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Abstract

We propose a method for fusing two modalities of in-
formation for speed limit assistants: (i) camera based
speed sign recognition and (ii) digitized speed limit
maps combined with a GPS sensor. The fusion is based
on a Bayesian framework. Here, we rely on two mod-
eling assumptions: (i) the speed sign recognizer’s score
being probabilistic and (ii) a model describing speed
limit sign probabilities conditioned on the map informa-
tion. Speed limit assistants incorporating the proposed
fusion can particularly benefit over uni-modal solutions
in situations, where a solution based on a single modal-
ity is ill-posed, that is, adverse lighting or weather con-
ditions in case of camera based speed sign recogni-
tion, and dynamic traffic guidance systems, construc-
tion zones, or incomplete maps in case of GPS maps.
We give exemplary evidence of the proposed solution’s
effectiveness.

1. Introduction

In recent years, the technology ofspeed limit as-
sistants(SLAs) has emerged as an important applica-
tion for automotive advanced driver assistant systems
(ADAS). The aim of such systems is to inform or warn
the driver about effective speed limits, or, in a more
active setting, supplement an adaptive cruise control
(ACC) system. Current solutions for SLAs are usually
based on one out of two different technologies: (i) cam-
era based speed sign recognition and (ii) digitized maps
with a GPS interface, as reviewed in the following.

Camera based speed sign recognition aims at de-
tecting and classifying speed limit signs in image se-
quences. Camera sensors are becoming increasingly
cheap and ubiquitous in automobiles. Since cameras are
extremely versatile, this solution is particularly attrac-
tive when combined with additional front facing camera

ADAS applications, such as those involving the detec-
tion of lane markers, vehicles, or pedestrians.

A number of highly accurate speed sign recogni-
tion systems has been developed in recent years [3, 2,
1, 6, 4], both in the context of gray-scale and color
videos. For a detailed literature review it is referred
to those references. As a general remark, state-of-the
art systems seem to converge to a two stage approach,
which addresses both accuracy and speed: Firstly, im-
age frames are scanned for possible sign occurrences
using a particularly fast detection algorithm (based on
geometric or color information), and speed sign hy-
potheses are generated for regions with sufficient sign
evidence. Secondly, these hypotheses are verified and
categorized using a statistical classifier. Most often, the
classifier is also able to eliminate false alarms from the
first stage, based on the classifier’s confidence value,
for instance. State-of-the-art systems achieve remark-
able performance nowadays, however, 100% accuracy
cannot be guaranteed. In particular, adverse lighting
(frontal or backward sunlight) and weather (rain, snow)
conditions or night situations can impede recognition.

The second class of SLA technologies relies on a
digitized map of speed limit zones, which, in combina-
tion with a GPS sensor, can provide the speed limit for
the current vehicle position. The cost of such solutions
is becoming less significant, as an increasing number of
vehicles is already equipped with navigation systems,
and hence, a GPS sensor. This technology does not re-
quire complex processing. Its accuracy mainly depends
on the accuracy of the provided map data.

However, here lies a major problem of this ap-
proach. Firstly, available maps are static representa-
tions. They fail if speed limits change over time. For
instance, modern traffic guidance systems make use of
variable message signs, which dynamically adapt speed
limits dependent on weather and/or traffic conditions.
Also, construction zones require authorities to tempo-
rally lower the speed limits for the affected road sec-
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Figure 1: Each of the SLA technologies has specific
limitations. For the camera based speed sign recog-
nition, adverse lighting, weather, and night conditions
can impede recognition. The map/GPS technology fails
in dynamic environments, such as, variable speed limit
zones and construction zones, as well as on rural roads,

which have not yet been annotated.

tion. Secondly, speed limit zones are still not com-
pletely mapped to date; in particular, coverage is rather
sparse for rural roads. Thirdly, map data only repre-
sents a snapshot at a certain time and may be outdated
after a few years. Figure 1 summarizes the mentioned
limitations for both approaches.

As explained above, none of today’s solutions is
perfect on its own. The presented contribution aims at a
scenario where both camera and GPS sensors are avail-
able. It presents a solution to combine information of
both sensors, achieving increased accuracy.

2. Bayesian fusion of camera and GPS

We employ a Bayesian fusion framework. It is
based on the speed sign recognizer’s confidence and a
formulation that describes speed limit sign probabilities
conditioned on the map information. Figure 2 summa-
rizes the main idea.

Before explaining the proposed framework, we
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Figure 2: Proposed fusion framework for camera and
map/GPS modalities: Both modalities provide a prob-
abilistic output, which are fused within a Bayesian

framework.

briefly introduce some nomenclature w.r.t. most camera
based sign recognition systems and map/GPS represen-
tations.

