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Bayesian Classification

The generative approach

1. Estimate class conditional
density models P (X|l) for
each class |

2. Choose class with high-
est posterior probability by
Bayes’ rule
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Support Vector Machine (SVM)

The Discriminative Approach (Two-class Case)

e Discrimination boundary has widest margin to “closest” training
examples (support vectors)

e Non-linear extension by implicit problem transformation into higher
dimensional space by the “kernel trick”
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SVM GUI by (Gunn, 1998)
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Support Vector Machine (SVM)

The Discriminative Approach (Two-class Case)

Kernel:
K (T, P)

SVM classification:

S (T) = Sign (Z OéiSZ'K (T, Pz) + b)

SVM training: Determine «;, that maximize the objective function

1
Lp = E oy — 5 g ai@jSiSjK (P?JPJ)
i 4,J

with the constraints

OSCEZSC and ZO%S@:O
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Support Vector Machine (SVM)

The Discriminative Approach (Two-class Case)

Kernel:
(T, P)

SVM classification:
SVM training: Determine «;, that maximize the objective function
1
LD = ZO&@' — 520@-0@&5} (PZ,PJ)
( 1,J

with the constraints
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Support Vector Machine (SVM)

Kernels
Vectors Sequences (On-line handwriting data!)

Pattern
exam-
ples T = (7,58) T = [7,5,8]

P = (9,3,4) P = [7,5,5,8]
Kernel Gaussian kernel
example ,
(T, P) | K (T, P)=exp(—IIT - P|) ?

Dipl.-Inf. Claus Bahlmann, Computer Science Department, Albert-Ludwigs-University Freiburg, Germany 5




Support Vector Machine (SVM)

Kernels
Vectors Sequences (On-line handwriting data!)
Pattern
exam-
ples T = (7,58) T = [7,5,8]
P = (9,3,4) P = [7,5,5,8]
Kernel Gaussian kernel Gaussian DTW (GDTW) kernel
example ,
(T, P) | K (T,P)=exp(—v|T - P|) (T,P) = exp (—7Dprw (T, P))

Dipl.-Inf. Claus Bahlmann, Computer Science Department, Albert-Ludwigs-University Freiburg, Germany 5



Support Vector Machine (SVM)

Kernels
Vectors Sequences (On-line handwriting data!)
Pattern
exam-
ples T = (7,58) T = [7,5,8]
P = (9,3,4) P = [7,5,5,8]
Kernel Gaussian kernel Gaussian DTW (GDTW) kernel
example ,
(T, P) | K (T,P)=exp(—v|T - P|) (T,P) = exp (—7Dprw (T, P))

(however, GDTW cannot be proven to be
positive definite;

Dipl.-Inf. Claus Bahlmann, Computer Science Department, Albert-Ludwigs-University Freiburg, Germany 5




Support Vector Machine (SVM)

Kernels
Vectors Sequences (On-line handwriting data!)
Pattern
exam-
ples T = (7,5,8)7 T = [7,5,8]
P = (9,3,4) P = [7,5,5,8]

Kernel Gaussian kernel Gaussian DTW (GDTW) kernel
example ,

(T, P) | K (T,P)=exp(—v|T - P|) (T,P) = exp (—7Dprw (T, P))
(however, GDTW cannot be proven to be
positive definite;
but, positive definite in (many) practical
evaluations)
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Dynamic Time Warping
Purpose: Aligning temporally distorted patterns

T
R

[t1, ..., tn]

[I‘l, “ . ’rNR]

and compute a distance measure
Dptw (7, R)

Warping path: (for aligning corresponding
samples)

é:{1,...,NY = ({1,..., Nz} x {1,...,Ng})

DTW distance:

| N
Dprw (7, R) = N >

n=1

2

t — T  *
*T(n)  "R(n)
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Dynamic Time Warping
Purpose: Aligning temporally distorted patterns

T
R

[t1, ..., tn]

[I‘l, “ . ,I'NR]

and compute a distance measure
Dptw (7, R)
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Simulations and Results

The Database

e UNIPEN Train-R01/VO7 corpus

e NO cleaning from poor quality/mislabeled characters

UNIPEN section

number of samples

la (digits) 16000
1b (upper case characters) 28000
1c (lower case characters) 61000
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Simulations and Results

Feature Selection

2
1
Feature vector sequence 7 = [ti,....txy, | 0
Feature vector t,, = (7,7, 0,)" _1
1. normalized z-coordinate 7, = == 1 0 1

Y

2. normalized y-coordinate 7,, = y”a‘_y“y

3. tangent slope angle

0, =ang (A,z +vV—1-Ayy)
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Gaussian DTW (GDTW) Kernel

Examples

K (7T,P;) = exp (—yDprw (7, Pj))

P1 P2 == P4 Ps

|
» O
I, O B N
I
O kN
, O
I
4
i
I
i
o
N PO RN
| J

1 0 1 2

40 40 40 40
2 30 30 30 30
! 20 20 20
° L\ 10 10 10
T N 1 0 1 2 10 20 30 40 10 20 30 10 20 30 10 20 30 40 40
e — G 0 0.20 0.71 0.99 10.04
K (7,P;) 1 0.70 0.28 0.17 0.00
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Error Rates of Two-class Problems

