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Abstract

In many classification applications, Support Vector Machines (SVMs) have proven to
be high performing and easy to handle classifiers with very good generalization abil-
ities. However, one drawback of the SVM is its rather high classification complexity
which scales linearly with the number of Support Vectors (SV). This is due to the fact
that for the classification of one sample one has to evaluate the Kernel-Function with
all SVs. To speed up classification, several different approaches have been published,
most of them trying to reduce the number of SVs. In our work, which is especially
suitable for very large datasets, we follow a different approach: as we will show,
it is effectively possible to approximate large SVM problems by decomposing the
original problem into linear subproblems where each subproblem can be evaluated
in Ω(1). This approach is especially successful when the assumption holds that the
large classification problem can be split into mostly easy subproblems with only a few
remaining hard subproblems. For this linear decompositionwe introduce a modified
numerical optimization process which preserves the maximum margin property. On
standard benchmark datasets this approach achieved great speedups while suffering
only sightly in terms of classification accuracy and generalization ability. We further
extent the method using not only linear, but also non-linearsubproblems for the
decomposition of the original problem which further increases the classification
performance. Additionally we introduce a set of heuristicswhich allow us to directly
control the tradeoff between speedup and accuracy. An implementation of our method
is available in [Rea04].

This document is largely based on the master thesis of KarinaZapién Arreola which
has been supervised by Janis Fehr and Hans Burkhardt, and theresulting publications
at ICPR 2006 [AFB06] and GfKl 2007 [FAB].
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Chapter 1

Introduction

In terms of classification-speed, SVMs [1] are still outperformed by many standard
classifiers when it comes to the classification of large problems. For a non-linear ker-
nel functionk, the classification function can be written as in Eq. (1.1). Thus, the
classification complexity lies inΩ(n) for a problem withn SVs. However, for linear
problems, the classification funct ion has the form of Eq. (1.2), allowing classification
in Ω(1) by calculating the dot product with th e normal vectorw of the hyperplane.
In addition, the SVM has the problem that the complexity of a SVM model always
scales with the most difficult samples, forcing an increase in Support Vectors. How-
ever, we observed that many large scale problems can easily be divided in a large set
of rather simple subproblems and only a few difficult ones. Following this assumption,
we propose a classification method based on a tree whose nodesconsist most ly of
linear SVMs.

f(x) = sign





m
∑

i=1

yiαik
(

xi,x
)

+ b



 (1.1)

f(x) = sign
(

〈w,x〉 + b
)

(1.2)

1.1 Related Work

Speedup in SVM classification time has been approached in several different ways:

Direct reduction of number of SVs. Burges and Schölkopf [BS97] proposed a method
to approximatew by aw′ which can also be expressed by a list of vectors as-
sociated with corresponding coefficientsαi. However, the method for deter-
mining the reduced set is computationally very expensive. Later, Downs, Gates
and Masteres [DGM01] developed a method to identify and discard unnecessary
SVs - especially those SVs which linearly depend on other SVs- while leaving
the SVM decision unchanged. A reduction in SVs as high as40.96% has been
reported.
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Fast Support Vector Machine Classification of very large Datasets 4

Indirect reduction of number of SVs by reducing the size of the QP problem. This
method calledRSVM(Reduced Support Vector Machines) was proposed by Lee
[LM04]. It preselects a subset of training samples as support vectors and solves
a smaller QP. The authors reported that RSVM needs much less computational
time and memory usage than standard SVM. A comparative studyon RSVM and
SVM by Lin et al. [LL03] showed that standard SVM possesses higher general-
ization ability, while RSVM may be suitable in very large training problems or
those that have a large portion of training samples becomingSVs.

Reduction of the number of vector components. Lei and Govindaraju [LHL05] pro-
posed a reduction of the feature space using principal component analysis (PCA)
and Recursive Feature Elimination (RFE). The authors reported a speedup in
classification time up to 10 times against a conventional SVM.

Enlarging margins in Perceptron Decision Trees. Bennett et al. [BCSTW00] ex-
perimentally proved that inducing large margins into decision trees with linear
decision functions improved the generalization ability. Their methods relies on
several parameters that have to be tuned in order to achieve satisfactory results.

Wavelet approximation of a SVM. Rätsch et al. [KW05] developed an approximation
of a SVM decision function for face classification. This can be achieved by
an over-complete Haar wavelet transformation of the raw data using a set of
rectangles with constant gray-level values, allowing a very significant speedup.
However, this method is only suitable for direct image classification like face
classification and does not work for arbitrary feature vectors.



