x ∈ R

F at the
sequence’s sample point j,

thus Rj = (αj, βj).
The choice of the variable names αj and βj as the Greek variations of the HMM elements

aij and bj emphasize the similarity of the SDTW to the HMM framework (cf. Section 2.3.2).
Section 4.3.1.4 will provide a unified analysis of SDTW and HMM.

In the next paragraphs, a few details about αj and βj will follow. The state transition
probabilities αj are defined by

αj (∆φ) = P (∆φ (n) = φ (n) − φ (n − 1) |φR (n) = j) , ∀∆φ ∈ P, (4.2)

where the special case for n = j = 1 is

P (∆φ (1) = φ (1) − φ (0) |φR (1) = 1) = 1 (4.3)

by definition.
In some situations, the probability α′

j (∆φ) that a transition ∆φ emerges from (instead of
reaches) the sequence’s sample point j, is of interest. α′

j (∆φ) fulfills the standard stochastic
constraints ∑

∆φ∈P

α′
j (∆φ) = 1 (4.4)

and is related to αj (∆φ) by the equation

αj (∆φ) = α′
j−∆φR

(∆φ) , (4.5)

with ∆φR the R-component of ∆φ.
The described SDTW implementation models the PDF βj by a unimodal, multivariate

Gaussian, i.e.,

βj (x) = p (x|φR (n) = j) = Nµj ,Σj
(x) =

(
|2πΣj| exp

(
(x − µj)

T
Σ−1

j (x − µj)
))−1/2

.

(4.6)
In a general context the assumption of such a type of PDF would be quite restrictive. Other

HWR systems utilize Gaussian mixture or discrete probability models [Hu et al., 2000], which
are more flexible than unimodal Gaussians. However, the described approach assumes that
large, especially multimodal variations in the data are due to a different writing style. In this
sense, the philosophy is to model each style by a distinct, but simple character sub-class model.

A graphical illustration for an example of R — a reference model of a character “b” — is
shown in Figure 4.1.

With the new representation of the reference models with respect to DTW — i.e., the uti-
lization of R instead of r — a new local distance can be adapted for the use in the SDTW
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FIGURE 4.1: An example of an allograph reference model R (of character class “b”). In part (a) the reader
can see a connected sequence of dots, each one with two additional lines attached. As a reference model is
represented by a sequence of Gaussian PDFs, each dot illustrates the mean of the Gaussian and the lines the
covariance matrix. The direction of the two lines match the projection of the first two eigenvectors onto the
x̃-ỹ-plane, their length the square root of the corresponding eigenvalues. Thus, the lines indicate the orientation
and width of the projected Gaussian. Note that the model is represented by means of the features (x̃i, ỹi)

T ∈ R
2,

which is a projection of the chosen feature vector (x̃i, ỹi, θi)
T ∈ R

3. Part (b) illustrates the transition probabilities
α′

j (∆φ) as a color plot. The three columns correspond to the transitions (0, 1), (1, 1) and (1, 0), from left to
right. The rows corresponds to the reference model index j, from bottom to top. Light colors denote high values
for α′

j (∆φ), dark colors low values. Note that α′
NR

((0, 1)) = α′
NR

((1, 1)) = 0, as NR is the last sample point
in R .

context. The proposed adaptation naturally emerges from a ML classification criterion and can
be derived from the following proposition. Initial deliberations have been studied by Bockhorn
[2000]. The proposition starts with a summary of the modeling assumptions.

Proposition 4.1. Assume that the following prerequisites for a vector sequence observation t,

an SDTW model R and an alignment function Φ are valid:

1. Markov property for Φ: The alignment Φ = [φ (1) , . . . ,φ (N)] can be decomposed

into a sequence of transitions

∆φ (n) = φ (n) − φ (n − 1) ∈ P, n = 2, . . . , N (4.7)

and the transitions are sequentially independent and solely depend on the reference

position φR (n):

P (∆φ (n) |φ (n) , . . . ,φ (1)) = P (∆φ (n) |φR (n)) , n = 1, . . . , N. (4.8)
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4 CSDTW — A generative sequence classification framework

2. The PDFs for an observed sequence x = [x1, . . . ,xNx ] are sequentially independent

and solely depend on the position φR (n):

p
(
xφx(n)|xφx(n−1), . . . ,xφx(1),φ (n) , . . . ,φ (1)

)
= p

(
xφx(n)|φR (n)

)
, n = 1, . . . , N.

(4.9)

3. The PDFs βj (x) are Gaussians Nµj ,Σj
(x), parameterized by (µj,Σj) for all j =

1, . . . , NR .

Then, the SDTW (Viterbi) distance D∗[d̂] (t,R) that is defined analogous to Equations (2.31)

and (2.32) by

DΦ[d̂] (t,R) =
N∑

n=1

d̂
(
tφt(n), ∆φ (n) ,RφR (n)

)
(4.10)

D∗[d̂] (t,R) = DΦ∗ [d̂] (t,R) = min
Φ

{
DΦ[d̂] (t,R)

}
(4.11)

and the local distance d̂ is given as

d̂ (ti, ∆φ,Rj) =
1

2

(
ln (|2πΣj|) + (ti − µj)

T
Σ−1

j (ti − µj)
)

− ln (αj (∆φ)) , (4.12)

is related to the Viterbi-path optimized likelihood p (t,Φ∗|R) by the equation

D∗[d̂] (t,R) = − ln (p (t,Φ∗|R)) . (4.13)

Proof. Due to prerequisites 1 and 2 we can write

P (Φ|R) =
N∏

n=1

P (∆φ (n) |φR (n)) =
N∏

n=1

αφR (n) (∆φ (n)) (4.14)

with αj (∆φ) defined as in Equation (4.2) and

p (x|Φ,R) =
N∏

n=1

p
(
xφx(n)|φR (n)

)
=

N∏

n=1

βφR (n)

(
xφx(n)

)
, (4.15)

respectively, with βj (x) defined as in Equation (4.6).
The likelihood p (t,Φ|R) can be developed to

p (t,Φ|R) = p (t|Φ,R) P (Φ|R)

=
N∏

n=1

βφR (n)

(
tφt(n)

) N∏

n=1

αφR (n) (∆φ (n))

=
N∏

n=1

NµφR (n),ΣφR (n)

(
tφt(n)

)
αφR (n) (∆φ (n)) . (4.16)
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4.3 CSDTW modeling

In this remodeling, the first equation is due to the definition of the conditional probability, the
second due to the assumption to the Markov property (prerequisite 1 and Equation (4.14)) and
the sequential independence of the PDFs (prerequisite 2 and Equation (4.15)) and the third
equality refers to the Gaussian assumption (prerequisite 3).

By further taking the negative natural logarithm we get

− ln (p (t,Φ|R))

= − ln

(
N∏

n=1

NµφR (n),ΣφR (n)

(
tφt(n)

)
αφR (n) (∆φ (n))

)

=
N∑

n=1

− ln
(
NµφR (n),ΣφR (n)

(
tφt(n)

))
− ln

(
αφR (n) (∆φ (n))

)

=
N∑

n=1

− ln

((∣∣(2π)ΣφR (n)

∣∣ exp
((

x − µφR (n)

)T
Σ−1

φR (n)

(
x − µφR (n)

)))−1/2
)

− ln
(
αφR (n) (∆φ (n))

)

=
N∑

n=1

1

2

(
ln
(
2π
∣∣ΣφR (n)

∣∣)+
(
tφt(n) − µφR (n)

)T
Σ−1

φR (n)

(
tφt(n) − µφR (n)

))

− ln
(
αφR (n) (∆φ (n))

)
(4.17)

The terms in the sum can be summarized with Equation (4.12) and then Equation (4.10) to

− ln (p (t,Φ|R)) =
N∑

n=1

d̂
(
tφt(n), ∆φ (n) ,RφR (n)

)

= DΦ[d̂] (t,R) . (4.18)

In the case of Φ being the Viterbi path Φ∗ the equality to Equation (4.13) is obvious.

As a result, one can draw the conclusion that a minimum D∗[d̂] (t,R) corresponds to a
maximum likelihood p (t,Φ∗|R).

In fact, the prerequisites 1–3 that are made in this proposition are contestable for general real
world applications and thus can be seen as weak points of this generative modeling approach.
However, they are the common assumptions pursued in sequence modeling. In particular, they
are also presumed with HMMs [Rabiner and Juang, 1993, Schukat-Talamazzini, 1995]. On
the other hand, if the prerequisites are accepted, they allow a concise formulation of sequence
classification in terms of statistics by Equations (4.10)–(4.12).

To summarize the benefit of the SDTW compared to the DTW distance, it adds value by a
statistical modeling of a particular tuple of parameters.
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4 CSDTW — A generative sequence classification framework

4.3.1.3 Cluster generative SDTW (CSDTW) classification

Finally, this section introduces the CSDTW classification formulation. It shall be assumed that

a set ℜ =
{
R lk

}
l∈{1,...,L},k∈{1,...,Kl}

of SDTW sub-class models with R lk =
[
Rlk

1 , . . . ,Rlk
NRlk

]

and a test pattern t (that corresponds to an isolated character in the HWR context) are given.
Each R lk is aimed to be a generative model for one “compact” cluster in the feature space of
class l, hence representing an allograph in the context of HWR.

According to Proposition 4.1 and Equation (4.13), a Viterbi path-optimized ML classifica-
tion principle is employed, when the classifier decision l̂ is given by

l̂ = argmin
l∈{1,...,L}

min
k∈{1,...,Kl}

{
D∗[d̂]

(
t,R lk

)}
. (4.19)

A Viterbi path-optimized MAP classification would include prior probabilities P
(
R lk

)
and

maximize P
(
t,Φ∗|R lk

)
P
(
R lk

)
. It can easily be shown that the classification rule becomes

with this background

l̂ = argmin
l∈{1,...,L}

min
k∈{1,...,Kl}

{
D∗[d̂]

(
t,R lk

)
− ln P

(
R lk

)}
. (4.20)

However, experiments have shown that for the present online HWR data the ML criterion
achieves higher recognition rates than the MAP criterion.

Like in the vector data case the true parameters αlk
j , βlk

j and P
(
R lk

)
are generally not

known in real world applications, but have to be estimated with help of a set of labeled training
observations X. Section 4.3.2 describes a solution to this problem.

As noted in Section 2.3.1, in some situations (e.g. if data comes from sensors with different
sampling rates) it is favorable to normalize the score D∗[d̂]

(
t,R lk

)
by the Viterbi path length

N∗. Indeed, this strategy has been shown to be lucrative also in CSDTW classification, hence
instead of Equation (4.19) the variation

l̂ = argmin
l∈{1,...,L}

min
k∈{1,...,Kl}

{
D̃∗[d̂]

(
t,R lk

)}
(4.21)

is the basis of the CSDTW classification.
In this respect, Equation (4.21) in combination with Equations (2.33), (4.10), (4.11) and

(4.12) define the framework for the CSDTW classification. Figure 4.2 shows a graphical
illustration of a sample character classification.

A notable connection to the 1-NN classifier (Section 2.2.4) is obvious by a comparison of
Equations (4.21) and (2.30). In this sense, the allograph models of the CSDTW-classification
correspond to the training examples in the 1-NN classifier. Thus, CSDTW can be seen to
condense a cluster of training observations into one single statistical model.

4.3.1.4 DTW, SDTW and HMM — a unifying view

The concepts of DTW, SDTW and HMM share common aspects, which will be pointed out in
the following.
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FIGURE 4.2: The classification of a test pattern t (of class “b”; illustrated in the lower right corner). The

list on the right shows labels of reference models R lk, sorted by the CSDTW Viterbi distance D̃∗[d̂]
(
t,R lk

)
.

Since a “b” is on top of the list, t is correctly classified. The rectangular area below the list illustrates the
alignment of t with the third best match reference (a reference for the character “n”, illustrated to the left in a
similar way as in Figure 4.1). White areas indicate regions, which were pruned by a beam search criterion (cf.
Section 4.3.1.5). The Viterbi alignment path is illustrated by the sketched line: It traverses all aligned sample
point pairs. Corresponding points in the “b”, “n” and the Viterbi path are coded in the same color. The reader can
see apparent temporal distortions at the beginning, the center and the end region of the Viterbi alignment. The
CSDTW Viterbi distance is D̃∗[d̂]

(
t,R lk

)
= 2.69 for this particular alignment.
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4 CSDTW — A generative sequence classification framework

DTW and SDTW A valuable insight concerning DTW and SDTW is given by the obser-
vation that D̃∗[d̃] (t,r) is an exact specialization of D̃∗[d̂] (t,R).1 With the identifications

rj = µj, (4.22)

Σ = Σj (4.23)

and
αj (∆φ) = 1/ |P| (4.24)

the matching of the local distances of Equations (4.1) and (4.12) can easily be verified. Further,
the warping capabilities defined by P do not differ between DTW and SDTW, resulting in an
exact match of D̃∗[d̃] (t,r) and D̃∗[d̂] (t,R) in the case of the identifications seen above. The
only difference of D̃∗[d̃] (t,r) and D̃∗[d̂] (t,R) is the statistical treatment of the feature space
R

F and the transitions P for each sample point with SDTW.

SDTW and HMM HMMs can be formulated equivalently to SDTW. In the context of
the HMM nomenclature introduced in Section 2.3.2 the HMM states qj , state transitions

(qn, qn+1), Viterbi state sequence q∗, state transition probabilities aij and observation func-

tions bj (x) have correspondences in the index j of the reference sequence, ∆φ (n + 1), Φ∗,
αj (∆φ) and βj (x), respectively. The starting point constraint φ (1) = (1, 1) (cf. Sec-
tion 2.3.1) corresponds to the particular HMM state prior probabilities π = (1, 0, 0, . . . , 0)T .
Both concepts calculate the corresponding likelihoods p

(
t,q∗|λ

)
and p (t,Φ∗|R), with re-

spect to the underlying modeling assumptions.
However, to achieve full equivalence of SDTW and HMM, the concept of null transitions

must be included into the HMM framework. Null transitions in HMMs allow a step in the
state sequence without the emission of an observation. Hence, they correspond to the transi-
tion ∆φ = (0, 1) in the SDTW distance computation. They have been introduced in HMMs
of the IBM speech recognizer [Bahl et al., 1983], but most common HMM implementations
in HWR systems do not employ this concept. Instead, typically linear (corresponding to
P = {(1, 0) , (1, 1)}) or Bakis (corresponding to P = {(1, 0) , (1, 1) , (1, 2)}) transition mod-
els [Rabiner and Juang, 1993] are assumed in these systems.

For SDTW the specific choice of the Sakoe-Chiba transitions P = {(1, 0) , (0, 1) , (1, 1)}
and thus a “null-transition”-like modeling is very important for the following reasons:

1. Because of the flexibility of the alignment paths, the length of the reference sequences
R in SDTW can be arbitrary. This is distinct from HMMs without null transitions,
e.g., with P = {(1, 0) , (1, 1)}. There, the model length must not exceed the length of
the test pattern due to the compulsory step in the test sequence. The arbitrariness of
the reference length will allow an automatic, data-driven dimensioning of the CSDTW
reference models, as will be shown in Section 4.3.2.2.

1The same deliberations in this section hold for the non-normalized variants D∗[d̃] (t,r) and D∗[d̂] (t,R),
however, for simplicity reasons only the normalized DTW and SDTW distances will be explicitly pursued.
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4.3 CSDTW modeling

2. Since DTW and SDTW are defined on the same set of transitions P, the global warping
capability does not differ between them. This behavior is indispensable in a scenario
where DTW and SDTW shall model a related measure of distance. In fact, CSDTW
uses the DTW distance for clustering (cf. Section 4.3.2.1) and the SDTW distance
during classification (cf. Section 4.3.1.3) and statistical parameter estimation (cf. Sec-
tion 4.3.2.2).

3. The symmetric transitions ∆φ imply a symmetric set of possible alignments Φ in the
search space. A solution for Φ∗ is neither biased to the test nor the reference pattern.
This property is also convenient for the definition of a distance measure D̃∗[d̄]

(
T ,R

)

between two CSDTW reference models T and R , as it will been studied in Chapter 6.

In this section the connections between SDTW and HMM have been illuminated. These
considerations should help to transfer further development from one of these concepts to
the other one. In particular, HMM refinements like state tying, state duration modeling,
etc. [Rabiner and Juang, 1993] can straightforwardly be applied to SDTW and thus CSDTW.
It is also worth noting that SDTW is not restricted to Gaussian distributions, but can also
handle a mixture of densities or discrete probabilities.

So, as a SDTW model is equivalent to an HMM with null transitions, one might argue that
it would be favorable to use the wide spread HMM formulation rather than to introduce a
new concept by means of SDTW. An answer to this concern is as follows: The formulation
of SDTW retains a direct connection to DTW. In particular, it has been shown that a specifi-
cally modified DTW distance is an incarnation of the SDTW distance. This relation will help
with respect to the formulation of a holistic combination of the cluster analysis and statistical
sequence modeling.

4.3.1.5 Implementation related issues

Also with the computation of the SDTW distance it is advantageous to apply DP and beam
search in order to achieve a complexity reduction. Deviating from the standard beam search
Algorithm 2, two modifications and extensions have been applied in the implemented system.

The first modification concerns the strategy, at what stage concurrent hypotheses are com-
pared. Most beam search algorithms in the HMM context — also Algorithm 2 — handle this
issue frame-synchronous, i.e., they compare and eliminate hypotheses along a line φt (n) = k
(each dashed vertical line in Figure 2.8(b)). This strategy is well motivated by the fact that for
the typical choice of transitions in HMMs such as P = {(1, 0) , (1, 1)}, all hypotheses have an
equal amount of remaining transition steps to the endpoint (Nt, NR) of the path.

However, for the symmetric transitions of Equation (2.33) it is advantageous when the prun-
ing strategy reflects the symmetry of the warping space. One solution and our choice is to
compare and prune hypotheses synchronous with respect to the matrix diagonals, i.e., the lines
φt (n) + φR (n) = k (compare Figure 4.3). Algorithm 4 summarizes the complete diagonal
synchronous beam search algorithm.
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4 CSDTW — A generative sequence classification framework

Algorithm 4 Diagonal synchronous beam search

Variables:

Am: list of active states in diagonal m
D: new accumulated distance

Dij: smallest distance for matrix element (i, j)
Dm: smallest distance for diagonal m
sbeam: pruning threshold

1: A1 := [1];
2: Dij := ∞, ∀i = 1, . . . , Nt, j = 1 . . . , Nr ;
3: D(1)(1) := D1 := d (t1, r1)
4: Dm := ∞, ∀m = 2, . . . , Nt + Nr − 1;
5: for m = 1, . . . , Nt + Nr − 2 % diagonals

6: for all j ∈ Am % active states

7: for all ∆φ ∈ P % transitions

8: (k, l) := (i, j) + ∆φ; % goal matrix element of ∆φ
9: n := k + l − 1; % goal diagonal of ∆φ

10: D := Dij + d (tk, rl); % new accumulated distance

11: if D > Dn + sbeam % distance exceeds beam criterion

12: continue; % with next ∆φ
13: if (l ∈ An) ∧ (D > Dn) % another path hypothesis has smaller distance

14: continue; % with next ∆φ
15: Dkl := D; % D is new smallest distance for matrix element (k, l)
16: if D < Dn % D is new smallest distance for diagonal n
17: Dn := D;
18: if (l /∈ An)
19: if (D < Dn)
20: An := [l] + +An; % prepend l to list of active states of diagonal n
21: else

22: An := An + + [l]; % append l to list of active states of diagonal n
23:

24: D∗[d] (t,r) := DNt+Nr−1;

The second extension addresses a boost of efficiency when comparing multiple hypotheses
at a character level: The beam search strategy described above is applied for an evaluation of
Equation (4.11) inside the minimization of Equation (4.19). In frog on hand, similar pruning
strategies are employed across multiple evaluations of Equation (4.11) in the minimization of
Equation (4.19). In this respect, hypotheses for the computation of the particular R lk-Viterbi
matrix D∗[d̂]

(
t,R lk

)
are regularly compared with hypotheses for the Viterbi matrices of the

other allograph models D∗[d̂]
(
t,R l′k′

)
. If R lk is unlikely to be the optimal solution in that

context, the computation of D∗[d̂]
(
t,R lk

)
is aborted.
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FIGURE 4.3: Diagonal synchronous beam search: Contrary to the frame synchronous beam search, the pruning
is performed synchronous with respect to the matrix diagonals, in order to account for the symmetry of the
transitions P = {(1, 0) , (0, 1) , (1, 1)} (compare to Figure 2.8).