2.1. Camera based SLA

The goal of camera based speed sign recognition is
to detect an instance of a speed sign and assign it to one
of a set of class labels. A typical German setting, for
instance, would cover 14 speed limit signs, their cor-
responding suspension signs, and a general suspension
sign, that is,

l ∈ L

= {5,10,20, . . . ,130,5-end,10-end,20-end, . . . ,130-end,

any-end} (1)

Given aspeed sign class l, it is straightforward for most
situations to infer the correspondingspeed limit class

k∈ K = {5,10,20, . . . ,130,no-limit}. (2)

As reviewed above, the majority of camera based speed
sign recognition algorithms employ a statistical classi-
fier as final element in the processing chain. Many clas-
sifiers provide some sort of score proportional to the
likelihood

ul (x) ∝ p(x|l) , l ∈ {1, . . . ,L} , (3)

given the feature vectorx of the sign hypothesis. Note
thatul (x) being the posterior probabilityp(l |x) would
also be covered by Eq. (3), since it can be related to
p(x|l) via Bayes’ rulep(l |x) ∝ P(l) p(x|l).

Eq. (3) is the only constraint we will impose on the
classifier in the context of the proposed fusion. This
covers many of today’s popular solutions. For instance,
our own systems [1, 4] employs maximum-a-posteriori
(MAP) classification, other possible choices include
polynomial, AdaBoost [8], multi-layer perceptron clas-
sifiers [5], etc. Support vector machines are a bit more
involved, in the sense that they do not directly provide a
probabilistic output. However, techniques exist, which



estimate probabilities in a post-processing using logistic
regression [7].

2.2. Map based SLA

Typical digital traffic maps represent speed limit
zones by dividing a network of roads into road seg-
ments. For each road segment a context tuple of vari-
ables, saym, is available. The most useful information
for our purposes are thestreet type

mST ∈ MST

= {NONE,MOTORWAY,HIGHWAY ,RURALROAD,

URBANROAD,TRAFFICCALMINGZONE} (4)

and the speed limit

mSL ∈ MSL

= {NONE,5,10,20,30,40,50,60,70,80,90,100,

110,120,130,no-limit}. (5)

For both cases, a value of′NONE′ indicates that no in-
formation is available, for instance, if streets have not
been mapped yet.

Map-only SLA can simply outputmSL for the given
road segment.

For the fusion framework explained below, vari-
ablesmST andmSL will form the context tuple

m = (mST,mSL) .

2.3. Bayesian fusion framework

For the formulation of our multi-modal fusion we
take a Bayesian perspective. In this respect, given a
speed sign camera imagex and the context tuplem, the
maximum-a-posteriori classification paradigm assigns
x to the clasŝl with the highest a-posteriori probabil-
ity, that is,

l̂ = argmax
l

{P(l |x,m)} . (6)

In Eq. (6), variablesx andm represent the two modal-
ities of sensor information. Typically,P(l |x,m) can-
not be measured directly. However, we can use Bayes’
rule to translateP(l |x,m) into functions ofp(x|l) and
P(l |m)1

P(l |x,m) ∝ p(x|l ,m)P(l |m)

= p(x|l)P(l |m) . (7)

1Here and in the remainder, we follow the convention of using
lowercasep for probability densities of continuous variables and up-
percaseP for probabilities of discrete variables.

The last equality holds, because knowledge about the
road segment’s street type or speed limit information
does not impact the sign image appearance for a partic-
ular classl .

Eq. (7) shows that the posterior decomposes nicely
into two terms:

1. p(x|l) describes the speed sign appearance as pro-
vided by the camera sensor, and can usually be ob-
tained from the statistical pattern classifier, as dis-
cussed above.

2. P(l |m) = P(l |(mST,mSL)) enables a probabilistic
modeling of the map/GPS context. We will elabo-
rate the specifics in the next section.

It is worth noting that in above equationsm refers to the
context tuple of the street segment commencing beyond
the location of the speed sign, while the camera imagex
is taken when the vehicle is located in the road segment
preceding this location. In order to synchronizep(x|l)
andP(l |m), two solutions are viable: (i) perform the
fusion with a delay (of a few seconds), until the vehi-
cle has entered the new road segment and the newm is
known; or (ii) project the contextm of the next avail-
able road segment. If it is ambiguous, e.g., due to road
forks, another layer of probabilistic modeling, similarly
to the techniques described above, is advised.