Chapter 2

Definitions

2.0.1 Support Vector Machines

The following discussion will focus on a two-class problem.It will be assumed that the
set of features of each samplex belongs to a Hilbert space denoted byH, which is a
vector space with a dot product〈x, y〉, with x, y ∈ H such that anorm can be induced
by ‖x‖ =

√

〈x,x〉.

2.0.2 Two-Class SVM

Definition 2.1 (Positive and Negative Class)Letm1 andm2 be two natural numbers
that fulfill m = m1 + m2, m1 > 0, m2 > 0 and C = {1, ..., m}, without loss of
generality we can define:

Class 1 (Positive Class) of sizem1, with indexC1 = {1, ..., m1}, conformed by the
set{xi}, i ∈ C1, gravity centers1 = 1

m1

∑

i∈C1
xi, yi = 1 for all i ∈ C1, and

for some later applications, a global penalization valueD1 is defined such that
Ci = D1 ∀i ∈ C1; Ci represents individual penalization values.

Class 2 (Negative Class) of sizem2, with indexC2 = {m1 + 1, ..., m1 + m2}, con-
formed by the set{xi}, i ∈ C2, gravity centers2 = 1

m2

∑

i∈C2
xi, yi = −1

for all i ∈ C2, and for some later application, a global penalization value D2

is assigned to this class such thatCi = D2 ∀i ∈ C2; Ci represent individual
penalization values.

Having two classes, we say that they arelinearly separableif there is a hyperplane
of the formP : {x ∈ H|〈w,x〉 + b = 0}, w ∈ H, b ∈ R that can perfectly divide the
two classes. The vectorw is a vector orthogonal to the hyperplaneP and〈w,x〉 is the
length ofx along the direction ofw.

We will be interested in finding thecanonical hyperplane with respect toxi,
i ∈ C defined as the hyperplane with the pair(w, b) ∈ H× R that is scaled such that

min
i=1,...,m

‖〈w,x〉 + b‖ = 1. (2.1)

5



Fast Support Vector Machine Classification of very large Datasets 6

In other words, thecanonical hyperplane is the one with minimal distance to the
samples equals1

‖w‖ .
To illustrate this, let’s consider the two-class example depicted in Figure 2.1:

Figure 2.1: Example of a two-class problem

Without loss of generality, let the green triangles represent class 1 (C1) and the blue
circles represent class 2 (C2). The hyperplanes in Figure 2.2 are all valid functions to
divide them.

Figure 2.2: Possible dividing hyperplanes for a two-class problem

Figure 2.3 shows a hyperplane with maximal margin for the classification problem
in Figure 2.1.

It has to be noticed that forxi, i ∈ C1 andxj , j ∈ C2, such that〈w,xi〉 = +1 and
〈w,xj〉 = −1, we have〈w, (xi − xj)〉 = 2 and therefore

〈
w

‖w‖
, (xi − xj)〉 =

2

‖w‖
(2.2)

With the previous equation, we can conclude that the distance of the closest vector
to the hyperplane is 1

‖w‖ , then, finding the hyperplane with the maximum distance is
equivalent to maximize the norm of the orthogonal vectorw that corresponds to the
hyperplane that can divide the two classes.
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w

yi = +1

yi = −1

{x |〈w, x〉 + b = +1}

{x |〈w, x〉 + b = 0}

{x |〈w, x〉 + b = −1}

Figure 2.3: Hyperplane with maximal margin for a two-class problem

2.0.3 Multi-Class SVM

Originally the SVM is only capable of solving two-class problems, but there are differ-
ent strategies to extent SVMs to muti-class problemsi [HL01].

One vs. One If there aren classes,(n
2 ) binary classifiers are trained pairwise. For

classification, vectors are tested in all models giving a probability of belonging
to a class. The following is an example of a one-vs.-one classifier.

1 vs. 2

Output

n=4

1 vs. 3 1 vs. 4 2 vs. 3 2 vs. 4 3 vs. 4

Sum of points

Figure 2.4: One versus one classifier for 4 classes

One vs. Rest If there aren classes,n two-class classifiers a re trained, where one class
is differentiated from all the others. New samples are tested in all models and the
results are compared. The following is an example of a one-vs.-rest classifier.