4.3.2 CSDTW training

This section describes the learning of the statistical allograph models ℜ ={
R lk

}
l∈{1,...,L},k∈{1,...,Kl}

. As motivated previously, CSDTW aims to combine two comple-

mentary strategies in order to cope with data variations. On a higher level, distinct writing
styles are explicitly separated into sub-classes. On a lower level, each of these writing styles is
statistically modeled. A solution for these two issues is incorporated in the CSDTW training.
To anticipate the idea in a few words, the first issue is treated by hierarchical cluster analysis,
the second by maximum-likelihood (ML) parameter estimation. A thorough description will
be given in the following.

As CSDTW is a generative approach, the training can be performed for each class indepen-
dently. Given a set of data examples, provided with the corresponding character class labels,
CSDTW training gives solutions to the following problems:

1. Generate allograph clusters C
lk, k = 1, . . . Kl of the training set of class l. Since neither

the data is labeled with cluster memberships, nor we want to label clusters by hand, this
part corresponds to an unsupervised learning task.

2. Estimate a CSDTW reference model R lk for each cluster C
lk.

4.3.2.1 Generation of the allograph clusters

Techniques for clustering, in particular the agglomerative hierarchical clustering algorithm
have been reviewed in Section 2.4. Here, it is applied as a solution for step 1 in the CSDTW
training.

In CSDTW a cluster is modeled by unimodal Gaussian probability densities. In this respect,
it is favorable to assume compact clusters rather than elongated or shell-shaped ones. Further,
since the number of clusters may be different for each class and not known a priori, a flexible
treatment of the clustering granularity is desired. The agglomerative hierarchical clustering
fulfills these requirements.
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4 CSDTW — A generative sequence classification framework

Some issues of the agglomerative hierarchical clustering have to be specifically adapted to
the present sequence data. It will be described in the following and, for convenience, the order
of the issues is kept the same as in Section 2.4.

Point and cluster dissimilarities CSDTW aims to reveal clusters based on a distance,
which is consistent with the distance measure in classification, i.e., D̃∗[d̂] (t,R). As argued
above, the modified DTW Viterbi distance D̃∗[d̃]

(
x(k),x(k′)

)
satisfies this claim and thus is

our favorable choice for the point dissimilarity in the cluster space,

D
(
x(k),x(k′)

)
= D̃∗[d̃]

(
x(k),x(k′)

)
. (4.25)

The cluster dissimilarity function D
(
C

k, Ck′
)

shall be based on the point dissimilarity of
the cluster elements. As argued, the average dissimilarity gives a favor to compact clusters —
which is the aim in the context of the Gaussian PDF models — and achieved best recognition
results in our experiments.

Cluster representatives As will be claimed in Section 4.3.2.2, CSDTW uses examples
from the domain of training sequences for initialization of the iterative parameter estimation.
Hence, point representatives x̃(k) rather than hyperplane or hyperspherical representatives
are a reasonable choice. Further, the median center is compatible with the suggestion of
Theodoridis and Koutroumbas [1999], as Equation (4.25) is not a metric.

Number of clusters An example of a dissimilarity dendrogram for the clustering of five
lower case characters “b” is shown in Figure 2.9. The reader can get an idea that a sensible
range of settings for Dmax could roughly lie between 2 and 20.

Pruning clusters We experienced that it is beneficial to eliminate clusters, the cardinality
of which is smaller than a threshold Omin. This benefit presumably arises from the following
two reasons. First, small clusters are likely to be produced by data outliers. In the UNIPEN

database outliers are quite often present due to noisy and mislabeled data. Second, the statisti-
cal parameter estimation, as will be introduced in the following section, is not robust for small
clusters and should be avoided for those.

4.3.2.2 Estimation of the statistical model parameters

The outcome of the last section is a set of clusters
{
C

lk
}

l∈{1,...,L},k∈{1,...,Kl}
. In the sense of

Section 4.3.1.2, C
lk is to be modeled by R lk =

[
Rlk

1 , . . . ,Rlk
NRlk

]
. Assuming a fixed set of

NR lk , the parameters to be estimated are: the discrete transition probabilities αlk
j (∆φ) for all

∆φ ∈ P, the mean µlk
j and the covariances Σlk

j .
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FIGURE 4.4: A dissimilarity dendrogram of a clustering of five characters “b”. Each leaf in the tree represents
the below positioned character pattern; a node denotes a merge step of two particular clusters in algorithm 3.

The level of the node on the ordinate corresponds to the cluster dissimilarity D
(
C

k, Ck′

)
, when merging. The

choice as is made in the figure will generate two clusters. A specific value for Dmax determines the granularity
of the final clustering. For an interpretation of the character features refer to Figure 3.2 (b).

A common solution for the estimation problem is to pursue the maximum likelihood (ML)
approach. In the CSDTW context, ML seeks parameters R lk that maximize the objective

L
(
R lk

)
=
∑

x∈Clk

ln P
(
x|R lk

)
. (4.26)

This task already has been tackled in the HMM context (cf. Section 2.3.2) and we can benefit
from approved optimization algorithms. For its simplicity and speed, the decision directed
Viterbi training (also known as segmental K-means algorithm), which instead of L

(
R lk

)

maximizes the Viterbi path-optimized variant

L∗
(
R lk

)
=
∑

x∈Clk

ln P
(
x,Φ∗

x,R lk |R lk
)
, (4.27)

is a beneficial choice. This approach gives estimates for the model parameters in an iteration
of two basic steps.

Given an initial guess for R̂ lk, step one computes the Viterbi alignments Φ∗
x,R lk for all

x ∈ C
lk. In step two, an ML parameter re-estimation of µ̂lk

j and Σ̂lk
j is performed, based on
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the set Z
lk
j of sample points that have been aligned to j in step one:

µ̂lk
j =

1∣∣Zlk
j

∣∣
∑

(x,n,x)∈Zlk
j

x (4.28)

Σ̂lk
j =

1∣∣Zlk
j

∣∣− 1

∑

(x,n,x)∈Zlk
j

(
x − µ̂lk

j

) (
x − µ̂lk

j

)T
(4.29)

with

Z
lk
j =

{
(xi, n, x) |φ∗

x,R lk (n) = (i, j) , ∀n = 1, . . . , Nx,R lk , ∀x = [x1, . . . ,xNx ] ∈ C
lk
}

,
(4.30)

where Nx,R lk is the length of Φ∗
x,R lk .

The transition probability estimates (α̂′)lk
j (∆φ) are calculated by counting the number of

transitions taken with respect to the Viterbi alignments and a following normalization:

(α̃′)
lk
j (∆φ) =

∣∣∣Z̃lk
j (∆φ)

∣∣∣ (4.31)

(α̂′)
lk
j (∆φ) =

(α̃′)lk
j (∆φ)

∑
∆φ∈P

(α̃′)lk
j (∆φ)

(4.32)

with

Z̃
lk
j (∆φ) =

{
(xi, n,x) |∆φ∗

x,Rlk (n) = ∆φ ∧ φ∗
x,Rlk (n) = (i, j) , ∀n = 1, . . . , Nx,Rlk , ∀x = [x1, . . . ,xNx ] ∈ C

lk
}

.

The re-estimated parameters µ̂lk
j , Σ̂lk

j and (α̂′)lk
j (∆φ) then define a new model R̂ lk and the

iteration is repeated.
While the Viterbi training is well defined, theoretically founded and successfully used in

many situations, an open question in the context of the parameter estimation affects the prob-
lem of dimensioning and initializing R lk.

The problem of dimensioning is important, since the number of model states, i.e., NR lk

is not included in the ML optimization and has to be specified manually beforehand. On
the other hand, the problem of initialization is important particularly with regard to the fact
that the iterative training gives a local optimum to the ML criterion. The quantities among
R lk, that are particularly sensitive to a proper initialization, are the parameters specifying the
probability density function [Rabiner and Juang, 1993, Chapter 6.12], i.e., µlk

j and Σlk
j in our

context.
CSDTW solves this problem by a unique, data-driven procedure. As the clustering was de-

signed for generating compact clusters and point cluster representatives, the latter, in particular

the median centers x̃lk =
[
x̃lk

1 , . . . , x̃lk
Nx̃lk

]
, are well suited for dimensioning and initialization.

Thus, the CSDTW parameter estimation initializes:
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4.4 Analysis of complexity

1. Transition probabilities

(α′)
lk
j (∆φ) = 1/ |P| , ∀j = 1, . . . , Nx̃lk , ∀∆φ ∈ P (4.33)

2. Mean
µlk

j = x̃lk
j , ∀j = 1, . . . , Nx̃lk (4.34)

3. Covariance
Σlk

j = Σ, ∀j = 1, . . . , Nx̃lk (4.35)

(cf. Section 4.3.1.4 for an explanation of Σ)

Also in that regard, NR lk is implicitly fixed by this prescription to Nx̃lk . Thanks to the
Sakoe-Chiba transitions NR lk can be arbitrary, contrary to HMM implementations without
null-transitions. Algorithm 5 summarizes the parameter estimation with the Viterbi training
for a cluster C

lk.

Algorithm 5 CSDTW Viterbi training

Variables:

S: number of iterations

R̂ lk: actual estimate of reference model for cluster C
lk

1: Initialize R̂ lk according to Equations (4.33)–(4.35)
2: for s = 1, . . . , S % iteration

3: determine Φ∗
x,R̂ lk

for all x ∈ C
lk % compute Viterbi alignments

4: re-estimate parameters µ̂lk
j , Σ̂lk

j and (α̂′)lk
j (∆φ) with help of Equations (4.28)–(4.32)

Note that with the proposed initialization the SDTW Viterbi distances D̃∗[d̂]
(
x,R lk

)
, x ∈

C
lk in the first Viterbi training iteration are equivalent to the DTW clustering dissimilarities

D̃∗[d̃]
(
x, x̃lk

)
, x ∈ C

lk, as can be seen by a comparison of Equations (4.1) and (4.12). This
connection additionally reveals the attractive holistic property, regarding a seamless integra-
tion of clustering and statistical parameter estimation in CSDTW.

Finally, it should be mentioned that other training algorithms like the Baum-Welch parame-
ter re-estimation as well as discriminative approaches (maximum mutual information, MMI,
minimum classification error, MCE) [Rabiner and Juang, 1993, Juang et al., 1997] can be em-
ployed instead of the Viterbi training, if desired.

4.4 Analysis of complexity

An SDTW distance evaluation D̃∗[d̂] (t,R) using beam search has the asymptotic complexity

CTime

(
D̃∗[d̂] (t,R)

)
= O(Ñ · |P| · F 2), (4.36)
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4 CSDTW — A generative sequence classification framework

with Ñ the average length of sequences R lk and t. F (= 3 in the present case) equals the
feature space dimension and O(F 2) corresponds to the evaluation of Equation (4.12). Exper-
imentally, for Ñ = 42 the evaluation time was measured as

Time
(
D̃∗[d̂] (t,R)

)
≈ 0.0005 sec (4.37)

in a C++ implementation on an AMD Athlon 1600MHz.
For a model size (= total number of generated allographs models) Atot = 600 the classifica-

tion time is

Time (Classification) ≈ Atot · Time
(
D̃∗[d̂] (t,R)

)

= 600 · 0.0005 sec = 0.3 sec, (4.38)

across-model beam search (as explained in Section 4.3.1.5) further reduces the expense to

Time (Classification) ≈ 0.13 sec.

The training complexity CTime (Train) of CSDTW is dominated by the cluster analysis, which
is asymptotically

CTime(Cluster) = O
(
L ·
(
M̃2 · CTime

(
D̃∗[d̃] (t,r)

)
+ M̃3

))
, (4.39)

with L the number of classes and M̃ the average number of training patterns in one class.

The term M̃2 · CTime

(
D̃∗[d̃] (t,r)

)
corresponds to the computation of the pairwise pattern

dissimilarities, M̃3 for the cluster linkage [Theodoridis and Koutroumbas, 1999]. In the lower
case character experiments (M̃ ≈ 1500) the training time was measured as

Time(Train) ≈ 20 h. (4.40)

Beneficially, training can easily be parallelized into L independent processes.
The memory complexity CMemory basically consists of the storage of all CSDTW reference

models. For Atot = 600,

Memory ≈ Atot · Ñ · (F + F 2 + |P| · F ) · 4 Byte

= 600 · 42 · (3 + 9 + 9) · 4 Byte = 2067 KByte (4.41)

without compression.

4.5 CSDTW word classification

In frog on hand, an expansion of the CSDTW character recognition to the recognition of words
has been studied by Simon [2003], with inspiration from HWR and speech recognition litera-
ture [Plamondon and Srihari, 2000, Deshmukh et al., 1999, Dengel et al., 1997, Manke et al.,
1996, Ney, 1984]. A detailed description of the implementation is given in the above men-
tioned work. The following sections shall sketch the idea.
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4.5 CSDTW word classification

4.5.1 The most probable super reference

The problem of word classification corresponds to the uncovering of the true character symbol
sequence

l = [l1, . . . , lS] , (4.42)

which has generated the writing under consideration, or in the context of classification, the
writings sequence t of feature vectors, respectively. Note that, contrary to the previous con-
vention, t appears here in the semantic of an entire word.

Principally, the strategy of the pursued word classification aims at the matching of t with
concatenations (also called super references) R

τ of allograph references R lk, that is,

R
τ = Rτ(1) ⊕ . . . ⊕ Rτ(S). (4.43)

For simplicity, a fixed super reference length S is assumed in this formulation. The mapping

τ : N → {1, .., L} × {1, .., K} (4.44)

with K = maxl {Kl} identifies the sequence of character allographs R lk that are concatenated
for the formation of R

τ . Clearly, the knowledge of the true R
τ (or equivalently τ ) implies l .

For a solution to the classification problem, Simon adopts a statistical point of view and as-
sumes that a-posteriori probabilities P (Rτ |t) are accessible for the super reference candidates
R

τ . Under this assumption, and following the above (cf. Section 2.2.1.1) addressed consider-
ations from decision theory, the optimal classifier decides, given t, on the most probable super
reference

R̂τ = argmax
Rτ

{P (Rτ |t)} . (4.45)

Most often, P (Rτ |t) can not directly be estimated, but — like in previous explanations —
via its decomposition into the product of a-priori probability and likelihood using the Bayes
rule:

R̂τ = argmax
Rτ

{
P (Rτ ) p (t|Rτ )

p (t)

}
= argmax

Rτ

{
P (Rτ )︸ ︷︷ ︸ p (t|Rτ )︸ ︷︷ ︸

}

Linguistic model Appearance model

.

(4.46)
This decomposition provides a further, intuitive insight into the word recognition problem,

with which it can be regarded as two decoupled challenges: First, like in the character recogni-
tion context, the term p (t|Rτ ) gives a leverage for the statistical modeling of the appearance

of the handwriting, that is, t.
Second, the explicit appearance of word prior probabilities P (Rτ ) in Equation (4.46) rep-

resents a starting point for incorporating the constraints of the domain linguistic.
The importance of this linguistic modeling is particularly apparent as the computational

complexity of Equation (4.46) is proportional to the number of R
τ candidates, which — with-

out constraint — increases exponentially with the sequence length S. For instance, in the
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4 CSDTW — A generative sequence classification framework

case of Atot = 100 allographs and a sequence length S = 10 a total number of 10010 = 1020

different super references can be formed, which is intractable for a practical evaluation.

However, in natural languages, super references with P (Rτ ) = 0 are very frequent, thus the
costly evaluation of their appearance model p (t|Rτ ) can be skipped with this prior knowledge.
As another benefit, the reduction of the classification problem to fewer classes reduces the risk
of misclassifications.

Existing solutions for an implementation of the domain linguistic are predominantly
founded on two techniques: n-grams [Ney, 1992], which aim at an estimation of the con-
ditional character probabilities P (li|li−1, . . . , li−n+1), and lexica (or dictionaries). The work
of Simon [2003], and also the following depiction, is based on the latter.

Before the linguistic modeling with dictionaries will be addressed in the next sections, an
important issue should be pointed out also in this context: The true statistics P (Rτ ) and
p (t|Rτ ) are mostly not known in practice, and have to be approximated by estimates with help
of data samples. In addition to the already addressed difficulty of estimating the appearance
likelihood p (t|Rτ ), this additionally refers to the estimation of the word priors P (Rτ ). In
situations where the sampling is not sufficient, a correct word could be assigned a prior of
P̂ (Rτ ) = 0. Clearly, this word will never be considered for the decision of the classifier. In
literature, this problem is associated with the term “out-of-dictionary”.

4.5.2 Linguistic modeling with a dictionary trie

The rationale of the linguistic modeling with a dictionary is to give a list of super references
with P (Rτ ) 6= 0 — the actual entries in the dictionary — and implicitly assume P (Rτ ) = 0
for the remaining ones. Obviously, this modeling technique reduces the computational com-
plexity of Equation (4.46) to an order that is linear with the dictionary size, assuming a naive,
so-called flat dictionary representation.

Although this is more efficient than an exhaustive search, it can still be tremendously high
for capacious dictionaries (e.g., with a size of 20 000 entries). In this respect, further modeling
techniques are necessary in order to achieve real time processing.

One technique which permits a more efficient dictionary modeling exists by means of the
the so-called trie2 [Manke et al., 1996, Dengel et al., 1997] (cf. Figure 4.5). This approach has
also been chosen for the frog on hand implementation.

Principally, a trie organizes the dictionary entries with help of a tree. In this formulation,
an edge is labeled with a character class. Each tree node is associated with a character label
sequence, in particular the one that is formed by concatenating the edge character labels lead-
ing from the root to the node. For the dictionary word representation, the tree contains a set of
distinguished nodes which correspond to the dictionary words. In the example of Figure 4.5,
those special nodes are marked with a bold circle.

2The spelling trie originates from the term “retrieval” [Dengel et al., 1997].
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4.5 CSDTW word classification
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FIGURE 4.5: A dictionary trie organizes entries of a word dictionary in a tree structure. Each edge is associated
with a character label, each node with a word prefix, corresponding to the edge labels originating from the root
node. Dictionary entries are indicated by distinguished nodes, in this figure by a bold circle. (Figure reproduced
from [Simon, 2003].)

4.5.3 Word classification with a dictionary trie, DP, and beam search

In the handwriting recognition community and contiguous research areas it is well under-
stood how the above described techniques of dictionary tries, dynamic programming and beam
search (cf. Section 2.3.3) can be combined to implement HMM based word recognition. In
his work, Simon [2003] transfers these techniques to frog on hand and the CSDTW modeling.