2.4. Modeling the map probabilities

Sincep(x|l) can simply be obtained from the sta-
tistical classifier, the remaining task is to model the map
probabilitiesP(l |m), as indicated in point 2 above. One
may be tempted to estimateP(l |m) from a set of ob-

servations
{(

l (1),m(1)
)

, . . . ,
(

l (M),m(M)
)}

. However,

for our settings (see Eq. (1), (4), and (5)),P(l |m) corre-
sponds to a table ofL · |MST| · |MSL|= 29·6·16= 2784
discrete probabilities. For reliable estimates, hundreds
of thousands of labeled road segments are required.

Unfortunately, this amount of data is not available,
hence, we resort to using expert knowledge and model-
ing assumptions, in order assign values toP(l |m). This
knowledge describes which speed limitsk, or conse-
quently, speed limit signsl , are how likely to expect in
which contextm. Instead of assigning values directly
for each matrix elementP(l |m), we pursue the strategy
of defining a model based on a set of canonic traffic reg-
ulation rules and probabilistic assumptions, and derive
P(l |m) from this model.

It is apparent that this model includes country spe-
cific regulations, in general. In the following, we exem-
plary state a model for German traffic regulations. Note,
however, that it would be straightforward for respective
experts to set up similar rules in other countries.

1. The range of permitted speed limits for differ-
ent street types, according to general German



traffic regulations, are: k ∈ {60, . . . ,no-limit}
for mST = MOTORWAY, k ∈ {5, . . . ,130}
for mST = HIGHWAY, k ∈ {5, . . . ,100} for
mST = RURALROAD, k ∈ {5, . . . ,60} for
mST = URBANROAD, k ∈ {5, . . . ,30} for
mST = TRAFFICCALMINGZONE.

2. Any suspension sign resets the speed limits to
k = no-limit for mST = MOTORWAY, to k =
130 for mST = HIGHWAY, to k = 100 for
mST = RURALROAD, to k = 50 for mST =
URBANROAD, and to k = 30 for mST =
TRAFFICCALMINGZONE.

3. Assumptions about relation of true speed limit and
map speed limit:

(a) The true speed limitk is never higher than the
map speed limitmSL. This is based on the
assumption thatk andmSL only differ in con-
struction zones (where cautious driving is ad-
vised), in zones with variable message signs
(wheremSL = NONE), and on streets without
map information (wheremSL = NONE).

(b) The classl ∈L, which corresponds to a given
map speed limitmSL is assigned the highest
probability, say,P(l |m) = a.

(c) All other speed limit signsl that correspond
to k 6= mSL and are permitted by Rule 1, are
assigned a lower probabilityP(l |m) = b, b<
a.

Above stated rules are adequate to derive the com-
plete table P(l |m). Remember thatP(l |m) is a
3D matrix of dimensionL · |MST| · |MSL|. Table 1
shows the respective parts formST = MOTORWAY
and mST = RURALROAD, the remaining parts (for
mST = HIGHWAY, mST = URBANROAD mST =
TRAFFICCALMINGZONE,mST = NONE) can be de-
rived similarly.

The following remarks explain Table 1 more
specifically: entries in the first rows (l = 5, . . .50) for
mST = MOTORWAY encode the existence of a mini-
mum speed on German motorways (Rule 1). The next
set of rows (l = 60, . . .130) incorporate the logic of Rule
3, the rowsl = 60-end, . . . ,any-end that of Rule 2.

Interestingly, a large portion of entries has a value
of 0, corresponding to configurations excluded by the
proposed model. In this respect, a number of potential
mis-classifications — which could arise from the cam-
era based recognition (e.g., taking 40- for 90-speed lim-
its in a city environment) — can be prevented, by taking
into account the GPS map information.

The constrainta > b favors speed limit signs that
are in accordance with the map information, if the sta-
tistical classifier is in doubt. It becomes clear that the
performance of the fusion framework depends on care-
fully chosen parametersa andb, in particular the ratio
a/b. Inappropriate settings can bias the SLA too much

towards one of the modalities. In the context of our
maximum-a-posteriori classifier, a ratio ofa/b = 1/0.7
has been proven from experimental evaluation to per-
form well.

3. Experiments

It is clear that the fusion framework benefits over
a GPS-only system in situations where no map infor-
mation is available. In that case, it simply relies on the
output of the camera system, which is more informative
than random guessing.

In the following, we want to compare the effective-
ness of the fusion framework with that of our plain cam-
era based speed sign recognition system [1] on a quali-
tative level. Figure 3 shows the system behavior for the
recognition of a speed limit sign “80".