Output

n=4

Sum of points

3 vs. rest 4 vs. rest2 vs. rest1 vs. rest

Figure 2.5: One versus rest classifier for 4 classes
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2.1 SVM Constrained Optimization Problem

The following problem is a formal definition of the maximal margin hyperplane prob-
lem that needs to be solved in the SVM approach.

Problem 2.2 (SVM-Primal Optimization Problem) Let a class 1 and a class 2 be
defined as in Definition 2.1, the optimal margin hyperplane primal problem is defined
as follows.

minimize
w∈H,b∈R

τ(w) = 1

2
‖w‖2, (2.3)

subject to yi(〈xi,w〉 + b) ≥ 1, i = 1, .., m, (2.4)

And the corresponding decision function would look like

f(x) = sign(〈w,x〉 + b) (2.5)

In problem 2.2,f(x) = τ(w), E = ∅ andI = C . Following [NW99] and as in
[SS02], theLagrangian function can be defined together with the objective function
τ and the constraints in 2.4 as follows

L(w, b, α) =
1

2
‖w‖2 −

m
∑

i=1

αi(yi(〈xi,w〉 + b) − 1). (2.6)

One of theKKT conditions states that the gradient of the Lagrangian function
must equal zero:

∂

∂b
L(w, b, α) = 0 and (2.7)

∂

∂w
L(w, b, α) = 0. (2.8)

this leads to

m
∑

i=1

αiyi = 0 and (2.9)

w =

m
∑

i=1

αiyixi. (2.10)

The solution vector has thus an expansion 2.10 in terms of a subset of the training
patterns, namely those patterns with non-zeroαi, calledSupport Vectors (SVs). By the
KKT conditions,

αi[yi(〈xi,w〉 + b) − 1] = 0 for all i = 1, ..., m, (2.11)

the SVs lie on the margin. All remaining training examples(x, yi) are irrelevant: their
constraintyj(〈w,xi〉 + b) ≥ 1 could just as well be left out, and they do not appear in
the expansion. Thus, the hyperplane is completely determined by the patterns closest
to it, the solution should not depend on the other examples.
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2.1.1 SVM Optimization Problem

By substituting 2.9 and 2.10 into the Lagrangian 2.6, one eliminates the primal vari-
ablesw andb, getting the following problem which is solved in practice since it de-
pends only on the sample vectors.

Problem 2.3 (SVM-Dual Optimization Problem) Let class 1 and class 2 defined as
in Definition 2.1, the optimal margin hyperplane dual problem is defined as follows

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyj〈xi,xj〉, (2.12)

subject to αi ≥ 0, i = 1, ..., m, (2.13)
∑m

i=1
αiyi = 0. (2.14)

Using 2.10, the hyperplane decision function 2.5 can thus bewritten as

f(x) = sign





m
∑

i=1

yiαi〈xi,x〉 + b



 (2.15)

Figure 2.6 shows a solution for the example in Figure 2.1, theyellow area shows
the points in the space that will be labeled as class 1 and the cyan area shows the points
that will be labeled as class 2. Vectors withαi 6= 0 are marked.

Figure 2.6: Two-class classification problem with linear solution

2.1.2 Soft Margin SVM

Often, the problem can be unfeasible because no linear solution is able to separate the
classes properly. For such problems, the C-SV classifier wasintroduced allowing some
mistakes through slack variables with a penalization in theobjective function, leading
to the following problem:
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Problem 2.4 (C-SV Classifier Primal Problem) For a two-class problem, the primal
optimization problem with slack variables is defined as:

minimize
w∈H,b∈R,ξ∈Rm

τ(w, ξ) = 1

2
‖w‖2 +

∑m

i=1
Ciξi, (2.16)

subject to yi(〈xi,w〉 + b) ≥ 1 − ξi, i = 1, .., m, (2.17)

ξi ≥ 0, i = 1, .., m. (2.18)

Again using 2.9 and 2.10, the last problem can be converted into the following dual
problem.