In its simplified variant, the idea can be summarized by the following aspects:

1. Trie edges are associated with the corresponding CSDTW allograph models. Dy-
namic programming techniques, based on those explained in Section 4.3, are used

to compute warping distances D
[
d̂
] (

ts, |Rτ(s)
)

of those allograph models Rτ(s)

and sub-sequences ts of the test pattern. Similar to the deliberations from Propo-
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4 CSDTW — A generative sequence classification framework

sition 4.1, the warping distance can be set into correspondence with the likelihood
p
(
ts, (Φs)∗ |Rτ(s)

)
, where (Φs)∗ denotes the respective Viterbi alignment. In order

to allow for different allograph hypotheses, allograph models for one edge character
class are evaluated in parallel.

2. The topology of the individual CSDTW allograph models is extended in a way that
transitions from the last state to the first state of subsequent CSDTW allograph models
in the trie are permitted. The computed character likelihood p

(
ts, (Φs)∗ |Rτ(s)

)
can

be passed across the trie node in order to form the entire word likelihood p (t,Φ∗|Rτ ).
Figure 4.6 illustrates this idea for the example of a transition between the CSDTW
models of “i” and “n”.
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FIGURE 4.6: Word recognition with a dictionary trie and dynamic programming: The abscissa corresponds to
the feature vectors of a simple test sequence, the word “in”. The ordinate shows a sequence of the two CSDTW
models that form the most probable super-reference R

τ . Compared to the character recognition, additional
transitions are included at the boundaries of the CSDTW models, in accordance to the nodes in the lexicon trie.
Regard that the obtained Viterbi path implicitly gives a segmentation of t into its character parts t1 and t2. In
this example, the two characters “i” and “n” are segmented between sample points 5 and 6. (Figure reproduced
from [Simon, 2003].)

3. Despite the efficient tree structure, the evaluation of the whole trie is still too complex
for a real time evaluation of reasonable dictionary sizes. Hence, beam search criteria
similar to those explained in Section 2.3.3 are included in order to prune the evaluation
of unlikely word hypotheses in an early stage of the search.
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4.6 Experiments

An interesting characteristic of the above sketched word recognition is that an optimal seg-
mentation of t into t1, . . . , tS is obtained implicitly as a by-product from the recognition. In
particular, the segmentation can be read from the Viterbi path transitions between two CSDTW
character models (cf. Figure 4.6).

For further details about the recognition of words, its implementation and experimental
results, it is referred to the above mentioned literature.

4.6 Experiments

In order to evaluate the performance of frog on hand with CSDTW classification, and to
compare with other recognition systems, a number of experiments have been carried out.

4.6.1 Data

The experiments are based on sections 1a, 1b and 1c (digits, upper and lower case characters,
respectively) of the UNIPEN [Guyon et al., 1994] “Train-R01/V07” database. For these sec-
tions the data set size is ≈ 16.000, 28.000 and 61.000 characters, respectively. The characters
were randomly and disjointly divided into training and test sets of a ratio 2 : 1. The division
was completely random, thus one writer was allowed to be present in both of the sets.

Such a testing environment is also called multi-writer evaluation in literature. Contrary, an
omni-writer evaluation takes care that one writer only appears in one of the sets but not in
both, which is apparently a more difficult testing environment.

It should be noted that UNIPEN consists of very difficult data due to the variety of writers
and noisy or mislabeled data. The present experiments use the database without cleaning in
order to be as comparable as possible to other classification reports.

4.6.2 Results

For an effective evaluation, a few model parameters had to be set. A value for an initial,
global covariance Σ (cf. Section 2.3.1) could be estimated on the basis of an ML estimation
of previous models to Σ = diag (0.08, 0.05, 0.15).

Beside the error rate, a significant property of a CSDTW classification model is its size,
that is, the total number Atot of generated allograph models. By varying Dmax in the range
[2.0, . . . , 7.0] (compare Figure 4.4) and Omin in [6, . . . , 23], differently sized CSDTW clas-
sification models were generated. Table 4.1 summarizes mean classification error rates Ẽ
and mean model sizes Ãtot for selected configurations, each of which is the average from five
different experiments with varying dataset partitionings.

From the table it can be taken that an error minimum is given in all sections for Dmax ≈
3.5–4.0 and Omin = 6, leading to model sizes of Ãtot = 150, 268 and 608 for sections 1a/b/c,
respectively. Notably, a further decrease of Dmax (and thus an enlarging of the model size)
degrades the accuracy. On the other hand, the model size can significantly be reduced (by a

73



4 CSDTW — A generative sequence classification framework

UNIPEN Approach Error rate Ãtot Dmax Omin UNIPEN dataset

section Ẽ comment

1a

CSDTW

3.9 % 309 2.0 6
Train-R01/V07

(digits)

2.9 % 150 3.5 6

67 % train / 33 % test set3.3 % 65 6.0 6

4.3 % 27 7.0 23

DAG-SVM-GDTW
3.8 %

Train-R01/V07

(cf. Section 7) 40 % train / 40 % test set

MLP
3.0 % DevTest-R02/V02

[Parizeau et al., 2001]

HMM
3.2 %

Train-R01/V06

[Hu et al., 2000] 4 % bad data removed

1b

CSDTW

9.2 % 522 2.0 6
Train-R01/V07

(upper

7.2 % 268 4.0 6

67 % train / 33 % test set

case)

7.8 % 161 6.0 6

9.5 % 67 7.0 23

DAG-SVM-GDTW
7.6 %

Train-R01/V07

(cf. Section 7) 40 % train / 40 % test set

HMM
6.4 %

Train-R01/V06

[Hu et al., 2000] 4 % bad data removed

1c

CSDTW

9.9 % 1050 2.0 6
Train-R01/V07

(lower

9.3 % 608 3.5 6

67 % train / 33 % test set

case)

10.3 % 283 6.0 6

11.1 % 117 7.0 23

DAG-SVM-GDTW
12.1 %

Train-R01/V07

(cf. Section 7) 20 % train / 20 %test set

MLP
14.4 % DevTest-R02/V02

[Parizeau et al., 2001]

HMM-NN hybrid
13,2 % Train-R01/V07

[Gauthier et al., 2001]

HMM
14,1 %

Train-R01/V06

[Hu et al., 2000] 4 % bad data removed

TABLE 4.1: Experiments on the UNIPEN sections 1a/b/c (indicated in the first column). The second column
denotes the classification approach used. Here, also other HWR approaches have been collected from literature.
The third column shows the mean error rate Ẽ of five different dataset partitionings. For CSDTW it was computed
for differently sized models, as indicated in the forth column by the average total number of allographs Ãtot. The
different model sizes were generated by varying Dmax in the range [2.0, . . . , 7.0] and Omin in [6, . . . , 23] (see
column five and six). The CSDTW result with the lowest error rate is typed bold face. As some experiments
were computed on different UNIPEN distributions, details are given in the last column.
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4.7 Summary

factor ≈ 5) with Dmax = 7.0 and Omin = 23. For this parameter configuration, the recognition
accuracy decreases by absolute ≈ 2 %, however remains in an acceptable range.

For a comparison of the recognition accuracy in a global context other UNIPEN results
were collected from literature and included in Table 4.1. It must be stated that though all
experiments were computed on UNIPEN data, various reports used different character sets.
Benchmarks were computed on miscellaneous versions and sizes of a UNIPEN database or
some authors removed low quality/mislabeled characters, as indicated in the table’s last col-
umn. Further, differences with respect to the multi- and omni-writer testing environments
aggravate a comparison, as argued above. In this respect caution must be given, when inter-
preting the rates. However, beyond this caution, a comparison of all results indicates that frog

on hand with CSDTW classification achieves equivalent or superior rates with respect to all
other approaches in the three categories. Especially for the important lower case character
section, frog on hand with CSDTW performs significantly better.

4.6.3 Visual study of CSDTW models

Contrary to the speech recognition domain and due to the rather geometrically selected fea-
tures, a feature representation of the second order statistic (the Gaussian parameters µlk

j and
Σlk

j ) of a handwritten character pattern can nicely and meaningfully be illustrated in the
present HWR system. One example has already been depicted in Figure 4.1. Figure 4.7
shows — with the same representation — a selection of CSDTW references R lk.

A few conclusions can be derived from the figure:

1. The combined cluster analysis and parameter estimation of the CSDTW training is well
suited to generate typical and pairwise dissimilar allograph reference models R lk. In
the case of the character “x” note the different stroke order and direction for the models
R (”x”)1 and R (”x”)2.

2. Larger variations, indicated by the length of the lines attached to the sample points, are
often found in the beginning and the end of the characters, smaller variations in the
center part.

3. For reference models R lk with large NR lk the transition (0, 1) has high probability, for
reference models R lk with small NR lk the transition (1, 0). This can be explained by
the fact that a test pattern t has to be aligned against all sample points in R lk. In the
case of a “long” R lk and an average sized t this is only possible if the transition (0, 1)
is taken frequently.

4.7 Summary

This chapter has described CSDTW as a generative learning framework, which combines
cluster analysis and statistical sequence modeling. On the one hand, it employs a specifically
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FIGURE 4.7: A selection of allograph reference models for the character classes “h”, “b”, “a” and “x”. For
a description of the graphics it is referred to the caption of Figure 4.1. Basis for these reference models is a
UNIPEN lowercase character experiment with the parameter configuration Dmax = 3.5 and Omin = 6 (cf.
Table 4.1). The number of allographs Al for the character class l is indicated in the first column. The second,
third and fourth column represents three selected reference models, the cardinality

∣∣Clk
∣∣ of the respective cluster

is given below.
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FIGURE 4.8: A summary of the CSDTW training and classification framework. Training comprises clustering

and parameter estimation, classification comprises scoring and minimizing. The clustering uses D̃∗[d̃] as the
underlying distance function, parameter estimation and scoring use D̃∗[d̂]. Notably, D̃∗[d̃] and D̃∗[d̂] are closely
related. In this respect, CSDTW is a holistic combination of clustering and statistical sequence modeling.

modified DTW Viterbi distance D̃∗[d̃] (t,r) in the cluster analysis. On the other hand, the
SDTW Viterbi distance D̃∗[d̂] (t,R) is used in the statistical parameter estimation and clas-
sification. Notably, D̃∗[d̃] (t,r) is a special incarnation of D̃∗[d̂] (t,R). This aspect has two
attractive effects. First, clustering and statistical modeling appear as a holistic combination,
where cluster and classification space coincide. Clusters in the cluster space correspond to
well formed clusters in the classification space. Second, the result of the clustering can be
consulted as a natural solution to the problem of dimensioning and initializing the CSDTW
reference models in the context of the iterative parameter estimation. In this respect, cluster-
ing and statistical parameter estimation are seamlessly integrated into each other. Figure 4.8
summarizes the training and classification issues graphically.

Another beneficial property of CSDTW is the following. With the clustering parameters
Dmax and Omin the classifier designer has direct influence on the granularity of the clustering.
He or she can scale the classifier with respect to a wide range of cluster numbers and sizes,
finding a compromise between the recognition accuracy and the computational time and mem-
ory requirements. A concrete example is the following: a large Dmax implies that the role of
the allograph models correspond to broader (maybe culturally conditioned) variations, while
using a smaller Dmax further reflects variations that may be due to different writer habits or the
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4 CSDTW — A generative sequence classification framework

word context in that a character is written. Figure 4.4 gives an illustration for this idea. The
scalability has been shown to be very practicably in particular for the transfer of frog on hand

with CSDTW on a Compaq iPAQ PDA (cf. Chapter 8). In this application, limited memory
and computational resources play a significant role.

78



CHAPTER 5

Statistics of semi-directional data

In Chapter 3 the tangent slope angle has been defined and integrated as one valuable element

into the feature sub-space representation of online handwriting. Following, Chapter 4 has

introduced the CSDTW modeling, which is — among others — based on a statistical model-

ing of the feature sub-space. In this context, there is still one open question to be answered.

Namely, the tangent slope angle differs from the other features with respect to one particular

aspect: it originates from directional instead of the common linear data. As will be shown

later, directional data require specific techniques for a statistical modeling. An additional

difficulty is the circumstance that the tangent slope angle appears in combination with linear

data, x̃ and ỹ. This chapter describes, how linear and directional variables can be combined

in a single, multivariate PDF: the multivariate semi-wrapped Gaussian PDF. In order to re-

duce analytic complexity, considerations are confined to the constraint that variances of the

circular variables are small. The use of the modeling in the CSDTW classification shows that

the described solution gives significant improvements in recognition accuracy, computational

speed and memory requirements, compared to commonly employed modeling approaches.

5.1 Introduction

In statistical pattern recognition the modeling of an abstract feature space with parametric
PDFs is very common. Often — also in Chapter 4 — the Gaussian (or normal) PDF

p (x) = Nµx,Σx
(x) =

(
|2πΣx| exp

(
(x − µx)

T
Σ−1

x (x − µx)
))−1/2

(5.1)

or a mixture of it is used to describe the probability density of a random vector x ∈ R
F . For

linear data, i.e., data that are distributed on the real line R, sensible definitions of the Gaussian
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5 Statistics of semi-directional data

parameters mean and covariance exist, namely

µx = E [x] (5.2)

Σx = E
[
(x − µx) (x − µx)

T
]
, (5.3)

with E [·] the expectation value of its argument.
However, not all data in real world applications are of this particular linear type. In some sit-

uations [Mardia, 1972, Shatkay and Kaelbling, 1998, Döker et al., 1999, Hyberts et al., 1992,
Lovell et al., 1991] data originate from directions. Directions, in general, may be visualized as
points on the surface of a hypersphere, in two dimensions on the circumference of a circle. In
the latter situation we will talk about circular data. A directional variable is inherently cyclic
and the common statistical modeling used for linear data — including Equations (5.1)–(5.3)
— is not appropriate here, as will be shown later.

5.2 Literature review

Also in (online) HWR we are faced with the problem of directional data, since a valuable fea-
ture of this particular circular type exists, namely the tangent slope angle θ (cf. Section 3.5).
The answer of many HWR systems [Guyon et al., 1991, Schenkel et al., 1995, Jäger et al.,
2000] to the problem of modeling circular features with parametric PDFs is somewhat defen-
sive. Basically, they avoid a direct modeling by a transformation of θ into the representation
(cos θ, sin θ). Contrary to θ, the elements cos θ and sin θ themselves are not circular. In this
respect, previous systems take them for a linear feature and model (cos θ, sin θ) instead of θ
as part of a linear feature vector by Equations (5.1)–(5.3).

However, there are some drawbacks in this strategy. First, the dimension of the resulting
feature space is unnecessarily increased (by one), since the strategy uses two dimensions to de-
scribe one degree of freedom. Among others, computational speed and memory requirements
are negatively affected. Second, the (cos θ, sin θ) representation includes high dependencies:
the feature pair (cos θ, sin θ) lies on the circumference of the unit circle. In the situation when
parametric basis functions are used to model probability densities, those dependencies have
to be addressed. This, however, is very difficult to achieve since basis functions generally
assume a restrictive shape.

On the other hand, statisticians have developed methodologies that deal with directional
data, in last decades especially influenced by the work of Mardia [1972]. Remarkably, it seems
that this work has not found its way into the pattern and handwriting recognition community.

This unfortunate situation might be explained by the following reason. While the directional
methodologies developed so far are well suited for distributions of solely directional variables
(as they appear in physical, biological, geological, geographical or medical applications) they
still lack a clear description how they can be advantageously applied for multivariate PDFs of
both linear and directional variables. Contrary to the applications listed above, where mostly a
two- or three-dimensional space of spatial or physical coordinates is to be modeled, in pattern
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5.3 Statistics of directional data

recognition we are faced with the problem of modeling an abstract feature space. Mostly, in
these cases the situation of mixed linear and directional data exist.

This chapter proposes an approach to the problem of integrating directional and linear data
into a multivariate PDF that aims to model an abstract feature space: the multivariate semi-

wrapped Gaussian PDF [Bahlmann, 2005]. In order to reduce analytic complexity, consider-
ations are confined to a special constraint: it is assumed that the circular feature has a small
variance.

The argumentation of this chapter is as follows: Sections 5.3 and 5.4 first motivate and re-
view basic concepts from the statistics of directional data. They further introduce a distribution
for directional data (the wrapped Gaussian distribution) and propose an approximation of it.
Following, Section 5.5 introduces the formulation of a multivariate semi-wrapped Gaussian

distribution and transfers the deliberations made about approximation issues from Section 5.4
to this construct. Finally, Section 5.6 gives experimental results.

5.3 Statistics of directional data

Directional data may be visualized as points on the surface of a hypersphere, in two dimen-
sions on the circumference of a circle. Figure 5.1 illustrates an example. One problem that
arises with directional data in combination with the use of “conventional”, i.e., linear statistics
shall be illustrated in the following.

5.3.1 Linear statistics and directional data

Consider a linear variable x and a transformation ts(x) = x̃ = x − ν. The transformation
ts represents a shift of the coordinate system origin. Valuable properties of the statistics with
linear data, in particular of mean and variance, can be expressed by the equations

µx̃ = µx − ν (5.4)

σ2
x̃ = σ2

x. (5.5)

Equation (5.4) implies that the relative position of the mean remains invariant under a shift
of the coordinate system origin. Equation (5.5) refers to the invariance of the variance. In
other words, the validity of Equations (5.4) and (5.5) guarantees a statistical behavior which
is essentially independent from the chosen coordinate system.

Now consider a circular variable ϑ. For ϑ an addition “a + b” becomes “(a + b) mod 2π”.
Here and in the remainder, we assume a period of 2π and adopt the convention of angles rep-
resented in the interval (−π, π]. Note that under this assumption the mod operator also maps
to (−π, π]. Let the variables µc

ϑ and V c
ϑ denote the circular counterparts of mean and vari-

ance. Reasonable definitions for µc
ϑ and V c

ϑ should have a similar behavior as Equation (5.4)
and (5.5) under a shift of the zero direction which is expressed by ϑ̃ = (ϑ − ν) mod 2π. In
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µ̂ϑ

(a) ϑ
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σ̂ϑ̃

µ̂ϑ̃

(b) ϑ̃

FIGURE 5.1: Data points of a circular variable are shown as white dots on the unit circle. This figure illustrates
that linear definitions of mean and variance violate the invariance of location and variance for directional data
under a shift of zero direction ϑ̃ = (ϑ − ν) mod 2π: (a) For the example observations Θ = {0.1π, 0.2π, 0.6π},
unbiased ML estimates for mean and standard deviation can be calculated to µ̂ϑ = 0.3π (corresponding to
the black dot) and σ̂ϑ ≈ 0.26π (corresponding to the length of the arc). (b) The observations are shifted to
Θ̃ = {0.6π, 0.7π,−0.9π}, corresponding to ν = −0.5π. In the figure this corresponds to a rotation of the
coordinate axes about 0.5π clockwise. Estimates for mean and standard deviation of the data points in the new
coordinates can be calculated to µ̂ϑ̃ ≈ 0.13π and σ̂ϑ̃ ≈ 0.90π. Obviously, µ̂ϑ̃ 6= (µ̂ϑ − ν) mod 2π and σ̂2

ϑ̃
6= σ̂2

ϑ,
thus neither the location nor the variance are invariant with respect to a shift of the origin.

this respect, equivalent invariances for a circular variable are

µc
ϑ̃

= (µc
ϑ − ν) mod 2π (5.6)

V c
ϑ̃

= V c
ϑ . (5.7)

However, it can easily be verified that with the linear definitions of mean and variance, given
in Equations (5.2) and (5.3), the desired invariance is violated, i.e.,

µϑ̃ 6= (µϑ − ν) mod 2π (5.8)

σ2
ϑ̃
6= σ2

ϑ (5.9)

in general. Figure 5.1 gives an example for this misbehavior, employing a simple set of circular
observations Θ = {0.1π, 0.2π, 0.6π} and Θ̃ = {0.6π, 0.7π,−0.9π}, which corresponds to
ν = −0.5π. For these observations, unbiased maximum likelihood (ML) estimates for mean
and variance can be computed to µ̂ϑ = 0.3π, σ̂ϑ ≈ 0.26π, µ̂ϑ̃ ≈ 0.13π and σ̂ϑ̃ ≈ 0.90π, which
are obviously not in agreement with Equations (5.6) and (5.7).
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5.4 Wrapped Gaussian distribution

As a concluding remark, we note that for circular data the linear definitions of mean and
variance are highly dependent on the zero direction, which is an inappropriate behavior and
demands for a suitable handling.