1c section (lower case characters),
randomly chosen 67 % Train / 33 % Test set

Difficulty | Character pairs || # Tr.-Expls. | # SVs | Esvv_aprw || Esprw [BBO1]
a<—b 3540 298 0.5 % 0.8 %
easy
d— m 2595 334 0.1 % 0.4 %
C«— e 5088 351 3.7 % 7.2 %
y < @ 2088 358 11.2 % 7.7 %
b« h 2524 275 2.3 % 3.2 %
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Multi-class SVM

DAG (directed acyclic graph)-SVM:
combining K - (K — 1) /2 two-class SVMs into one K-class-SVM

not 4 not 2 not 3 not 2

figure taken from (Platt, 2000)
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Example of a Multi-class SVM-GDTW

Matlab demo

Dipl.-Inf. Claus Bahlmann, Computer Science Department, Albert-Ludwigs-University Freiburg, Germany
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Error Rates of Multi-class Problems

1c section (lower case characters)

Approach

Error rate £
(average of 5 runs)

UNIPEN Database Type

Train-R01/VO7

DAG-SVM-GDTW 11.5 % rand. chosen 10 %/10 % Train/Test
12.0 % rand. chosen 20 %/20 % Train/Test
Train-R01/V0O7
SDTW [BBO1] 13.0 % rand. chosen 10 %/10%Tra|.n/Test
114 % rand. chosen 20 %/20 % Train/Test
9.7 % rand. chosen 67 %/33 % Train/Test
MLP [PLGO1] 14.4 % DevTest-R02/V02
HMM-NN hybrid [GADGO01] 13,2 % Train-R01/VO7
HMM [HLBOO] 141 % Train-R01/V06

4 % "bad characters” removed
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Complexity

multi-class, 1c section (lower case characters),
randomly chosen 10 % Train / 10 % Test set

Order Experiments
on AMD Athlon
1200 MHz
Time
Training O (M? - Tiernel) 81 h
Classification (K — 1) - My - Txernel 2.5 sec
Memory KE-D . Mg - N - F - sizeof (float) | 17.5 MByte
M:  total number of training samples
K: number of classes
M. average number of support vectors
N: average segquence length
F number of features

Dipl.-Inf. Claus Bahlmann, Computer Science Department, Albert-Ludwigs-University Freiburg, Germany
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Conclusion

e A discriminative classifier for sequences:
SVM with a Gaussian DTW kernel (SVM-GDTW)

e Examples, simulations and results

— Small training sets: Significant decrease of error rate
— Large training sets: Comparable error rates

e Remaining potential for improvement
e Just a small number of model parameters have to be adjusted
e Complexity of SVM-GDTW quite high

e Kernel is not positive definite and thus global optimality of the training
cannot be guaranteed.

e Suitable for all problems with sequences (speech, genome processing,

)
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Future Work

e Character recognition — word recognition
e Improving computational speed

e Investigating non-positive definiteness

e Investigating additional kernels

e Hybrid of generative / discriminative classifier
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Error Rates of Multi-class Problems

UNIPEN section

Approach

Error rate E

UNIPEN Database Type

Train-R01/VO07

DAG-SVM-GDTW 3.8 % rand. chosen 20 %/20 % Train/Test
3.7 % rand. chosen 40 %/40 % Train/Test
Train-R01/VO07
ff 45 % rand. chosen 20 %/20 % Train/Test
la (digits
(dligits) ST 2 3.2 % rand. chosen 40 %/40 % Train/Test
MLP [PLGO1] 3.0 % DevTest-R02/V02
Train-R01/V06
0
sl AL 92 W 4 % "bad characters” removed
Train-R01/V0O7
DAG-SVM-GDTW 7.4 % rand. chosen 20 %/20 % Train/Test
7.3 % rand. chosen 40 %/40 % Train/Test
1b (upper case) Train-R01/V07 _
SDTW [BBO01] 10.0 % rand. chosen 20 %/20 % Train/Test
8.0 % rand. chosen 40 %/40 % Train/Test
Train-R01/V06
0
sl 1AL 40 4 % "bad characters” removed
Train-R01/VO07
DAG-SVM-GDTW 115 % rand. chosen 10 %/10 % Train/Test
12.0 % rand. chosen 20 %/20 % Train/Test
Train-R01/VO07
13.0 % rand. chosen 10 %/10 % Train/Test
1c (lower case) SN [E1E01) 11.4 % rand. chosen 20 %/20 % Train/Test
9.7 % rand. chosen 67 %/33 % Train/Test
MLP [PLGO1] 14.4 % DevTest-R02/V02
HMM-NN hybrid [GADGO01] 13,2 % Train-R01/V07
HMM [HLBOO] 14,1 % Train-RO1/V06

4 % "bad characters” removed
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