Problem 2.5 (C-SV Classifier Dual Problem)In a two-class problem, the optimal
margin hyperplane dual problem with slack variables is defined as follows

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyj〈xi,xj〉, (2.19)

subject to 0 ≤ αi ≤ Ci, i = 1, ..., m, (2.20)
∑m

i=1
αiyi = 0. (2.21)

For this problem, the decision function remains as in 2.15.
Computation of thresholdb: if there exist a solution for Problem 2.3 the hyperplane is
placed in the middle of the margin. Nevertheless, for Problem 2.5 the value of theα
must be taken into account; the calculation ofb can be done as proposed in [KSBM99]
as following

b =
1

2

(

min
i∈I0∪I1∪I2

{

〈xi,w〉
}

+ max
i∈I0∪I3∪I3

{

〈xi,w〉
}

)

, (2.22)

where,

I0 = {i|0 < αi < Ci}, (2.23)

I1 = {i|yi = 1, αi = 0}; I2 = {i|yi = −1, αi = Ci}, (2.24)

I3 = {i|yi = 1, αi = Ci}; I4 = {i|yi = −1, αi = 0}. (2.25)

2.1.3 Non-Linear SVM

Often, no satisfying linear solution can be found. To overcome this problem, feature-
vectors are mapped into higher dimensional spaceH by the use of some non-linear
function

Φ(x) : R
n → H (2.26)

Φ is chosen in a way such that the classes can be separated inH by the trivial SVM
decision function.

The linear case was developed in a Hilbert spaceH. In order to make generaliza-
tions of this method, the dot product〈x,x′〉 can be expressed in terms of the kernelk
evaluated on input patternsx, x′ in a transformed space induced byΦ(x) = x,

k(x,x′) = 〈x, x′〉 = 〈Φ(x), Φ(x′)〉. (2.27)



Fast Support Vector Machine Classification of very large Datasets 11

This substitution, which is referred to as thekernel trick, is used to extend the
method to transformed spaces with nonlinear Support VectorMachines in a new space
H called thelinearization spacebecause in the new space, the samples are divided with
an hyperplane (i.e. a linear function).

The kernel trick can be applied since all feature vectors in 2.15 and 2.19 only oc-
curred in dot products. The vectorw then becomes an expansion in feature space, and
therefore will typically no longer correspond to theΦ − image of a single input space
vector. We obtain a decision function of the form

f(x) = sign





m
∑

i=1

yiαi〈Φ(x), Φ(xi)〉 + b



 (2.28)

= sign





m
∑

i=1

yiαik(x,xi) + b



 (2.29)

with the thresholdb calculated similarly as in 2.22, but considering that now wehave
appliedΦ to the original samples,

b =
1

2

(

min
i∈I0∪I1∪I2

{

k(xi,w)
}

+ max
i∈I0∪I3∪I3

{

k(xi,w)
}

)

, (2.30)

where the indexIk are defined as in 2.23, 2.24 and 2.25.
The following quadratic problem is the one formulated with the kernel trick

Problem 2.6 (C-SV Kernel Trick in Classifier) In a two-class problem, the optimal
margin hyperplane dual problem in the transformed Hilbert space induced byk(x,x′)
(with slack variables) is defined as follows

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyjk(xi,xj), (2.31)

subject to 0 ≤ αi ≤ Ci, i = 1, ..., m, (2.32)
∑m

i=1
αiyi = 0. (2.33)

The only restriction on kernels is that the eigenvalues haveto satisfyλ ≥ 0. Thus,
K has to besemi positive definite. In general, aK is a kernel if and only ifK holds
∑m

i,j=1
αiαjK(xi,xj) ≥ 0.

This is stated by Mercer theorem:

Theorem 2.7 (Mercer Theorem) K(xi,xj) = 〈Φ(xi), Φ(xj)〉 iff for arbitrary g(x)
with

∫

g(x)2dx < ∞ holds:
∫

K(xi,xj)g(xi)g(xj)dxidxj ≥ 0. (2.34)

Forx ∈ R
n there are several proposed kernels [SS02]:

Homogeneous

k(x,x′) = 〈x,x′〉 (2.35)
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Polynomial

k(x,x′) = 〈x,x′〉d (2.36)

Gaussian or Radial Basis Function (RBF)

k(x,x′) = exp

(

−
‖x− x′‖2

2σ2

)

(2.37)

Sigmoid

k(x,x′) = tanh(κ〈x,x′〉 + ϑ) (2.38)

The Gaussian function, also known as Radial Basis Function (RBF), proposed by
Boser, Guyon and Vapnik [BGV92], [GBV93] and [Vap95] is normally the first choice
because it combines good performance with strong theoretical foundation. In [SS02] it
is proven that the RBF-kernel is equivalent to the dot product of elements belonging to
an infinite dimensional space. To show the capacity of this trick, let us illustrate it with
the example in Figure 2.7. As it can be seen, there does not exist any hyperplane that
can perfectly classify all training samples.