Physicists and statisticians have developed a methodology for dealing with statistics of di-
rectional data. Original publications lead back to the early 20th century [von Mises, 1918,
Zernike, 1928, Wintner, 1933, Gumbel et al., 1953]. The nowadays most comprehensive de-
scription can be found in the book of Mardia [1972]. We briefly summarize the basics in the
following.

5.3.2 Circular Mean direction and circular variance

Assume a circular random variable ϑ with a PDF p (ϑ). The PDF should satisfy p (ϑ) ≥ 0
and

∫ π

−π
p (ϑ) dϑ = 1. Mardia [1972] represents ϑ as a complex number eJϑ (with J2 = −1)

and employs the notation of circular mean direction µc
ϑ and circular variance V c

ϑ . They are
defined by

ρϑe
Jµc

ϑ = E
[
eJϑ
]

(5.10)

and
V c

ϑ = 1 − ρϑ. (5.11)

The quantity ρϑ is called the resultant length. Figuratively speaking, µc
ϑ is the expected phase

and ρϑ the expected length of eJϑ. V c
ϑ ∈ [0, 1] measures the amount of dispersion (cf. Fig-

ure 5.2).
It can be shown [Mardia, 1972] that contrary to the linear definitions of mean and variance,

µc
ϑ and V c

ϑ fulfill the demanded invariance of Equations (5.6) and (5.7) and can be utilized as
suitable counterparts for the linear mean and variance.

5.4 Wrapped Gaussian distribution

Based on µc
ϑ and V c

ϑ , Mardia describes two circular normal distributions that should serve
as appropriate substitutes for the univariate linear normal distribution. One is the wrapped

Gaussian (or normal) distribution, the other the von Mises distribution. Both have particular
benefits and drawbacks compared to each other. Among others, the wrapped Gaussian has
theoretical advantages, the von Mises distribution practical benefits including the parameter
estimation [Mardia, 1972, section 3.4.10]. However, it can be shown that they can be made to
approximate each other closely. In this respect, a concrete assessment for one of the alterna-
tives is practically not too restrictive.

As previously explained, the aim in the context of this thesis is to set up a multivariate

Gaussian distribution of both linear and circular variables. In this context it appears that due
to its apparent closeness to the linear Gaussian the wrapped Gaussian (a definition will follow
shortly) is the more natural choice for the present problem. Thus, in spite of the practical
drawbacks in the parameter estimation, the wrapped Gaussian distribution, which will briefly
be reviewed in the remainder of this section, has been chosen.
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FIGURE 5.2: For the same observations Θ (part (a)) and Θ̃ (part (b)) as in Figure 5.1, this figure shows estimates

of the circular mean direction µ̂c
ϑ, the resultant length ρ̂ϑ and the circular variance V̂ c

ϑ . µ̂c
ϑ corresponds to the

phase of the complex number associated to the black dot, ρ̂ϑ to the solid line and V̂ c
ϑ = 1 − ρ̂ϑ to the dotted line

towards µ̂c
ϑ. The figures also express the validity of Equations (5.6) and (5.7).

5.4.1 General wrapped distribution

Any given PDF p (x) of a linear variable x on the line can be “wrapped” around the circum-
ference of a circle of unit radius. That is, the PDF pw (ϑ) of the wrapped variable

ϑ = xw = x mod 2π ∈ (−π, π] (5.12)

is

pw (ϑ) =
∞∑

k=−∞

p (ϑ + 2πk) . (5.13)

5.4.2 Wrapped Gaussian distribution

In particular, for p (x) being a univariate Gaussian distribution Nµx,σx
(x) the wrapped uni-

variate Gaussian distribution is defined as

N w
µc

ϑ
,V c

ϑ
(ϑ) =

∞∑

k=−∞

(
2π (σx)

2 exp

(
(ϑ − µx + 2πk)2

(σx)
2

))−1/2

. (5.14)
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5.4 Wrapped Gaussian distribution

It can be shown [Mardia, 1972] that for the circular mean direction µc
ϑ and the circular variance

V c
ϑ the equations

µc
ϑ = µx mod 2π (5.15)

(σx)
2 = −2 log (1 − V c

ϑ ) (5.16)

hold. Further, N w
µc

ϑ
,V c

ϑ
(ϑ) is unimodal (i.e., has a single local maximum) and symmetric about

µc
ϑ. With the relations of Equations (5.15) and (5.16) in mind we can use the notations of

N w
µc

ϑ
,V c

ϑ
and N w

µx,σx
interchangeably in the remainder of this chapter.

Figure 5.3 (a) shows an example of the wrapped Gaussian distribution with parameters µx =
π/2 and σx = 1.50. The dashed lines show three contributing Gaussian terms, corresponding
to k = −1, k = 0 and k = 1 of Equation (5.14).

5.4.3 An approximation to the wrapped Gaussian distribution

The wrapped Gaussian and von Mises distributions have been successfully applied to a vari-
ety of problems [Mardia, 1972]. Those problems can be assigned into one of the following
categories:

1. The PDF is one-dimensional and the random variable corresponds to a direction in two
dimensions.

2. The PDF is two-dimensional and the random variables correspond to a direction in three
dimensions.

However, contrary to these problems, in many pattern recognition applications we are faced
with the situation that a multivariate (> 2) PDF is to be modeled where only one (or a few)
dimension(s) correspond to circular and the rest to linear variables. A suitable transfer of the
mentioned directional distributions (the wrapped Gaussian or the von Mises distribution) to
these “semi-directional” situations is not straightforward. In order to cope with this difficulty
the remaining deliberations will be confined to an approximation of the wrapped Gaussian
distribution: it is assumed that the wrapped Gaussian can be approximated by only one, but
the most meaningful wrap of it. It will turn out in Section 5.5 that with this confinement a
semi-directional PDF can be modeled directly.

In this respect, the following deliberations shall be restricted to situations in that mainly
one wrap of Equation (5.14) contributes to the computation of values N w

µc
ϑ
,V c

ϑ
(ϑ). As can be

verified from Figure 5.3 (a), this is the case, if the overlap of neighboring Gaussian wraps is
negligible. In this case, it is permissible to approximate N w

µc
ϑ
,V c

ϑ
(ϑ) by the mostly contributing

wrap for ϑ ∈ (−π, π]. This approximation can be summarized by the formulation

N aw
µc

ϑ
,V c

ϑ
(ϑ) =

(
2π (σx)

2 exp

(
((ϑ − µx) mod 2π)2

(σx)
2

))−1/2

. (5.17)
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where the upper index “aw” shall indicate the term “approximated wrapped”. Again, the
notations N aw

µc
ϑ
,V c

ϑ
and N aw

µx,σx
shall be used interchangeably, with Equations (5.15) and (5.16)

giving the transformations between the respective parameters.
Figures 5.3 (b)–(d) compare N w

µx,σx
(ϑ) and N aw

µx,σx
(ϑ) for the particular parameter settings

µx = π/2 and σx ∈ {1.50, 1.25, 1.00}. For σx = 1.50 and σx = 1.25 the reader can verify
approximation errors, centered at the anti-mode of N w

µx,σx
(ϑ). However, for σx = 1.00 only

small deviations of the two functions can be found.
Thus, it will be assumed in the remainder of this chapter that for σx . 1 errors were

small, if one uses N aw
µx,σx

(ϑ) instead of N w
µx,σx

(ϑ) to model the PDF of a circular variable. A
quantitative statement with respect to the approximation error can be specified in terms of the
integrated error

Eint (σx) =

∫ π

−π

∣∣N aw
µx,σx

(ϑ) −N w
µx,σx

(ϑ)
∣∣ dϑ, (5.18)

which corresponds to the area between the solid and the upper dotted lines in Figure 5.3 (a).
If only directly adjacent wraps have a considerable overlap (which is the case for small vari-
ances), the mentioned area is approximately equivalent to the area below the lower dotted
lines. Further, as the intersection of two adjacent wraps is at the position (µx − π) mod 2π =
(µx + π) mod 2π, Eint (σx) corresponds to the area of Nµx,σx

(x) that falls outside the interval
(µx − π, µx + π]. Due to the symmetry of N , it can be computed to

Eint (σx = 1) = 2

∫ −π

−∞

N0,1 (x) dx = erfc

(
π√
2

)
≈ 0.0017 (5.19)

with

erfc (x) =
2√
π

∫ ∞

x

exp
(
−t2
)
dt (5.20)

the complementary error function.

5.4.4 Parameter estimates

In statistical pattern recognition the estimation of the parameters µc
ϑ and V c

ϑ for N aw
µc

ϑ
,V c

ϑ
(ϑ)

from a set Θ =
{
ϑ(1), . . . , ϑ(M)

}
of circular observations is of practical importance.

A maximum likelihood estimate µ̂c
ϑ can rather straightforwardly be computed. Mardia

[1972] derives the formula

µ̂c
ϑ = arg

(
1

M

M∑

m=1

eJϑ(m)

)
. (5.21)

An estimate for V c
ϑ can be obtained similarly by

V̂ c
ϑ = 1 −

∥∥∥∥∥
1

M

M∑

m=1

eJϑ(m)

∥∥∥∥∥ . (5.22)
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5.5 Multivariate semi-wrapped Gaussian distribution

However, when the assumption σx . 1 holds, another approximative solution is valid. Then,
as argued above, N w

µx,σx
(ϑ) becomes close to N aw

µx,σx
(ϑ). Under this assumption, one can

think of N aw
µx,σx

being a single Gaussian centered at µ̂c
ϑ (corresponding to only one wrap) and

only a small accuracy is sacrificed with a linear-like estimate for V c
ϑ via σx by means of

(σ̂x)
2 ≈ 1

M − 1

M∑

m=1

((
ϑ(m) − µ̂c

ϑ

)
mod 2π

)2
. (5.23)

Note that Equation (5.23) employs the circular mean direction estimate µ̂c
ϑ instead of the lin-

ear mean estimate µ̂ϑ. As it has been shown in Section 5.3.1, the latter is inappropriate for
directional data.

In the present case, the advantage of Equation (5.23) over Equation (5.22) is that it can be
straightforwardly extended when covariances of directional and linear data are to be computed
(cf. Section 5.5.5).

5.5 Multivariate semi-wrapped Gaussian distribution

In the following, the formulation of a combination of wrapped and non-wrapped Gaussian
distributions for multivariate situations will be introduced. The resulting distribution will be
formulated as multivariate semi-wrapped Gaussian distribution. To start with, the multivariate

wrapped distribution and the multivariate semi-wrapped distribution shall be defined first.

5.5.1 Multivariate wrapped distribution

The concept of a univariate wrapped distribution can be extended to the multivariate context
by an extension of the simple sum in Equation (5.13) to a number of F sums that cover all
dimensions in the feature space:

pw (x) =
∞∑

k1=−∞

· · ·
∞∑

kF =−∞

p (x + 2πk1e1 + · · · + 2πkFeF ) . (5.24)

In this equation, ek = (0, . . . , 0, 1, 0, . . . , 0)T is the k-th Euclidean basis vector (with an entry
of 1 at the k-th element and 0 elsewhere). Figure 5.4 illustrates an example of a bivariate
wrapped Gaussian PDF. In correspondence to Figure 5.3 (a), the reader can see nine Gaussian
summands (corresponding to k1 = −1, 0, 1 and k2 = −1, 0, 1) as well as their sum (the small
patch, restricted to the interval (−π, π] × (−π, π]).

5.5.2 Multivariate semi-wrapped distribution

As it has been indicated previously, in some applications only a subset of variables in a fea-
ture vector originates from directional data, the remaining variables may be of linear type.
For these situations, a suitable modeling should employ a distribution that is wrapped in the
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5 Statistics of semi-directional data

directional and non-wrapped in the linear dimensions. A multivariate distribution with this
property shall be named multivariate semi-wrapped distribution. For a simpler notation, it is
assumed that the directional variable refers to only one dimension. Let fw denote the dimen-
sion index of it. Then, the multivariate semi-wrapped distribution psw of an F -dimensional
random vector x can be defined as

psw (x, fw) =
∞∑

k=−∞

p (x + 2πkefw) . (5.25)

For the sake of completeness, the wrapping index fw is included as a function argument in psw.

5.5.3 Multivariate semi-wrapped Gaussian distribution

For p being the Gaussian PDF, i.e., p (x) = Nµx,Σx
(x), Equation (5.25) becomes the multi-

variate semi-wrapped Gaussian PDF

N sw
µx,Σx

(x, fw) =
∞∑

k=−∞

(
|2πΣx| exp

(
(x − µx + 2πkefw)T

Σ−1
x (x − µx + 2πkefw)

))−1/2

(5.26)

Figure 5.5 (b) shows a plot of a bivariate semi-wrapped Gaussian PDF N sw
µx,Σx

(x, 1). The
abscissa corresponds to the circular variable ϑ, the ordinate to a linear variable x. The reader
can verify the wrap on the abscissa.

5.5.4 An approximation to the multivariate semi-wrapped Gaussian

distribution

A practical handling of N sw
µx,Σx

is rather involved. In particular, the computation of the in-
finite sum and the estimation of its parameters is a complex task. In order to cope with
these problems and in agreement with the approximation derived in Section 5.4.3, a transi-
tion from a multivariate semi-wrapped Gaussian distribution to an approximation of it shall be
approached.

Again, the assumption for the approximation is a small variance in the circular variable in
the sense that neighboring Gaussian terms of Equation (5.26) have only a small overlap. For

the multivariate situation this is the case, when
√

(Σx)fw,fw
. 1.

Under these conditions, N sw
µx,Σx

(x) can be approximated by only one wrap — in correspon-
dence to Equation (5.17):

N asw
µx,Σx

(x, fw) =
(
|2πΣx| exp

(
((x − µx) mod fw2π)T

Σ−1
x ((x − µx) mod fw2π)

))−1/2

. (5.27)

The function modfw performs the modulo operation solely on the dimension fw.

88



5.6 Experiments

5.5.5 Parameter estimates

Parameter estimation refers to the estimation of µx and Σx from a set X =
{
x(1), . . . ,x(M)

}

of observations x(m). The non-wrapped and the wrapped elements of µx can be estimated
independently. For the non-wrapped ones the linear mean estimates can be used, for the
wrapped ones Equation (5.21). In this respect, an exact estimate of µx is obtained by a case
distinction

(µ̂x)f =






1
M

∑M
m=1 x

(m)
f , if f 6= fw

arg
(

1
M

∑M
m=1 eJx

(m)
f

)

f
, else

. (5.28)

For covariance estimates we again become conscious about the assumption of small vari-
ances in the directional variable and present an approximate solution. Combining the linear
ML and the univariate estimate of Equation (5.23), we can write

Σ̂x ≈ 1

M − 1

M∑

m=1

x(m)′x(m)′T (5.29)

with

x
(m)′
f =

{
x

(m)
f − (µ̂x)f , if f 6= fw(
x

(m)
f − (µ̂x)f

)
mod 2π , else.

(5.30)

In summary, Equations (5.28) and (5.29) define the counterparts for the linear ML estimates
that are employed during training. Equation (5.27) is used in order to evaluate the probability
density pasw (t, fw) of an observed feature vector t during classification.

5.6 Experiments

This section describes experiments using the multivariate semi-wrapped Gaussian PDF, ap-
plied to the problem of online handwriting character recognition in the context of the learning
framework CSDTW. The same data as described in Section 4.6 has been used.

In order to assess the impact of the described directional feature representation, three dif-
ferent feature extractions have been studied.

1. The first shall help judging about the discriminative power of the tangent slope angle at
all. One might argue that the tangent slope angle θ is just a redundant representation of
x̃ and ỹ and is thus useless, since it is directly computed from the other two features x̃
and ỹ. We want to disprove these considerations by our experiments. To this end, we
include a selection comprising only the normalized horizontal and vertical coordinates
ti = (x̃i, ỹi)

T in our experiments.

2. A second selection follows the commonly taken approach [Guyon et al., 1991,
Schenkel et al., 1995, Jäger et al., 2000] and uses the indirect vector modeling, ti =
(x̃i, ỹi, cos θi, sin θi)

T .
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5 Statistics of semi-directional data

UNIPEN Feature representation ti Mean error rate Ẽ Rel. change of Ẽ

1a
(x̃i, ỹi)

T 4.2 % + 45 %

(digits)
(x̃i, ỹi, cos θi, sin θi)

T 3.6 % + 24 %

(x̃i, ỹi, θi)
T 2.9 %

1b
(x̃i, ỹi)

T 9.8 % + 36 %

(upper case)
(x̃i, ỹi, cos θi, sin θi)

T 7.5 % + 4 %

(x̃i, ỹi, θi)
T 7.2 %

1c
(x̃i, ỹi)

T 13.1 % + 40 %

(lower case)
(x̃i, ỹi, cos θi, sin θi)

T 10.1 % + 9 %

(x̃i, ỹi, θi)
T 9.3 %

TABLE 5.1: Experiments on the UNIPEN 1a/b/c sections (as indicated in the first column). The second column

denotes the choice of the features. The third column shows the mean error rate Ẽ of five different experiments
with varying dataset partitionings, the fourth column the change of error rate relative to the here proposed feature
set (x̃i, ỹi, θi)

T . The results show that in all sections the proposed feature selection including a direct represen-
tation of the directional feature θi gives best recognition results.

3. The third approach sets ti = (x̃i, ỹi, θi)
T and applies the described methodology, sum-

marized by Equations (5.27), (5.28) and (5.29).

It is worth noting, that all other recognition parameters were kept constant over the three
feature extractions, where possible. In particular, the pre-processing does not vary across the
experiments.

Unfortunately, the invariance of the classifier parameters could not be forced straightfor-

wardly. The reason for this effect is founded on the allograph clustering. As explained in Sec-
tion 4.3.2, the diversity of the clustering is controlled by the use of two clustering thresholds.
However, one of these thresholds includes assumptions about the range of the dissimilarities
in the feature space. In different features spaces a constant choice of this threshold would lead
to different clustering diversities and thus to a different number of allograph reference models.
This, however, would not be a basis for a reasonable comparison.

Thus, the goal was to train classifiers with the objective of getting the same (or a similar)
number of allographs by a variation of this particular clustering threshold. Finally, the cluster-
ing parameter was chosen such that the overall number of allograph models is about 150, 270
and 600 for the digits, lower and upper case characters, respectively.

Table 5.1 summarizes mean classification error rates Ẽ of the three scenarios, each of which
is the average from five different dataset partitionings (of the ratio 2 : 1, as explained previ-
ously).

The following inferences can be drawn from the results in the table:

1. Although the feature θ is computed from the other two features x̃ and ỹ, it is shown
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5.7 Summary

that the incorporation of θ significantly improves the recognition accuracy. The relative
change of error rate varies from 36 % to 45 %.