As can be seen from the blue box in the im-
age frame, the detection module correctly identifies
the sign. Input to the statistical classifier (which is a
uni-modal Gaussian MAP classifier) is a pre-processed
(i.e., geometrically normalized, masked, and histogram
equalized) image, as shown by the enlarged area. The
second column illustrates the output of the camera-only
classifier, the third the fusion of camera and map/GPS.
More precisely, the two speed limit icons indicate
the Top-2 classes, as obtained from our maximum-
a-posteriori classifier w.r.t.P(l |x,m). The three real
numbers below correspond to the probabilistic val-
ues “P(l |x,m) / p(x|l) / p(x|l) ·P(l |m)”, as defined in
Section 2.3.

The camera-only system — without the knowl-
edge of any map/GPS input — considers uniformly
P(l |m) = 1 (note that we assume an implicit normal-
ization ofP(l |m) overl , such thatP(l |m) is a probabil-
ity). It can be seen that this results in a misclassification
in this example, asp(x|l = 60)= 0.50> p(x|l = 80)=
0.45. Most likely, this is caused by the digits printed un-
usually off-center in the image patch, and our classifier
relying on accurately aligned speed limit numbers.2

The situation changes when map/GPS input is
available (column 3), particularly the map proba-
bilities P(80|m = (MOTORWAY,80)) = a = 1 and
P(60|m = (MOTORWAY,80)) = b = 0.7 (taken from
Table 1). The higher map probabilityP(l = 80|m)
compensates for lower values inp(x|l = 80), resulting
in a correct classification.

4. Conclusion

We have proposed a novel framework for infor-
mation fusion in the context of speed limit assistants.
It fuses two modalities of a camera based speed sign

2It can be argued that more complex segmentation or classification
methods are less sensitive to such off-center digits. However, note
that, whatever camera based systems may be used, it faces limitations,
as have been summarized in Figure 1. In the context of this paper, we
want to study the impact of sensor fusion in those difficult conditions.



mST = MOTORWAY

l \ mSL 5 10 20 30 40 50 60 70 80 90 100 110 120 130 no-limit NONE

5
10
20
30 0 0 0 0
40
50
60 a
70 a
80 a b
90 a
100 0 a b a
110 0 a
120 a
130 a

5-end
10-end
20-end
30-end 0 0 0 0
40-end
50-end
60-end
70-end
80-end
90-end
100-end 0 0 a a
110-end
120-end
130-end
any-end

mST = RURALROAD

l \ mSL 5 10 20 30 40 50 60 70 80 90 100 110 120 130 no-limit NONE

5 a
10 a
20 a b
30 a
40 a b 0 0 a
50 a
60 a
70 0 a
80 a
90 a
100
110 0 0 0 0 0
120
130

5-end
10-end
20-end
30-end
40-end 0 a 0 0 a
50-end
60-end
70-end
80-end
90-end
100-end
110-end 0 0 0 0 0
120-end
130-end
any-end 0 a 0 0 a

Table 1: Map probabilitiesP(l |(mST ∈ {MOTORWAY,RURALROAD} ,mSL)): Entries are probabilities for a speed
sign classl ∈ {5, . . .any-end}, given the map contextm = (mST,mSL). A value 0 corresponds to an impossible event,
a to an event with high probability,b to an event with lower probability, i.e.,b < a. In our system, we usea = 1 and

b = 0.7.
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Figure 3: An example showing the effectiveness of the proposed sensor fusion. Column 1 shows the detector output,
column 2 the Top-2 of the camera-only classification, and column 3 of the fused classification. See Section 3 for

further explanations.

recognition and digitized speed limit maps combined
with a GPS sensor. The fusion is performed in a
Bayesian setting. In this respect, we rely on a statis-
tical classifier giving a probabilistic decision score and
a probabilistic model of speed sign probabilities condi-
tioned on the map information. We have shown how
such model can be obtained from a set of simple traffic
regulation rules. Although our example is derived from
German traffic regulations, it can be straightforwardly
extended to different countries. We have shown on a
qualitative level that such framework can be advanta-
geously used.

One aspect of future work is a quantitative system
performance evaluation, since we here focus on a qual-
itative analysis.

As explained above, a reasonable choice of the pa-
rametera/b is important for the system performance.
In the present prototype, parameter tuning is performed
rather adhoc. In general, however, there are many fac-
tors that influence an optimal setting, e.g., characteris-
tics of the classifier, accuracy of the speed zone map,
etc. A more systematic and automatic strategy, which
takes into account those sources, could improve system
performance and portability to different environments.

Further, the road segment information from speed
zone maps not only can improve classification, but also
detection of signs. In this respect, speed limit signs
are expected at the boundary of those road segments.
Promising future work lies in incorporating such knowl-
edge into the detector.
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