2. A direct representation of θ instead of a detour over (cos θi, sin θi) results in a higher
accuracy in the context of the employed classification. The proposed solution achieved
lower error rates in all three UNIPEN sections. The relative change of error rate varies
from 4 % to 24 %.

Further, the computational complexity and the memory requirements of the (cos θi, sin θi)-
feature extraction are systematically higher compared to a single feature θi, as evaluating
Equation (5.27) and the storage of µx and Σx is of order O (F 2).

5.7 Summary

This chapter has described a solution for a unified statistical modeling of linear and circular
data with a Gaussian-style PDF. In order to reduce the analytic complexity, the approach has
been confined to the constraint of small variances in the circular variables.

The chapter started with a brief review of directional data, its statistics, and the wrapped
Gaussian distribution. Following, a scenario has been formulated in that the wrapped Gaussian
distribution can be substituted by an approximation. Approximative solutions to the problem
of parameter estimation have been given. Further, extensions of the wrapped Gaussian distrib-
ution to multivariate and semi-wrapped situations have been presented. As with the univariate
case, a complete framework for an approximative practical handling has been given, including
solutions for the tasks of parameter estimation and function evaluation.

It has been shown that the proposed framework significantly improves the recognition ac-
curacy in our application of online HWR. Compared to alternative approaches to the task of
incorporating directional data into a statistical feature space modeling errors were relatively
reduced by 4 %–24 %. Further benefits of the proposed solution are savings in computation
time and memory.

The suggested solution is transferable to many existing HWR systems. It can be plugged
into any system that uses a feature representation of the tangent slope angle (or other circular
features) in combination with a parametric PDF modeling based on the Gaussian function
class. It can be expected that also in those systems the recognition accuracy can generically
be increased and the time and memory complexity be decreased with the proposed modeling.
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FIGURE 5.3: (a): An example of the wrapped Gaussian distribution Nw
µx,σx

(ϑ) with parameters µx = π/2 and

σx =
√

−2 log (1 − V c
ϑ ) = 1.50 (solid line). The dashed lines show three contributing terms in Equation (5.14),

corresponding to k = −1, k = 0 and k = 1. (b)–(d): Wrapped Gaussian Nw
µx,σx

(ϑ) (solid line) together with
their approximation N aw

µx,σx
(ϑ) (dotted line) with parameters µx = π/2 and σx ∈ {1.50, 1.25, 1.00}. It can be

seen that for σx = 1.0 approximation errors are small.
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5.7 Summary

FIGURE 5.4: An example for a bivariate wrapped PDF Nw
µx,Σx

is shown by the small patch above the (compa-
rably small) interval (−π, π] × (−π, π]. In correspondence to Figure 5.3 (a), the figure additionally gives a plot
of nine summands of Equation (5.24), corresponding to k1 = −1, 0, 1 and k2 = −1, 0, 1 in Equation (5.24). The

parameter settings in this figure are µx = (2.5,−2.0)
T and Σx =

[
6 0.7

0.7 6

]
.
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FIGURE 5.5: Pseudo-color plots of (a) a wrapped Nw
µx,Σx

(x) and (b) a semi-wrapped N sw
µx,Σx

(x, 1) multi-

variate Gaussian PDF with the parameters µx = (2.5,−2.0)
T and Σx =

[
1 0.7

0.7 0.8

]
. Bright colors denote

high values. In both cases the abscissa corresponds to a circular variable. The ordinate corresponds to a circular
variable in (a), however to a linear in (b). Note that for the chosen values (Σx)i,i ≤ 1, i = 1, 2 the assumption
of a “small variance” for the circular quantity is valid and an approximation of N sw

µx,Σx

(x, 1) by N asw
µx,Σx

(x, 1)
is justified.

94



CHAPTER 6

A (dis-) similarity measure for CSDTW

and hidden Markov models

This chapter describes a similarity (and equivalently a dissimilarity) measure for CSDTW

models. As the CSDTW is very closely related to hidden Markov modeling the concept can

also be transferred to particular HMM implementations. Similar to the CSDTW scoring,

the CSDTW model dissimilarity computation is based on dynamic programming. The Viterbi

algorithm identifies an optimal alignment through a lattice of local (dis-) similarities. The

main difference to the CSDTW scoring is that the local (dis-) similarities are dependent on

two PDFs as their arguments. In the present approach, the local measures are defined with

help of the Bayes probability of error. Applications of the described (dis-) similarity measure

are manifold. It can be applied as a stop criterion in the iterative CSDTW training, as a speed-

up in classification, a distance measure in the context of CSDTW model clustering or as an

optimization criterion for a discriminative CSDTW training. Further, as the present similarity

measure is based on the Bayes probability of error, it can be utilized as a tool to interpret

misclassifications. The similarity measure is experimentally evaluated in the context of online

HWR and compared with the error rates in the lowercase character classification problem.

This evaluation affirms the usefulness of the proposed measure, as it shows that class pairs

with a high similarity measure are often confused during classification.

6.1 Introduction

In Chapter 4 the generative classification approach CSDTW has been introduced and applied
to online HWR. It has been shown to be very powerful for the classification of handwritten
characters. Like with many HMM based methods the success is in large part due to the ca-
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6 A (dis-) similarity measure for CSDTW and hidden Markov models

pability of a nonlinear alignment of two sequences. The complex structure of this concept,
however, makes it difficult to give a unique measure of (dis-) similarity between two (or more)
CSDTW models. The present chapter shows a solution for this aim.

Applications that can use a CSDTW model (dis-) similarity are manifold. They include the
following:

1. The iterative training process, as e.g. it has been introduced for CSDTW in Algorithm 5,
can be monitored and controlled.

2. It can be used as a discriminative training criterion for the CSDTW parameter estima-
tion. See, for instance, the work of Kwong et al. [1998] for an example in the context of
HMMs.

3. It can serve as a distance measure for a CSDTW model clustering.

4. It could speed up the minimization of Equation (4.19) during CSDTW classification.
In this respect, the computation of D∗[d̂]

(
t,R lk

)
can be stopped if R lk is similar to a

particular R l′k′

and D∗[d̂]
(
t,R l′k′

)
has been found to be relatively large.

5. It can help to get a thorough insight into misclassifications.

The latter will constitute the application of interest for this chapter.

6.2 Literature review

Some concepts of a (dis-) similarity measure for statistical sequence models have been studied
in literature, mostly in the context of HMMs.

Levinson et al. [1983] have been the first to propose an HMM distance measure. Given two
discrete HMMs λ1 and λ2, they defined a dissimilarity measure ∆ as

∆ (λ1, λ2) =

(
1

ONS

NS∑

n=1

O∑

o=1

(
b(1)
no − b

(2)
p(n)o

))1/2

. (6.1)

Here, b(l)
no is the discrete observation probability of the HMM λl for a symbol, which is indexed

by o ∈ {1, . . . , O}, while being in the state qn ∈ {q1, . . . , qNS
}. The authors introduce p (n)

as “a state permutation that minimizes” Equation (6.1). Apparently, one imperfection of this
approach is that only the observation probabilities b

(l)
no and not the additional characteristics of

the HMM, in particular the HMM topology and the state transition probabilities, are addressed.
Juang and Rabiner [1985] introduce and evaluate the dissimilarity

∆′ (λ1, λ2) = lim
N→∞

1

N

(
ln P

(
t(2)|λ1

)
− ln P

(
t(2)|λ2

))
, (6.2)
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6.3 The CSDTW model dissimilarity

where t(2) =
[
t
(2)
1 , . . . , t

(2)
N

]
, t

(2)
i ∈ R

F is an observation sequence generated by the HMM

λ2. Equation (6.2) can be interpreted in terms of cross-entropy, divergence or discrimi-
nation information. The authors also give a summary of this approach in their textbook
[Rabiner and Juang, 1993, Section 6.11].

Indeed, the latter approach has found application in a number of examples. Falkhausen et al.
[1995] identify “similar” HMMs for their problem of speech recognition. The authors also
study a decision directed variant of Equation (6.2) in a further set of experiments.

Singer and Warmuth [1999] integrate a variant of Equation (6.2) into their iterative HMM
parameter estimation. The aim is here to get a faster convergence for the iteration. The authors
report positive results with respect to this aim in speech recognition problems.

Kwong et al. [1998] have defined a discriminative optimization criterion based on Equa-
tion (6.2) in the context of HMM parameter estimation. The authors call it maximum model

distance (MMD) and employ it in the area of speech recognition.
Another distance measure is defined on co-emission probabilities [Lyngsø et al., 1999], in

particular

∆′′ (λ1, λ2) =
∑

t∈X

P (t|λ1) P (t|λ2) . (6.3)

The authors show experiments based on Equation (6.3) in the context of protein processing.

6.3 The CSDTW model dissimilarity

The primary objective of this section is to describe how — with a slight modification — the
Viterbi framework used for the CSDTW classification can be applied to define a CSDTW
model dissimilarity [Bahlmann and Burkhardt, 2001]. Later on, it will further be shown how
the dissimilarity measure can straightforwardly be transformed into a similarity measure, and
how it can be interpreted as a particular probability.

The principle idea shall be illustrated in a simple sketch, as is shown in Figure 6.1. Parts (a)
and (b) review the basic scheme of computing the DTW (Equation (2.32)) and the SDTW
(Equation (4.11)) distance, respectively. In both cases the Viterbi algorithm (or the Viterbi
beam search algorithm) is used with the aim of uncovering the Viterbi alignment through a
matrix of local distances. As discussed, those distances are computed from the respective
elements of the two questioned sequences. The difference between the DTW and SDTW
dissimilarity is the representation of the reference pattern and, in consequence, the definition of
the local distance: simple templates rj and d (ti, rj), defined by Equation (2.34), are addressed

in the first and a tuple Rj =
(
αR

j , βR
j

)
of statistical quantities and d̂ (ti, ∆φ,Rj), defined by

Equation (4.12), in the second case.
The here described CSDTW model dissimilarity measure (part (c)) goes one step further.

Recall that in the aimed situation two CSDTW models — say T =
(
T1, . . . ,TNT

)
with

Ti =
(
αT

i , βT
i

)
and R = (R1, . . . ,RNR ) with Rj =

(
αR

j , βR
j

)
— are the center of interest.

To put it back into memory (cf. Section 4.3.1.2), αT
i and αR

j statistically model the align-
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FIGURE 6.1: Comparing the ideas of the DTW, the SDTW and the CSDTW model dissimilarity: (a) The DTW
local distances are computed from two pattern templates ti and rj . (b) The SDTW local distances are computed
from pattern templates ti and a statistical tuple Rj =

(
αR

j , βR
j

)
, here indicated by a Gaussian shape. (c) In the

CSDTW model dissimilarity measure local distances are computed from two statistic tuples Ti =
(
αT

i , βT
i

)

and Rj =
(
αR

j , βR
j

)
. Whereas local distances are defined differently the principle of the Viterbi search is

employed throughout all concepts.

ment transitions and βT
i and βR

j describe a PDF in the feature sub-space R
F . With this in

mind, a similar Viterbi framework like the one defined by Equations (4.10) and (4.11), can be
formulated:

D̃Φ[d̄]
(
T ,R

)
=

1

N

N∑

n=1

d̄
(
TφT (n),RφR (n)

)
(6.4)

D̃∗[d̄]
(
T ,R

)
= D̃Φ∗ [d̄]

(
T ,R

)
= min

Φ

{
D̃Φ[d̄]

(
T ,R

)}
, (6.5)

along with the same symmetric transition set

P = {(1, 0) , (0, 1) , (1, 1)} . (6.6)

Note that the definition of Equation (6.5) employs the path length normalized variant of the
warping distance, as introduced in Equation (2.35).

The remaining challenge is to adopt the local distances d̄ (Ti,Rj) of the here two tuples

Ti =
(
αT

i , βT
i

)
and Rj =

(
αR

j , βR
j

)
to this new situation. For the sake of simplicity, a

probabilistic modeling of the transitions shall be dropped. With this simplification, we are
faced with the problem of determining the dissimilarity of two PDFs, i.e.,

d̄ (Ti,Rj) = d̄
(
βT

i , βR
i

)
. (6.7)

A variety of choices for d̄ are possible. Literature has studied e.g., the χ2 measure, the
Kullback-Leibler [Kullback and Leibler, 1951] or the Jensen-Shannon divergence [Lin, 1991].
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6.3 The CSDTW model dissimilarity

In the present context, the CSDTW model dissimilarities shall be interpreted in comparison
to empirically observed classification errors. As reviewed in Section 2.2.1.2, a measure for
the probability of a classification error in a two-class problem and a vector space is the Bayes
probability of error Pe (1, 2).

Conceptually, the Bayes probability of error is a similarity rather than a dissimilarity mea-
sure, as similar PDFs go in hand with a high error probability. Hence, in order to define a
dissimilarity measure, its complement 1 − 2Pe (1, 2) is a suitable substitute. As can be taken
from Figure 2.2, 1 − 2Pe (1, 2) corresponds to the area outside the overlap of the two PDFs.
With the understanding that in the Bayesian modeling a class l is characterized by the tuple of
prior probability P (l) and PDF p (x|l), i.e.,

l=̂ (P (l) , p (x|l)) , (6.8)

one reasonable choice for d̄ is — in loose agreement with Equation (2.8) and in the case of
uniform prior probabilities —

d̄ (Ti,Rj) = 1 − 2Pe

((
1

2
, βT

i (x)

)
,

(
1

2
, βR

j (x)

))

= 1 − 2

∫

x

min

{
1

2
βT

i (x) ,
1

2
βR

j (x)

}
dx. (6.9)

If prior probabilities of the classification problem, e.g. by P
(
T
)

and P (R), are available,
the distance can be refined to

d̄
(
P
(
T
)
,Ti, P (R) ,Rj

)

= 1 − 2Pe

((
P
(
T
)
, βT

i (x)
)

,
(
P (R) , βR

j (x)
))

= 1 − 2

∫

x

min
{

P
(
T
)
βT

i (x) , P (R) βR
j (x)

}
dx (6.10)

Indeed, the latter shall be used as local distance score for the two PDFs, which in com-
bination with Equations (6.4), (6.5), (6.6) and (6.10) define the framework for the CSDTW
dissimilarity measure.

Like in the CSDTW classification, the directional characteristic of the tangent slope angle
feature θ has to be respected, when integrating in Equation (6.10). Also for this task, the use of
the approximated semi-wrapped Gaussian of equation (5.27) gives a straightforward solution
to this task.

One additional aspect is worth mentioning: although the probabilistic modeling of the tran-
sitions has been dropped by the acceptance of Equation (6.7), the fundamental warping ca-
pabilities of CSDTW have not. The set P of possible transitions (in other words: the model
topology) remains the same as in the CSDTW classification.
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6 A (dis-) similarity measure for CSDTW and hidden Markov models

In Section 4.3.1.4, it has been argued that CSDTW is equivalent to particular HMMs, in
particular those with null-transitions. In this respect, the described dissimilarity measure is
straightforwardly transferable to this widespread tool for probabilistic sequence modeling.

6.4 The CSDTW model similarity

In some situations, one is interested in a similarity measure of two CSDTW models instead of
a dissimilarity measure. In these cases, D̃∗[d̄]

(
T ,R

)
can be transformed to a complementary

expression, which shall be named

P̃e

(
T ,R

)
=

1

2

(
1 − D̃∗[d̄]

(
T ,R

))
. (6.11)

Some simple transformations lead to

1

2

(
1 − D̃∗[d̄]

(
T ,R

))

=
1

2

(
1 − 1

N∗

N∗∑

n=1

d̄
(
Tφ∗

T
(n),Rφ∗

R (n)

))

=
1

2

(
1 − 1

N∗

N∗∑

n=1

(
1 − 2Pe

((
P
(
T
)
, βT

φ∗

T
(n)

)
,
(
P (R) , βR

φ∗

R (n)

))))

=
1

N∗

N∗∑

n=1

Pe

((
P
(
T
)
, βT

φ∗

T
(n)

)
,
(
P (R) , βR

φ∗

R (n)

))
, (6.12)

Thus, it is shown, that P̃e

(
T ,R

)
equals the average Bayes error

Pe

((
P
(
T
)
, βT

φ∗

T
(n)

)
,
(
P (R) , βR

φ∗

R (n)

))
of the respective feature sub-spaces R

F along the

Viterbi path. Obviously, the value of P̃e

(
T ,R

)
is in the range [0, 0.5].

However, it is important to note that P̃e

(
T ,R

)
does not equal to the Bayes probability

of error — say Pe

(
T ,R

)
— in a two-class classification problem of two sequences T and

R . Compared to the above described measure, a derivation of Pe

(
T ,R

)
is theoretically and

computationally rather involved. Though, it remains as an interesting field for future research.
To sketch a starting point for this interesting research, one would — in correspondence to
Equation (2.8) — define Pe

(
T ,R

)
as

Pe

(
T ,R

)
=

∫

X

min
{
P
(
T
)
p
(
x|T

)
, P (R) p (x|R)

}
dx, (6.13)

and factorize p
(
x|T

)
and p (x|R) similarly to the procedure within Proposition 4.1.
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6.5 Analysis of complexity

The computation of the CSDTW model dissimilarity can utilize the same Viterbi beam search
framework as the CSDTW classification, as the only significant modification concerns the
definition of the local distance. Thus, in correspondence to Equation (4.36), the computational
complexity of the CSDTW dissimilarity computation of one model pair is

CTime

(
D̃∗[d̄]

(
T ,R

))
= O(Ñ · |P| · GF ), (6.14)

with Ñ the average length of the CSDTW models, |P| the number of transitions, F the di-
mension of the feature sub-space and G the number of sampling points per dimension for the
integration of Equation (6.10). In Equation (6.14), the term O(Ñ ·|P|) corresponds to the beam
search framework and O(GF ) to the local distance computation, that is, the (naive) numerical
integration of the feature space R

F .
The average run-time for the computation of one CSDTW dissimilarity on an

AMD Athlon 1600MHz in the F = 3 dimensional feature space, has been evaluated to

Time
(
D̃∗[d̄]

(
T ,R

))
≈ 2 sec. (6.15)

Hereby, a numerical integration of 25× 25× 9 (corresponding to x̃, ỹ, θ) grid points has been
pursued. This resolution has been determined through an exemplary, visual inspection of the
Gaussians. It should be stated that the applications for the CSDTW dissimilarity measure
mainly arise during training and thus do not require real-time computation.

6.6 Experiments

For a practical evaluation, the similarity measure of Equation (6.11) has been computed for
CSDTW model pairs of an entire CSDTW classifier. The classifier has been trained from the
lowercase characters (section 1c) of the UNIPEN “Train-R01/V07” database (cf. Sections 3.3
and 4.6). The clustering parameter configuration had produced a classifier with Atot = 237
allograph models. Figure 6.2 shows a representative example of the Viterbi alignment of
two CSDTW models, here for a “u” and an “a”. One can verify that the Viterbi path also
corresponds to our intuitive judgment about a probable PDF alignment.

In order to get an idea of its meaningfulness, the experimentally computed CSDTW model
similarity values P̃e

(
R l′k′

,R lk
)

have been compared to empirical classification errors. In this
respect, it can be expected that classes that have similar CSDTW models, produce rather high
errors. In the following, classification errors are quantified through the classification confusion
matrix C = [Cl′l]L×L, the elements Cl′l of which indicate the number of samples of class l
recognized as class l′ during the classification experiment.

In the experiments, P̃e

(
R l′k′

,R lk
)

has been computed for any of the (Atot )2 = 2372 =

56169 model pairs
(
R l′k′

,R lk
)
. Further, Cl′l has been counted for all of the L2 = 262 = 676
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FIGURE 6.2: CSDTW model dissimilarity computation: in the lower part of this figure two CSDTW allograph
models T (of class “a”) and R (of class “u”) are illustrated. For an interpretation of this illustration refer to
the caption of Figure 4.1(a) on page 55. The CSDTW model dissimilarity is D̃∗[d̄]

(
T ,R

)
= 0.61 and the

similarity P̃e

(
T ,R

)
= 0.20. The line right to the “u” and above the “a” shows the corresponding Viterbi

alignment, which indeed coincides with our intuitive judgment. In the upper part the list to the right shows the
“top 7” similarity scores relative to the given “a”. The first entry in the list (D̃∗[d̄] = 0, P̃e = 0.5) corresponds
to the distance of the “a” to itself.
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6.6 Experiments

class pairs. In this context, both tasks were performed on the same “training” dataset. In order
to have a common basis for a comparison of the classification confusions and the CSDTW
model similarity, a few heuristically motivated post-processing steps have been pursued:

1. For a straightforward comparison of error rate and model similarity, a single value
Cl′l shall correspond to a single value P̃e (l′, l). However, the CSDTW models
are available sub-class wise, while the classification confusions only class wise.
To overcome this incompatibility, any set of Kl′ × Kl allograph similarity values{

P̃e

(
R l′k′

,R lk
)}

k′=1,...,Kl′ ,k=1,...,Kl

has been averaged to one scalar value P̃e (l′, l),

taking into account the normalized allograph prior probabilities π̃lk =
P(R lk)

π̃l
(with

π̃l =
∑

k P
(
R lk

)
):

P̃e (l′, l) =

Kl′∑

k′=1

π̃l′k′

Kl∑

k=1

π̃lkP̃e

(
R l′k′

,R lk
)

. (6.16)

The normalization ensures that still P̃e (l′, l) ∈ [0, 0.5] is valid.

2. The number of classification confusions shall be normalized to the empirical error rate.
As the CSDTW similarity is based on the Bayes error of a two-class classification prob-
lem, the normalization of the classification confusions shall also only take into account
the respective two classes. Hence, the two-class error rate C ′

l′l for a classification with
respect to only the two classes l′ and l is defined as

C ′
l′l = Cl′l/ (Cl′l + Cll) . (6.17)

3. Since P̃e (l′, l) is the probability of falsely classifying class l′ into l or l into l′, the
symmetric two-class error rate C̃l′l is defined as

C̃l′l = π̃′

l′l
C ′

l′l + π̃′

ll′
C ′

ll′ . (6.18)

π̃′
l′l

= π̃l

π̃l+π̃l′
is the prior probability of class l in the two-class context of l and l′.

Finally, a comparison of C̃l′l and P̃e (l′, l) is carried out in Figure 6.3. At this point, we
should again remark that P̃e

(
T ,R

)
does not correspond to the probability of a classification

error with respect to the sequence classification problem, but is the average of all sub-space
Bayes probabilities of error along the Viterbi path. In this respect, a quantitative comparison
of P̃e (l′, l) and C̃l′l is not appropriate. Nevertheless, the results shall be interpreted from a
qualitative point of view. With this in mind, the following conclusions can be drawn from
Figure 6.3:

• For 15 out of 26 classes the most similar and most frequently confused characters coin-
cide (e.g., the “u” is the most similar and the most frequently confused character class
to the “a”).
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6 A (dis-) similarity measure for CSDTW and hidden Markov models

• For 25 out of 26 classes the sets of the two most similar and two most frequently mixed
up classes share at least one character.

• Further, high values for P̃e (l′, l) also coincide with our intuitive judgment of similarity
between l′ and l, as can also be seen from Figure 6.2 and other examples (not illustrated
here).

In conclusion, the observations realized above indicate that D̃∗[d̄]
(
T ,R

)
(P̃e

(
T ,R

)
) can

advantageously be used as a CSDTW model dissimilarity (similarity) measure.

6.7 Summary

In a number of applications, there is a demand for a measure that determines the (dis-) simi-
larity of two generative sequence models, such as CSDTW models or particular HMMs. This
chapter has presented a solution for these demands. The presented measure is based on the
Bayes probability of error with respect to the underlying sub-space PDFs. One advisable
property of the presented solution is that the computation algorithm employs the same Viterbi
framework as used for classification, in this case in order to combine multiple evaluations of
the Bayes error. In the present context, the (dis-) similarity measure is used to analyze mis-
classifications in the context of online HWR. First, this is achieved by the interpretation the
Viterbi path and the respective PDF correspondences. Second, experiments have shown that
CSDTW model pairs, that are similar with respect to the described measure, also correspond
to frequently confused classes.

The suggested method is very versatile, that is, the generative sequence model can be based
on any PDF, for instance, simple Gaussians, mixed Gaussians or discrete probabilities. Fur-
ther, the Bayes probability of error as the dissimilarity between two PDFs in the feature sub-
space can be substituted by other suitable distances, adaptable to the targeted application.
Appropriate distances include, for example, χ2, the Kullback-Leibler or Jensen-Shannon di-
vergence.
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FIGURE 6.3: (a) The bar diagram shows the two highest symmetric two-class error rates C̃l′l for every character
l ∈ {”a”, . . . , ”z”}, as labeled on the abscissa. (b) In a similar fashion, the bars represent the similarities
P̃e (l′, l) of the two most similar classes for every character l ∈ {”a”, . . . , ”z”}. For many cases, one can observe
a qualitative correlation of most frequently confused and most similar class pairs.
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CHAPTER 7

SVM-GDTW — A discriminative

sequence classification framework

This chapter describes a solution for the classification of sequence data which follows the

discriminative classification paradigm. The approach combines dynamic time warping and

support vector machines by the formulation of a particular SVM kernel — the Gaussian dy-

namic time warping (GDTW) kernel. As the classification approach is a pure discriminative

one, it does not assume a model for the generative class conditional densities, like common

HMM based techniques do. Instead, it addresses the direct creation of class boundaries. In

this respect, the benefits of the discriminative paradigm apply to the described method. From

another point of view, the approach can be regarded as an example for the incorporation of

prior problem knowledge and invariances into SVM classification. The DTW distance im-

poses a dissimilarity measure that is specifically suited to typical distortion models of online

handwriting data, namely nonlinear temporal distortions. Unlike other SVM kernels (e.g., the

Gaussian or polynomial kernel) the GDTW kernel is not a valid kernel in a strict mathemati-

cal sense, as it is not positive definite. However, it is shown to behave very well in an online

handwriting recognition application. Practical arguments for this behavior are given.

7.1 Introduction

For the solution of online HWR tasks, researchers mostly apply classification methods which
are based on the generative approach, like it has been reviewed in Section 2.2.2: HMMs are
employed to model class conditional PDFs which are based on — and thus restricted to — a
certain function class. A discriminant function is obtained in a second step using Bayes’ rule
(Equation (2.4)). Indeed, HMMs and related approaches have proven to deal very well with the
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7 SVM-GDTW — A discriminative sequence classification framework

complex online handwriting data structure. This is because HMM based methods specifically
address characteristics of sequential data and typical variations, which are nonlinear temporal
distortions. Also the CSDTW approach, as it has been introduced in Chapter 4, is founded on
this generative paradigm.

In fact, as it has been pointed out in Section 2.2, the generative procedure is near to the
optimal classifier if the underlying models are accurate. However, it may perform poorly if
this assumption is not fulfilled. With respect to this issue, we have to be conscious about the
number of prerequisites in the HMM approach:

1. The Markov property (Equation (2.38)) assumes the statistical independence of subse-
quent state transitions.

2. Equation (2.42) assumes the statistical independence of subsequent PDFs.

3. A specification of the HMM topology is usually not part of the HMM training and
mostly specified by a manual adjustment. A data-driven approach like the one outlined
in Section 4.3.2.2 is used seldomly.

4. The chosen PDF function class assumes a particular shape for the true PDF, for instance,
Gaussian or Gaussian mixture models.

5. The training set X has to be representative and sufficiently large for a reliable parameter
estimation of the PDFs, which are often rather complex functions.

It is unlikely that in real world problems all of these prerequisites meet the true situations. In
this respect, discriminative classifiers that do not aim to estimate class conditional densities
but directly address the discrimination by creating class boundaries may be less dependent on
modeling assumptions. It was already noted in Section 2.2 that SVMs belong to this category
of classifiers. In this respect, they will constitute the center of interest in the remainder of this
chapter.

In many disciplines, SVM classifiers have been applied to the classification task very shortly
after the publication of fast training algorithms [Boser et al., 1992]. However, for quite a
long period they were not observed in online HWR and domains like speech recognition and
bioinformatics. A reason for this missing observance can be seen in the data structure that
is typical in these application fields: common SVM techniques were originally developed for
vector data of a fixed dimension and mutually independent dimensions, whereas the mentioned
areas have sequence data that typically vary in length and are typically nonlinearly temporally
distorted. An ad-hoc solution to overcome this incompatibility — like a linear scaling of
sequences to a fixed number of samples — does not seem to be promising to outperform
standard HMM techniques, since it cannot deal with the nonlinear, temporal variations in the
data. In this respect, a successful approach should both embed the discriminative power of
SVMs as well as the flexibility of elastic matching techniques.

An elegant approach for this goal may address the kernel concept of SVMs by the constitu-
tion of a sequence compatible kernel. In fact, this procedure has been employed by the method
that will be described in this chapter.
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7.2 Literature review

7.2 Literature review

The present approach [Bahlmann et al., 2002] has been the first one combining SVMs and
an elastic matching (or nonlinear alignment) based modeling in the context of online HWR.
However, other research areas like speech recognition or bioinformatics have similar repre-
sentations of data, and also there much progress has been achieved in the very recent years.
It remains the hope that these areas will further stimulate each other in the future. A concise
literature review shall be given in the following.

Watkins [2000] overviews a number of methods, with help of which structured objects like
sequences, trees or sentences can be integrated into a general kernel formulation. First, he
shows universal methods that explicitly map structured objects to vectors. Second, he argues
that under certain conditions a joint probability distribution is a proper SVM kernel. He puts
this issue in concrete terms with the joint probability of two sequences according to a pair

HMM.
Jaakkola et al. [1999] establish a sequence SVM kernel in their application of protein ho-

mology detection and refer to it as Fisher kernel. The Fisher kernel method combines a gener-
ative sequence model such as an HMM with an SVM classifier, using a two-step strategy both
in training and classification. During training, HMM parameters θλ are learned using usual
training techniques in a first step. The second step installs an SVM on top of the HMM. In
the SVM, not the sequence pattern x itself builds the SVM domain, but a transformation of it.
This transformation is defined by the so-called Fisher score vector Ux = ∇θλ

ln p (x|λ). The
operator ∇θλ

denotes the partial derivatives with respect to the HMM parameters θλ. The log-
likelihood p (x|λ) is simply evaluated as the output of the HMM. Contrary to x, the Fisher
score vector Ux is an element in a vector space of fixed dimension and can be combined with
common SVM kernels such as those defined by Equations (2.20)–(2.22).

Also in the speech recognition community the idea of sequence compatible SVM kernels
has become important in the very recent years. Smith and Gales [2002] transfer the Fisher
kernel method to their isolated letter utterances recognizer. They additionally studied a refine-
ment of the Fisher score based on a “likelihood ratio”.

A different strategy, also in the field of speech recognition, is pursued by
Ganapathiraju et al. [2002] and co-workers [Hamaker et al., 2002]. Their approach employs
a hybrid philosophy, too, and uses an explicit two-stage approach with HMMs and SVMs.
Each HMM state is associated with both a generative PDF and an SVM. Training as well as
classification are divided into two stages. In the first stage, a Viterbi search aligns HMM states
with the test sequence. In the second stage, the SVMs comes into the game. During train-
ing they are learned according to the Viterbi alignments, during classification they perform a
post-processing and re-score the Viterbi alignment. The SVMs are specifically modified in the
sense that their output mapping provides a-posteriori probabilities instead of the usual score
of Equation (2.19). IBM studies a similar technique [Fine et al., 2002].

Chakrabartty and Cauwenberghs [2002] introduced the forward decoding kernel machines

(FDKM) and apply them to the recognition of phoneme sequences in speech. An FDKM is
a framework similar to HMMs, however uses an a-posteriori probability score from SVMs

109



7 SVM-GDTW — A discriminative sequence classification framework

for forward decoding MAP sequence estimation. For this purpose the authors developed a
particular type of SVM called GiniSVM. GiniSVM is particularly designed to handle multi-
class problems and a-posteriori probability output mappings.

The methods described so far have been mixtures of SVMs and HMMs. A deviation
from this philosophy has been publicized by Shimodaira et al. [2001a,b], again in the do-
main of speech recognition. The authors call their approach dynamic time alignment ker-

nel SVM (DTAK-SVM). The DTAK is defined as an optimally nonlinearly aligned sum of
vector kernel evaluations K (xi,yj), each of it computed from the sequences’ elements:
KDTAK

(
x,y

)
= maxΦ

∑
n K

(
xφx(n),yφx(n)

)
. The maximization is algorithmically solved

with dynamic programming.

7.3 The Gaussian DTW kernel

The literature review has shown that presently a number of researches from a variety of ap-
plication domains address SVM techniques for sequence classification. Their approaches use
highly imaginative methods in order to establish a sequence compatible SVM framework.
They have achieved excellent results in their respective application. However, most part is
still founded on an HMM and thus on the estimation of its generative parameters. Thus, one
principle, major drawback is inherited from the generative classification paradigm: the ap-
proaches are sensitive to the generative modeling assumptions and might perform poorly if
the underlying models are not accurate. Another difficulty with these approaches can be the
presence of a double training process, one for the HMM and one for the SVM. In this respect,
the practical handling might be awkward as an extensive parameter tuning and a larger set of
training material is required.

The approach presented in this section will be shown to be less complex and presumes less
model knowledge. Its aim can rather be categorized as a direct extension of the SVM from
vector space data to sequence data. It is founded on the assumption of a specific dissimilarity
relation of the sequence patterns.

As indicated in the introduction, when dealing with sequential online handwriting data the
basic SVM framework given by Equations (2.19)–(2.24) cannot simply be employed. Differ-
ent sequences x(i), i = 1, . . . ,M cannot be embedded in the same vector space in general,
as the necessary dimensions differ. However, an important property of the fundamental SVM
Equations (2.19), (2.23) and (2.24) is that the vectors x(i) and t appear only in the context of
kernel evaluations. Thus our objective, when adopting SVMs to sequential handwriting data,
can be to state a kernel definition that is suitable to the particular properties of sequence data.

Consider the Gaussian kernel of Equation (2.20). It is founded on the Euclidean metric
in the underlying vector space. The Euclidean metric treats each dimension in the Euclid-
ean vector space independently. Contrary, when dealing with (typically temporally distorted)
sequence data, there are usually high correlations among neighboring sequence elements. A
distance measure that captures these correlations has already been introduced. It is the DTW
distance D∗[d]

(
x,y

)
of Equation (2.32). For two equally sized sequences and a linear align-
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D̃∗[d]
(
t,x(j)

)
/N 0 0.20 0.71 0.99 10.04

KGDTW

(
t,x(j)

)
1 0.70 0.28 0.17 0.00

FIGURE 7.1: The Gaussian dynamic time warping (GDTW) kernel: Character patterns t (class “h”) and

x(j), j = 1, . . . , 5 (character classes “h”, “h”, “k”, “n”, “m”) are illustrated by the features x̃ and ỹ (see Sec-
tion 3.5 for the definition). The values of the DTW distance D̃∗[d]/N and the GDTW kernel evaluation KGDTW

for γ = 1.8 are provided in the third and fourth row, respectively. The values show an obvious but impor-
tant fact: similar patterns give small values for D̃∗[d]/N and large for KGDTW. In the second row the Viterbi
path Φ

∗ (together with the beam search space) is illustrated: The sketched line traverses all aligned point pairs
Φ

∗ =
[(

φ∗
t (1) ,φ∗

x(j) (1)
)
, . . . ,

(
φ∗

t (N) ,φ∗
x(j) (N)

)]
in the Nt × Nx(j) Viterbi matrix.

ment φ (n) = (n, n) even the equation D∗[d]
(
x,y

)
= ‖x − y‖2 holds (with x and y a simple

concatenation of x’s and y’s elements, respectively).
In this respect, an intuitive modification of Equation (2.20) is to substitute the squared

Euclidean distance ‖x − y‖2 with D∗[d]
(
x,y

)
(or D̃∗[d]

(
x,y

)
for some practical reasons).

Note that the squaring is already included in the summands of the alignment distance (cf.
Equation 2.31). Due to experimental arguments we again use the normalized DTW distance
D̃∗[d]

(
x,y

)
.

With this intuition the Gaussian DTW (GDTW) kernel for sequential data shall be defined
by

KGDTW

(
x,y

)
= exp

(
−γD̃∗[d]

(
x,y

))
. (7.1)

Figure 7.1 illustrates the GDTW kernel in the view of some examples. The DTW distance
D̃∗[d]

(
t,x(j)

)
and the GDTW kernel evaluation KGDTW

(
t,x(j)

)
of a character pattern of

class “h” and five different x(j) are shown. The reader can verify that the GDTW kernel
evaluation KGDTW

(
t,x(j)

)
can be identified with a similarity score that varies from 0 to 1.

7.4 SVM-GDTW character classification and training

With the establishing of KGDTW the formulation of classification and training in an SVM con-
text is straightforward. As in the SVM framework patterns only occur as arguments of kernel
evaluations, the SVM framework for sequence data is completely defined by Equations (2.19),
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7 SVM-GDTW — A discriminative sequence classification framework

(2.23), (2.24) and (7.1). In the following a two-class SVM classifier with a GDTW kernel will
be abbreviated with the acronym SVM-GDTW.

For the multi-class classification it is advantageous to choose the DAG-SVM method (cf.
Section 2.2.3.2). This approach has the benefit of a lower complexity in training and classifi-
cation over the residuary multi-class methods [Platt et al., 2000, Hsu and Lin, 2001]. This is
particularly relevant, as a GDTW kernel evaluation is rather demanding in computation time.
Additionally, for the DAG-SVM approach a theoretical statement about the bound of the gen-
eralization error exists [Platt et al., 2000]. In the remainder, a DAG-SVM multi-class classifier
with a GDTW kernel will be abbreviated with the acronym DAG-SVM-GDTW.

Figure 7.2 gives a graphical interpretation of a DAG-SVM-GDTW classification of a char-
acter of class “h”.

7.5 Validity of the GDTW kernel

It was mentioned earlier in Section 2.2.3.1, that there are some constraints on an “allowable”
kernel function that can be plugged into Equations (2.19), (2.23), (2.24). Formally, only posi-

tive definite functions can be used as SVM kernels [Schölkopf and Smola, 2002].
The introduction of the GDTW kernel in Section 7.3 originated from a rather intuitive ar-

gumentation than from a mathematical derivation. An investigation of its mathematical prop-
erties remains to be studied. In fact, the following deliberations will argue that the GDTW
kernel does not fulfill the strict mathematical constraints in general.

The practical consequences in using positive indefinite kernels in SVMs have not been
studied in detail so far. A few things, however, may be said about this issue. Theorems
about the existence of a global solution of Equations (2.23) and (2.24) and the convergence of
the iterative training algorithms are based on the prerequisite that the kernel used is positive
definite. In this respect, it should be expected that a positive indefinite kernel negatively
effects these issues. Though, from a practical point of view the extent of these effects depends
on the underlying data and positive indefinite kernels can produce remarkable results like
in the present case and others [DeCoste and Schölkopf, 2002, Haasdonk and Keysers, 2002,
Shimodaira et al., 2001b, Haasdonk and Bahlmann, 2004, Haasdonk, 2005].

Both a theoretical and a practical study follow here.

7.5.1 Theoretical study

It has been mentioned above that a valid SVM kernel has to be positive definite. It shall be
started with the definition of a positive definite function.

Definition 7.1. A symmetric function K : X × X 7→ R with x,y ∈ X is positive def-

inite if K
(
x,y

)
corresponds to an inner product in a Hilbert space H, i.e., K

(
x,y

)
=〈

ϕ (x) , ϕ
(
y
)〉

and ϕ : X 7→ H. This property is equivalent to the statement, that for all

M and all choices of X =
{
x(1), . . . ,x(M)

}
⊂ X the Gram matrix (or kernel matrix) K =

[Kij]M×M , which is defined on the mutual kernel evaluations Kij = K
(
x(i),x(j)

)
, i, j =
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FIGURE 7.2: A snapshot from the multi-class DAG-SVM-GDTW classification GUI: it shows the classification
of a test pattern t (of class “h”; selected in the upper left list). K · (K − 1) /2 two-class SVMs were trained
with the DAG-SVM algorithm [Platt et al., 2000]. For illustration purposes the two-class SVM for the class pair
(h ↔ b) is selected in the upper right list. The score f (t) of this SVM is 1.9, hence t is correctly classified as
the positive class “h”. In the lower part of the figure the terms SiwiK

(
t,x(i)

)
for i = 1, . . . ,MS are listed on

the left, each of which is the contribution of a support vector to the classification criterion of Equation (2.19).
E.g., for the selected support vector (of class “b”) Si = −1, wi = 1.00 and K

(
t,x(i)

)
= 0.34. To the right

a graphical presentation of the selected support vector x(i), the test pattern t and the Viterbi matrix and path is
illustrated.
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1, . . . ,M is positive semi-definite. That is, all eigenvalues with respect to K are non-negative,

i.e., λi ≥ 0, i = 1, . . . ,M .

In the following the proof will be given that KGDTW

(
x,y

)
is not positive definite, in

general. An easy procedure would be to give a simple counterexample. However, it might
be more instructive to justify the missing positive definiteness by fundamental characteris-
tics of KGDTW

(
x,y

)
. In this respect, the goal is to disprove KGDTW’s positive definiteness

by a detour over the DTW distance D̃∗[d], on which the GDTW kernel is based. First,
we start with a review of two definitions and important theorems, taken from the book of
Schölkopf and Smola [2002].

Definition 7.2. A symmetric matrix K = [Kij]M×M (M ≥ 2) taking values in R and satisfying

M∑

i,j=1

cicjKij > 0 for all ci ∈ R, with

M∑

i=1

ci = 0 (7.2)

is called conditionally positive definite.

Definition 7.3. A function K : X × X 7→ R which for all M ≥ 2, x(1), . . . ,x(M) ∈ X gives

rise to a conditionally positive definite Gram matrix is called a conditionally positive definite
kernel.

Theorem 7.4. If a symmetric function −δ2
(
x,y

)
, x,y ∈ X is conditionally positive definite

and −δ2 (x,x) = 0 for all x ∈ X , then there exists a Hilbert space H and a mapping

ϕ : X 7→ H such that ∥∥ϕ (x) − ϕ
(
y
)∥∥2

= δ2
(
x,y

)
. (7.3)

This implies that δ
(
x,y

)
is a semi-metric.

Proof. See [Schölkopf and Smola, 2002, Proposition 2.24]

Theorem 7.5. A symmetric function −δ2
(
x,y

)
is conditionally positive definite if and only

if K
(
x,y

)
= exp

(
−γδ2

(
x,y

))
is positive definite for all γ > 0.

Proof. See [Schölkopf and Smola, 2002, Proposition 2.28].

From Theorems 7.4 and 7.5 the following corollary can be derived.

Corollary 7.6. If δ
(
x,y

)
, x,y ∈ X with δ (x,x) = 0, ∀x ∈ X is not a semi-metric, then

K
(
x,y

)
= exp

(
−γδ2

(
x,y

))
is not a positive definite kernel.

Proof. As δ
(
x,y

)
is not a semi-metric by assumption, −δ2

(
x,y

)
is not conditionally posi-

tive definite, according to Theorem 7.4. From Theorem 7.5 it follows that exp
(
−γδ2

(
x,y

))

is not positive definite for at least one γ.
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FIGURE 7.3: A situation where the triangle inequality of
√

D̃∗[d] is violated.

Before we come to the point where we disprove KGDTW

(
x,y

)
to be positive definite, a

statement about the metric properties of the square root of the DTW distance,
√

D̃∗[d], shall
be derived.

Proposition 7.7. The square root of the DTW distance,

√
D̃∗[d], is not a semi-metric as it

violates the triangle inequality, i.e., patterns x(1), x(2) and x(3) ∈ X exist for which
√

D̃∗[d] (x(1),x(2)) +

√
D̃∗[d] (x(2),x(3)) <

√
D̃∗[d] (x(1),x(3)). (7.4)

Proof. The aim of this proof is to construct an example that violates the triangle inequality.
A situation that is very sensitive to a violation is depicted in Figure 7.3. The figure shows
hypothetical distance relations of the three patterns x(1), x(2) and x(3). In these, two different
patterns x(1) and x(2) have zero distance, i.e.,

√
D̃∗[d] (x(1),x(2)) =

√
D̃∗[d] (x(2),x(1)) = 0 and x(1) 6= x(2) (7.5)

and x(3) has different non-zero distances to x(1) and x(2), i.e.,

0 6=
√

D̃∗[d] (x(1),x(3)) 6=
√

D̃∗[d] (x(2),x(3)) 6= 0. (7.6)

Under these circumstances is obvious that either
√

D̃∗[d] (x(1),x(2)) +

√
D̃∗[d] (x(2),x(3)) <

√
D̃∗[d] (x(1),x(3)) (7.7)

or √
D̃∗[d] (x(2),x(1)) +

√
D̃∗[d] (x(1),x(3)) <

√
D̃∗[d] (x(2),x(3)). (7.8)

One of those equations gives rise to a violation of the triangle inequality, even without a
specific parameter choice for x(1), x(2) and x(3).

A specific example for a situation where Equations (7.5) and (7.6) hold is the choice x(1) =
[1, 1, 2], x(2) = [1, 2, 2], x(3) = [2, 2].
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7 SVM-GDTW — A discriminative sequence classification framework

We conclude with the following corollary.

Corollary 7.8. KGDTW

(
x,y

)
= exp

(
−γD̃∗[d]

(
x,y

))
is a positive indefinite kernel.

Proof. From Proposition 7.7 it follows that
√

D̃∗[d]
(
x,y

)
is not a semi-metric. If we identify

√
D̃∗[d] = δ in Corollary 7.6, it follows that KGDTW

(
x,y

)
is a positive indefinite kernel.

For the example illustrated in the proof of Proposition 7.7 and for γ = 1 the Gram matrix

is KGDTW =




exp (−0) exp (−2/3) exp (−1/3)

exp (−2/3) exp (−0) exp (−0)
exp (−1/3) exp (−0) exp (−0)



 and the eigenvalue vector λ can

numerically be evaluated to λ ≈ (−0.03, 0.53, 2.51)T , including a negative λ1.

7.5.2 Numerical study

The last section has argued that KGDTW is positive indefinite and thus not a valid SVM kernel.
As will be shown in the experiments (Section 7.8), it will nevertheless produce remarkable
classification results in the context of online handwriting data. This section will study this
issue from a practical point of view.

A reason for the good performance is presumely that for the particular application typical

data behaves well with the function KGDTW. The Gram matrix KGDTW which is computed from
the observed data might be good-natured with respect to the issue of positive semi-definiteness,
although the kernel KGDTW in general is not. A numerical study of KGDTW, computed from
UNIPEN handwriting data, can enlighten deliberations about this question.

Therefore, experiments were conducted where Gram matrices were generated by randomly
chosen characters x(i), i = 1, . . . ,M from the UNIPEN HWR database. The results of these
simulations were as follows:

1. For sample sets of sizes M ≤ 40 all λi were experimentally measured to be non-negative
in all simulations, that is, the Gram matrices are positive semidefinite.

2. Larger sample sets M > 40 violate the positive definiteness only weakly: The missing
positive definiteness was due to only a few negative eigenvalues with small absolute
values compared to the other eigenvalues.

Figure 7.4 shows a (sorted) eigenvalue vector λ as a bar plot. It has been computed from
a training set including examples of an “b” and ”h” with M = 382.

To conclude this section, it has been shown that KGDTW is not a valid SVM kernel in a strict
mathematical sense. However, for typical data in the present application the violation of the
positive definiteness by KGDTW is limited to some extend. This aspect shall be the justification
for the use of the SVM-GDTW classifier for HWR.
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FIGURE 7.4: A (sorted) eigenvalue vector λ, numerically computed for a randomly chosen 382 × 382 Gram
matrix KGDTW of kernel evaluations from examples of the classes “b” and “h”. The minimal eigenvalue is
λ1 ≈ −2.3, the maximal λM ≈ 87. Note that only a part of the whole scale on the ordinate is shown. 57
eigenvalues are negative, corresponding to a fraction of ≈ 15%. The absolute values of these are relatively small

with respect to the positive eigenvalues. In this example i,λi<0|λi|

i,λi>0|λi|
≈ 0.03.

7.6 Analysis of complexity

The following deliberations shall analyze the complexity of the character SVM-GDTW mod-
eling.

A kernel evaluation (Equation (7.1)) for a typical character pair asymptotically takes

CTime (Kernel) = O(Ñ · F · |P|) (7.9)

operations in a beam search environment. Experimentally the absolute computation time was
measured as

Time (Kernel) ≈ 0.0005 sec (7.10)

with Ñ = 42 the average length of the sequences and F = 3 the dimension of xi in a C++

implementation on an AMD Athlon 1600MHz.
The asymptotic training time of the two-class SMO and L-class DAG-SVM training algo-

rithm is

CTime (Train,2-class) = O
(
(M tot)

γ) (7.11)

and

CTime (Train,L-class) = O
(
2γ−1L2−γ (M tot)

γ)
, (7.12)
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7 SVM-GDTW — A discriminative sequence classification framework

respectively, with γ ≈ 2 and M tot the total number of training examples [Platt et al., 2000].
In a typical multi-class lower case character experiment (the 20 %/20 % training/test set par-
titioning, cf. Section 7.8), M tot = 12.000 and the absolute training time was measured as

Time (Train,2-class) ≈ 0.25 h (7.13)

and
Time (Train,26-class) ≈ 81 h. (7.14)

Again, training can easily be parallelized into L · (L − 1) /2 independent processes.
The average number of support vectors in the multi-class lower case character experiments

mentioned was M̃S ≈ 170. The classification time for one two-class SVM hence is

Time (Classify,2-class) ≈ M̃S · Time (Kernel)

= 170 · 0.0005 sec = 0.085 sec. (7.15)

Since the DAG-SVM evaluates L−1 two-class SVMs, a classification of a lower case character
takes

Time (Classify,26-class) ≈ (L − 1) · Time (Classify,2-class)

= 25 · 0.085 sec = 2.125 sec. (7.16)

The memory complexity mainly consists of the storage of all support vectors, thus

Memory(26-class) = L · (L − 1) /2 · M̃S · Ñ · F · 4 Byte

= 26 · 25/2 · 170 · 42 · 3 · 4 Byte ≈ 28 Mbyte. (7.17)

It should be noted that the above derived memory complexity corresponds to the worst
case. The derivation assumes that each support vector in the L · (L − 1) /2 two-class SVMs
is independently stored. In practical applications it can be expected that support vectors are
shared among a number of different two-class SVMs. Then, a smart storage organization can
reduce the memory requirements.

Of course, both time and memory complexity are immense and not practical for an operation
of the DAG-SVM-GDTW classifier on handheld devices. For a serious use in real world
applications a number of further optimization procedures have to be employed. This issue
will be depicted in Section 9.2.

7.7 SVM-GDTW word classification — an outlook

An important question in the context of SVM based HWR concerns the generalization of the
character to a word classification.

Section 4.5 has described how this problem is effectively solved for generative modeling
approaches, for instance, HMM and CSDTW. There, the probabilistic formulation of the char-
acter appearance model enables an elegant integration of the character recognition within a
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probabilistically reasoned language model. Also, the idea of decomposing the generative
word model into a sequence of generative character models implicitly solves the segmentation
problem. It has been sketched how the word segmentation is obtained as a globally optimal
by-product from the word classification process. In its pure form, that is, without beam search,
no commitment to an explicit segmentation decision is required before the entire classification
is completed.

For SVMs, suitable word classification techniques are currently not so highly developed.
Main difficulties arise from the following: First, the output of SVMs does generally not rep-
resent a probability value, and hence, an embedding within a probabilistic language model is
not straightforward. Although additions to binary SVMs have been proposed, which assign
probabilities posterior to the SVM training [Platt, 2000], a transfer of this concept to the multi-
class case has not been thoroughly studied so far. Second, it is not clear nowadays how the
segmentation problem can be solved with SVMs.

As an outlook, two interesting directions for SVM word recognition shall be pointed out:1

A pure discriminative approach learns discriminative decision boundaries between all
K word classes. Depending on the multi-class strategy used (cf. Section 2.2.3.2), this
approach would comprise K or K · (K − 1) /2 two-class SVMs, respectively, each of
which based on a set of “support words”, for a K-word dictionary. In the SVM intuition,
those “support words” would correspond to instances of the difficult examples for the
respective two-class problem.

As a direct implementation of this strategy is intractable due to its high computational
complexity (for a reasonable K) and the requirement of a huge training set (it would
require at least hundreds of training samples for each of the K word classes), the chal-
lenge is here to decompose the “support-words” and corresponding kernel evaluations
into smaller units, for instance, into “support-characters”. In fact, this issue is also re-
lated to a solution of the above mentioned segmentation problem.

Generative-discriminative hybrids follow a two-step philosophy, generalizing the ideas
already mentioned in Section 7.1 [Ganapathiraju et al., 2002, Hamaker et al., 2002,
Fine et al., 2002, Chakrabartty and Cauwenberghs, 2002]. Their principle can be sum-
marized as follows: First, a generative model provides a top-N word candidate list,
augmented with the respective segmentation hypothesis. Second, a character SVM is
applied to re-score each of the word candidates for a final decision, based on the seg-
mentations provided.

While the latter line of research is not as elegant as the pure discriminative approach, a practi-
cal realization is easier to achieve with the presently available technology. Contrary, no current
work pursuing the first philosophy is known to the author, indicating that this strategy is truly
a challenging task. However, a successful realization would result in an elegant and presumely
powerful discriminative handwriting classification.

1Ideas partially originate from a discussion with Hiroshi Shimodaira in Niagara-on-the-Lake, August 2002.
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7 SVM-GDTW — A discriminative sequence classification framework

Character pairs Training set size # SV Error rate Error rate
M tot MS ESVM−GDTW ECSDTW

dissimilar
“a” ↔ “b” 3540 298 0.5 % 0.8 %

“d” ↔ “m” 2595 334 0.1 % 0.4 %

similar

“c” ↔ “e” 5088 351 3.7 % 7.2 %

“u” ↔ “v” 2214 397 9.2 % 6.8 %

“y” ↔ “g” 2088 358 11.2 % 7.7 %

“b” ↔ “h” 2524 275 2.3 % 3.2 %

TABLE 7.1: Two-class experiments on UNIPEN data: error rate ESVM−GDTW of the SVM Gaussian DTW kernel
approach for examples of dissimilar (“a” ↔ “b”, “d” ↔ “m”) and similar lower case character pairs (“c” ↔ “e”,
“u” ↔ “v”, “y” ↔ “g”, “b” ↔ “h”). The number of training samples (M ), support vectors (MS) and the error
rate ECSDTW for CSDTW are listed as well. The training set size was 67%, the test set size 33% of the UNIPEN

Train-R01/V07 database. The lowest error rate is typed bold face.

In conclusion, the advance of an efficient and accurate SVM word classification will be a
challenging and exciting research area for the upcoming years.

7.8 Experiments

Like in the previous chapters, systematic experiments on the character recognition have been
applied to UNIPEN data. The SVM-GDTW classifiers were trained with the sequential min-

imal optimization (SMO) algorithm [Platt, 1999] using a modification of a third party Matlab

SVM toolbox [Cawley, 2000]. For the following experiments the SVM and kernel parameters
were set to C = 1 and γ = 1.8, respectively, which has been a result of a careful, grid search
based parameter tuning.

7.8.1 Two-class experiments

In a first study the concern was to detect whether an SVM-GDTW is able to classify clearly
separable data. Hence, SVM-GDTW classifiers were applied to character class pairs which
were shown to be dissimilar with respect to the CSDTW dissimilarity measure of Chapter 6
and achieved very low classification confusions with the CSDTW classification (cf. Chap-
ter 4).

Like it has been described in Section 4.6, the characters were randomly and disjointly di-
vided into training and test sets of a ratio 2 : 1. Table 7.1 summarizes classification error rates
and compares them to the results of CSDTW. The table shows the satisfying result, that for
the dissimilar character pairs (“a” ↔ “b”, “d” ↔ “m”) classification errors are rare in both
classification methods, actually are due to mislabelings.

In a second category of two-class experiments the discrimination of character class pairs,
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UNIPEN Approach Error rate UNIPEN Train-R01/V07
section ẼDAG−SVM−GDTW / training / test set partitioning

ẼCSDTW

1a
DAG-SVM-GDTW

4.0 % 20 %/20 %

(digits)
3.8 % 40 %/40 %

CSDTW
4.5 % 20 %/20 %
3.2 % 40 %/40 %

1b
DAG-SVM-GDTW

7.6 % 20 %/20 %

(upper case)
7.6 % 40 %/40 %

CSDTW
10.0 % 20 %/20 %
8.0 % 40 %/40 %

1c
DAG-SVM-GDTW

11.7 % 10 %/10 %

(lower case)
12.1 % 20 %/20 %

CSDTW
13.0 % 10 %/10 %
11.4 % 20 %/20 %

TABLE 7.2: Multi-class experiments on UNIPEN sections 1a/b/c (indicated in the first column). The second
column denotes the classification approach used, notably DAG-SVM-GDTW and CSDTW (cf. Chapter 4). The
third column shows the mean error rate ẼDAG−SVM−GDTW and ẼCSDTW of five different dataset partitionings
which were made with respect to the sample set sizes indicated in the last column. The lowest mean error rate is
typed bold face.

which were shown to be similar and were frequently misclassified by CSDTW, was examined.
Table 7.1 illustrates, that both approaches achieve comparable classification results. For some
of the selected character pairs (“c” ↔ “e”, “b” ↔ “h”) SVM-GDTW gives lower error rates
than SDTW, for others (“u” ↔ “v”, “y” ↔ “g”) vice versa.

Further, it can be taken from the table that the set of support vectors comprises roughly
10 % of the training set, in average M̃S ≈ 300–350.

7.8.2 Multi-class experiments

For a multi-class study experiments were carried out on two different UNIPEN dataset sizes
in order to give an idea of the recognizer’s dependence on this quantity.

Table 7.2 summarizes classification error rates of a DAG-SVM-GDTW classifier for
UNIPEN sections 1a/b/c (digits/upper/lower case characters, respectively).

From the values it can be seen that DAG-GDTW-SVM achieves lower error rates than CS-
DTW for the relative small training set. For the larger training sets DAG-GDTW-SVM and
CSDTW achieve comparable error rates.

The higher performance of DAG-GDTW-SVM in comparison with CSDTW on the small
training set supports the statement that the generative CSDTW approach is highly dependent
on accurate models, which cannot be satisfactorily gained from the relative small training set.
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For a comparison of the DAG-GDTW-SVM performance in a broader context, the reader
is referred to Table 4.1. From there it can be taken that DAG-SVM-GDTW classification out-
performs other approaches (especially in the important lower case characters section), though
a smaller training set has been used. However, also at this point the issues about different
datasets, dataset partitionings, etc., count, as it has been argued in Section 4.6, and one should
be careful when interpreting the results on different datasets.

7.8.3 Visual study of support vectors

Like in Section 4.6.3 we can again profit from the geometrically interpretable feature extrac-
tion. This time, it is instructive to have a closer look at a training result and graphically
display selected support vectors. Further, a comparison with non-support vectors can give a
visual feedback of an SVM-GDTW classifier. This issue is pursued in Figure 7.5. The basis
of the illustration is a two-class SVM-GDTW that discriminates between the classes “h” and
“b”. The figure shows six selected training patterns for each class, represented by the x̃-ỹ fea-
ture representation. Three of the examples are support vectors (the respective top row), three
are non-support vectors (the respective bottom row). The weights wi are given beneath their
illustration.

The patterns illustrated in Figure 7.5 represent only a very small fraction of all training
patterns. In this respect it is difficult to conclude general interpretations from these pictures.
However, in correspondence with a careful inspection of further patterns (not included in the
figure), a number of statements can be made. Although, it should be mentioned that exceptions
exist.

1. Most support vectors are

a) patterns that are close to the respective competitive class in the feature representa-
tion (i.e., “h” patterns that are similar to an “b”, “h” patterns that are similar to an
“b”). Examples for these cases are the patterns (b), (c), and (h).

b) patterns the shape of which occurs relatively sparely in the training set, e.g. pat-
terns (a), (g) and (i).

2. Most non-support vector are

a) characterized in that they can be unambiguously identified with their respective
class ((d)–(f) and (j)–(l)) and

b) rather often present in a similar feature representation in the training set (also (d)–
(f) and (j)–(l)).

In fact, these observations correspond to the general idea of the discriminative classification
paradigm and SVMs.
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FIGURE 7.5: Support vectors (SV) and non-support vectors (non-SV) of a two-class SVM “h” ↔ “b”. The
patterns are represented through the feature subspace according to the two features x̃ and ỹ. Note that the tangent
slope angle θ is also used in the SVM but not illustrated here.
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7.9 Summary

The present chapter has presented a discriminative approach for the recognition of sequence
data, especially of online handwritten characters. This technique combines dynamic time
warping (DTW) and support vector machines (SVM) by integrating DTW into a Gaussian
SVM kernel. The benefit of this approach over conventional HMM based techniques is the
absence of restrictive assumptions about class conditional PDFs. The only essential assump-
tion made is the selection of the kernel.

It was shown that the GDTW kernel, however, does not meet the condition of positive
definiteness and thus is — in a strict mathematical sense — not a valid kernel in the context of
SVM classifiers. However, it appeared that in the context of real-world online handwriting data
the GDTW kernel does not have the negative effects as the violation of the positive definiteness
might suggest. For a study of this issue, Gram matrices have been computed in simulations
based on UNIPEN data. It has been shown that these violate the positive definiteness only
weakly.

The classification technique has been applied to characters of the UNIPEN handwriting
recognition database. Experiments have shown superior recognition rate in comparison to an
HMM-based classifier for relative small training sets and comparable rates for larger training
sets.

Though, a problem of this approach is the complexity. A classification of a character con-
sumes ≈ 2 sec in a standard PC environment and ≈ 28 Mbyte of storage. For a use in real
world applications this issue has to be further addressed in future research.
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CHAPTER 8

An application: frog on hand on a PDA

This chapter describes an implementation of the developed HWR in a real world problem:

The character recognition is realized in a PDA environment on a Linux Compaq iPAQ. As the

computational demands on small devices are critical and, further, scalability of the system

is desired, the CSDTW classification has been chosen in favor of the SVM-GDTW classifica-

tion. Character recognition runs with high accuracy and almost in real time on the described

platform.

8.1 Introduction

In order to demonstrate frog on hand’s performance in a typical application, the character
recognition has been implemented for the use in a PDA environment. As noted in Chapter 1,
the hardware of mobile devices gives particular constraints on the computational and memory
complexity of the recognition implementation. Further, mobile devices are used by a large
variety of users. Due to these reasons, appropriate recognition algorithms should be scalable to
the hardware and robust with respect to large writing variations. With CSDTW, a classification
approach exists that meets these requirements.

The remainder of this chapter describes the environment chosen for the implementation,
details about the recognition algorithm and its computational and memory requirements.
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8.2 Software and hardware environment

The underlying software interfaces are Trolltech’s Qtopia1 PDA environment and its GPL li-
censed fork, the Open Palmtop Integrated Environment (OPIE).2 Both environments provide
a complete PDA graphical user interface and a number of typical personal information man-
agement applications, for instance, date book, address book, and to-do list. They run in the
embedded Linux operating system (kernel 2.4.19) from the Familiar distribution.3

The PDA implementation of the frog on hand character recognition integrates the recog-
nition system, described in the previous chapters, into a plug-in that can be loaded both into
Qtopia and OPIE. As known from previous character recognition implementations, the plu-
gin’s interface consists of a hidable input region. When visible, it is divided into three writing
zones, each zone corresponding to one of the recognition domains “digits”, “lowercase char-
acters” and “uppercase characters”. The user input is recognized and the classified character
label (“0”–“9”, “A”–“Z”, “a”–“z”) is transferred to the active application. The picture in Fig-
ure 8.1 gives an idea of the environment. A binary package of the implementation is available
from the author’s WWW site.4

The environments Qtopia and OPIE are designed for small devices. Currently supported
hardware includes the PDAs Compaq iPAQ and Sharp Zaurus, the “webpad” Siemens SimPAD

and the smart phone Motorola A760.

The present HWR plug-in was developed and tested on a Compaq iPAQ 3660. This device
is equipped with a 203 MHz StrongARM processor, 16 MByte flash memory (corresponding
to a PC’s hard drive) and 64 MByte RAM. The StrongARM processor lacks a built-in float-
ing point arithmetic, thus a fixed point data representation is used in the frog on hand PDA
implementation.

8.3 Modules of the recognizer

The PDA recognizer employs pre-processing and feature selection, as explained in Chapter 3.
For classification, the CSDTW classifier has been chosen in favor of the SVM-GDTW clas-
sifier, as its complexity is lower in general and, since, it is straightforwardly scalable to the
device’s hardware.

Each of the recognition domains (i.e., “digits”, “lowercase characters” and “uppercase char-
acters”) are associated with a set ℜ =

{
R lk

}
l∈{1,...,L},k∈{1,...,Kl}

of CSDTW reference models,

trained on the UNIPEN “Train-R01/V07” sections 1a/b/c. In order to obtain small reference
model sets, the CSDTW training parameter configuration Dmax = 7.0 and Omin = 23 has
been selected (cf. Table 4.1).

1http://www.trolltech.com/products/qtopia/
2http://opie.handhelds.org/
3http://familiar.handhelds.org/
4http://lmb.informatik.uni-freiburg.de/people/bahlmann/frog.en.html

126

http://www.trolltech.com/products/qtopia/
http://opie.handhelds.org/
http://familiar.handhelds.org/
http://lmb.informatik.uni-freiburg.de/people/bahlmann/frog.en.html


8.4 The recognizer’s footprint

FIGURE 8.1: frog on hand with CSDTW classification on a Linux Compaq iPAQ.

8.4 The recognizer’s footprint

The resulting classifier sizes vary in the range of 250–850 KByte, computation time in the
range of 0.1–0.3 sec, respectively, as summarized by Table 8.1. The classifier fits easily on the
iPAQ’s flash memory. However, the recognition time exceeds the time that is commonly seen
as comfortable for the user (≈ 0.1 sec), by a factor of 1–3. Nevertheless, it can be expected
that a further optimization of the code, in particular with respect to the underlying processor
characteristics, could close this gap.

UNIPEN section # allographs Atot Model size (uncompressed) Recognition time

digits (1a) 27 250 KByte 0.1 sec
lowercase (1b) 67 650 KByte 0.2 sec
uppercase (1c) 117 850 KByte 0.3 sec

TABLE 8.1: Memory and computational complexity for the UNIPEN 1a/b/c sections on the iPAQ.
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8.5 Summary

This chapter has described an implementation of the frog on hand character recognition in a
PDA environment. Software and hardware environment are Trolltech’s Qtopia and a Compaq

iPAQ, respectively. The HWR is based on the CSDTW classification. In this respect, the
implementation could benefit from the scalability of this approach. The implementation was
shown to deal with large writing style variations and runs in near real time.
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CHAPTER 9

Conclusion and perspectives

9.1 Conclusion

This thesis has discussed methods for accurate online HWR. All techniques have been inte-
grated into the prototype frog on hand, which is the writer independent online HWR system
at the University of Freiburg. The work is not only confined to online HWR, but also trans-
ferable to general pattern recognition techniques. In particular, it has addressed two important
problems in pattern recognition:

1. a robust classification of sequence data, and

2. a unified statistical feature space modeling of a mixture of directional and linear vari-
ables.

In more detail, the following original aspects have been studied in this thesis:

Classification of sequence data with CSDTW and SVM-GDTW: With CSDTW and
SVM-GDTW, two novel machine learning techniques, that are generically suited for
sequence data, have been presented.

CSDTW has been introduced as a generative learning framework, which holistically
integrates two powerful pattern recognition techniques in the context of sequence mod-
eling: cluster analysis and HMM-like statistical modeling. The term “holistic” refers to
one of CSDTW’s strength: clustering and statistical modeling are embedded in a unique
feature space and are seamlessly integrated into each other. Another quality of CSDTW
is its scalability. By employing a hierarchical cluster analysis, CSDTW provides the
possibility to scale the classifier, finding a compromise between the recognition accu-
racy and the computational requirements. The practical impact of this property has been
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demonstrated with the implementation of frog on hand with CSDTW classification on a
Linux Compaq iPAQ PDA.

Along with CSDTW, a (dis-) similarity measure for a pair of probabilistic sequence
models has been introduced. It has been established with particular application to CS-
DTW, however the concept is transferable to HMMs with left-to-right transitions. The
(dis-) similarity measure is based on the Bayes probability of error, thus it has been used
to analyze classification errors. Indeed, it could be empirically verified that class pairs
with a high similarity measure have frequent classification confusions.

A second innovative sequence classification has been introduced by means of the SVM-
GDTW approach. Contrary to CSDTW, SVM-GDTW employs a discriminative clas-
sification philosophy, and thus performs no restrictive assumptions about generative
sources for the data. Naturally, this philosophy is advantageous if no prior information
about the generative source (e.g., the function class of the PDFs) or only few training
data are available. SVM-GDTW combines the concepts of SVM and DTW by the for-
mulation of the so-called Gaussian DTW (GDTW) kernel. The thesis has studied the
GDTW kernel both from theoretical and numerical points of view. Theoretical studies
have revealed that the GDTW kernel is generally not a valid SVM kernel in a strict
mathematical sense, as it does not meet the condition of positive definiteness. Though,
empirical studies of the kernel with application to typical online handwriting data have
shown its practical usability. In this context, the positive definiteness has been shown
to be violated only weakly and the theoretical drawbacks are mostly restricted to patho-
logical cases. With this in mind, standard SVM methods for training and classification
could be employed in the context of the GDTW kernel and, indeed, achieved excellent
recognition results.

Both CSDTW and SVM-GDTW have been applied to character recognition using the
standard UNIPEN online HWR database and benchmark. In comparison to state-of-
the-art character recognizers of other research projects, both classification techniques
achieved lower or similar error rates. In a direct comparison of CSDTW and SVM-
GDTW, experiments have shown superior recognition rates of SVM-GDTW for rela-
tively small training sets, while CSDTW has performed more accurate for larger train-
ing sets. Complexity wise, CSDTW resulted in a leaner classifier, while SVM-GDTW
has required rather high computation time and memory.

Having a practical application — like the implementation of frog on hand on a PDA
— in mind, it can be concluded that the CSDTW classification is a more suitable ap-
proach due to its lower complexity, its scalability, its straightforward extensibility to a
word recognition, and higher recognition rates when a large set of training material is
available. Nevertheless, from the background that SVM based sequence classification is
a rather recent achievement and thus has a far less extensive research history and com-
munity, significant improvements can be expected from further research in this field.
In addition, hybrid sequence classification techniques, based on either techniques, pro-
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vide a promising direction for sequence classification, as generative and discriminative
approaches employ complementary philosophies.

Due to their generality, both classification approaches can advantageously be applied to
other pattern recognition problems where data are a sequence of feature vectors. Appli-
cations include speech recognition, medical applications, genome processing, robotics,
etc.

Combined feature space modeling of linear and directional data: Part of this the-
sis has established a solution for a unified statistical Gaussian-like modeling of linear
(i.e., values on the real line) and directional (i.e., values on the unit circle) features. To
this end, the so-called approximated multivariate semi-wrapped Gaussian distribution

has been introduced, which is an extension of the wrapped Gaussian distribution, often
used in physics applications.

It has been shown that the proposed modeling significantly improves the recognition
accuracy in the studied application of online HWR compared to previous standard ap-
proaches. Further benefits of this solution are savings in computation time and memory.

The approach is general in the respect that it is applicable in any pattern recognition
problem (including vector space and sequence data) where both linear and directional
variables occur in the feature space.

9.2 Perspectives

Some further challenges of the above summarized techniques arise from complexity issues,
others from the fact that their applicability depends on the underlying data. Worthwhile ap-
proaches for improvements shall be discussed in the following. First, they shall be addressed
from an individual point of view, followed by more general remarks.

CSDTW: Depending on the application context (e.g., for a real time word recognition) or the
target device (e.g., for a cell phone), the CSDTW classification might still be too com-
plex. In order to speed up classification and decrease the classifier size, a method for
a sub-sampling of the allograph models would be an attractive area for further studies.
The usefulness of this proceeding can be seen in the following fact: Figure 4.7 reveals
that in many cases the variations in the x̃-ỹ-plane are rather small towards the writ-
ing direction, compared to the perpendicular direction. This suggests that an accurate
classification can also be achieved with larger variances towards the writing direction,
and thus, a smaller number of CSDTW states. Similar to the current model topology
selection, the sub-sampling should preferably be solved automatically and data-driven.

The presented approach has assumed a feature space with compact, Gaussian-like clus-
ters. However, clusters in many real-world problems often have a more complex
form, for instance, they can be elongated or shell-shaped. Clustering methods exist
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[Zhang and Rudnicky, 2002] that cope with this issue by mapping the input space with
a kernel. A future challenge is to integrate such a kernel formulation jointly into the
clustering and the statistical, generative sequence modeling.

Recently, Vuori et al. [2001] proposed methods for an unsupervised, writer dependent

adaptation by the elimination of character prototypes from the reference set. This idea,
originally developed for simple character templates, can straightforwardly be transferred
to the CSDTW allograph models.

CSDTW dissimilarity: The CSDTW dissimilarity based on the Bayes error is a meaningful
measure for the dissimilarity between two generative sequence models. However, as
mentioned above, it cannot be interpreted as the probability of a misclassification, as the
Bayes error can for vector space data. In this respect, interesting future work lies in the
development of a “sequence Bayes error” that can serve as an analogon for the vector
space Bayes error.

Further, the incorporation of the dissimilarity measure into the model training and clas-
sification, as described in Section 6.1, is an interesting and practically relevant research
topic.

SVM-GDTW: Currently, SVM-GDTW has two substantial limitations.

First, its computational and memory complexities are rather high. In order to alleviate
this problem, an interpretation of its complexity (Equation (7.16)) suggests the follow-
ing starting points: The number of kernel evaluations effects the complexity linearly.
The number of kernel evaluations itself is dependent on the number of support vec-
tors. Thus, one goal should be to decrease this number. Techniques have been reported
[Schölkopf et al., 1999] that reduce the number of support vectors by a factor of up to
ten, posterior to the SVM training, without large losses in classification accuracy. Fur-
ther, in recent years, a kernel-based classification method similar to SVMs has been
proposed, that is especially designed to produce sparse classifiers: the relevance vector
machine (RVM) [Tipping, 2001]. This classifier has further the advantage that its output
has a natural meaning of probability. Another source for speed-up is to omit or interrupt
applicable kernel evaluations by pruning techniques for the DTW. Last but not least, a
sub-sampling of the sequence patterns decreases the recognition complexity linearly.

Second, the SVM classification only solves the character recognition. It does not pro-
vide an implicit segmentation of the test sequence, when the latter corresponds to a
word, nor a probability value, like generative algorithms usually do. From this back-
ground, an important, but demanding challenge is the installation of an SVM solution
for the recognition of words and unconstrained handwriting.

In addition, it is worthwhile to study techniques that could further improve the accuracy
of SVM-GDTW. Attractive starting points include the following. So far, the DTW uses
the simple squared Euclidean distance for the kernel evaluation, i.e., each sub-space
dimension is weighted uniformly. It can be expected that a non-uniform weighting
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leads to an increased accuracy. A simple approach could use weights from generative
models, for instance, those gained in the context of CSDTW in Section 4.6.2. Then,
a further study of GDTW’s theoretical characteristics, especially in the context of its
positive definiteness, is worthwhile. Such research could suggest an adjustment of the
kernel function, resulting in a deeper theoretical foundation and possibly an improved
classification accuracy.

Statistical modeling of semi-directional data: The feasibility of the proposed direc-
tional data modeling depends on the underlying data, as a small variance in the direc-
tional dimension is required. In this respect, the described solution is a first, but not the
final step to a unified handling of a semi-wrapped feature space in pattern recognition.
For further research, in particular a non-approximative modeling of semi-directional sit-
uations based on the wrapped or the von Mises distribution is a challenge worthwhile to
study.

From a more general view, a basis for interesting future research is the integration of CSDTW
and SVM-GDTW into a hybrid classifier. This is especially promising, as both classifiers
employ different philosophies, and thus their decisions can be expected to be uncorrelated
to some degree. Indeed, studies from the two-class SVM-GDTW experiments (Table 7.1)
indicate significant differences in the individual empirical performance of selected pairwise
classifiers.

For a successful integration of the two concepts various approaches can be pursued: First,
literature suggests a number of general classifier combination approaches [Jain et al., 2000].
Those combine the outputs of individual classifiers based on a parallel, cascading or hierar-
chical combination scheme.

Second, a trained SVM could be used to identify the critical boundary regions in the feature
space. Following, the CSDTW models can be refined especially in these regions.

Third, CSDTW classification could be employed to identify a small number of class hy-
potheses instead of a definite decision. Then, SVM-GDTW would only have to choose out of
a few classes, which would speed up SVM-GDTW classification drastically.

This thesis shall be be concluded with the remark that the area of HWR still offers a num-
ber of exciting challenges. In particular, the advent of the Tablet PC provides a ubiquitous
platform, which demands for the recognition of “digital ink” in its most general form. In
addition to the recognition of script, researchers in industry and academia are targeting for
the recognition of further complex elements, such as personal notes, layout structures, math-
ematical formulas, gestures, etc., ideally to be embedded within an interactive and adaptive
environment.
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