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

2

Figure 2.7: Example of a two-class problem with no linear solution

If we try to adjust a straight line to separate this problem, the result seen in Figure
2.8 would be obtained.

The solution to the problem in Figure 2.7 with a Gaussian kernel would look like
in Figure 2.9.
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Figure 2.8: Two-class problem with the best adjusted hyperplane

Figure 2.9: Solution for a two-class problem with Gaussian Kernel (Elephant in a
snake-solution)



Chapter 3

Support Vector Machines in a
Decision Tree

The classification time of a Support Vector Machine (SVM) with a non-linear kernel
[BGV92] depends on the number of resulting Support Vectors (SVs) in the model, and
in complex models, the number of SVs can be considerably large. If a test dataset is to
be classified with such a model, the classification can be veryslow.

However, we observed that many large scale problems can easily divided in a ma-
jority of rather simple subproblems and only a few difficult ones. Following this as-
sumption, we propose a classification method based on a tree whose nodes consist
mostly of linear SVM. This way each node in the decision tree will contain a decision
hyperplane, and the classification will depend only on the number of nodes. The clas-
sification is then computed with the dot product of a test sample with the orthogonal
vector to the corresponding hyperplane of each node.

In Section 3.1 the theoretical basis for this classifier is given, while Section 3.2
describes the proposed algorithm in detail.

3.1 Theoretical Approach

In our work we propose a linear approximation of a continuousfunction for classi-
fication. We assume that the training samples are represented in a Hilbert feature
space. This space is divided in regions defined by linear inequalities (hyperplanes).
This brings several advantages: one of these is that the transformed space is known
since it is the original one; the tuning of parameters can be avoided and the number of
hyperplanes needed to linearly approximate the classification function is far less than
the number of needed support vectors.

With this aim, a decision tree is built. Each node corresponds to a hyperplane that
can classify a specific region. Each hyperplane in the tree istrained in function of
the previous hyperplane. For each node, a linear SVM is trained so that the resulting
hyperplane is able to identify a region of the feature space where only samples of one
class lie.

14
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3.1.1 Zero Solution in SVM

If we have two classes, defined as in Definition 2.1, a SVM usually is trained so that it
will make the least possible mistakes in both classes. With the classical approach, the
importance of errors in each class can be tuned by adjusting the values ofD1 andD2

which are the weights for classC1 and classC2 respectively.
To achieve this, a first constrained problem is solved in order to find the SVM that

classifies perfectly one chosen class, say classC1, and make the least errors in the other.
In the case that classC1 is to be perfectly classified, intuitively a big value forD1

and a very small value forD2 would be proposed. But it can be faced that the resulting
solution of the SVM with these parameters is the zero solution.

The zero solution can occur if the center of gravity if classC 2 lies in the convex
hull of classC1 andD1 is big enough. This follows as consequence of the following
general theorem.

Theorem 1 (Zero Solution) Let classCk and classCk̄ be defined similarly as in Def-
inition 2.2. If the convex hull of classCk intersects the convex hull of the other
classCk̄, thenw = 0 is a feasible solution for the primal Problem 2.4 ifDk̄ ≥
maxi∈Ck

{λi} · Dk, whereλi are such that

p =
∑

i∈Ck

λixi,

for a pointp that belongs to both convex hulls.

Proof
It has to be noticed that ifi ∈ Ck andj ∈ Ck̄ thenyi · yj = −1; similarly, if i ∈ Ck

andj ∈ Ck thenyi · yj = 1. Without loss of generality, let classCk = C1 and class
Ck̄ = C2, then the dual problem can be written as follows

maximize
∑

i∈C1
αi +

∑

i∈C2
αi +

∑

i∈C1,j∈C2
αiαj〈xi,xj〉

− 1

2

∑

i,j∈C1
αiαj〈xi,xj〉 −

1

2

∑

i,j∈C2
αiαj〈xi,xj〉

subject to
∑

i∈C1
αiyi +

∑

i∈C2
αiyi = 0

0 ≤ αi ≤ D1 for all i ∈ C1

0 ≤ αj ≤ D2 for all j ∈ C2.

If p belongs to the convex hull of both classes, then, it can be written as follows

p =
∑

i∈C1

λixi and p =
∑

j∈C2

λjxj ,

with λi ≥ 0 for all i ∈ C1,
∑

i∈C1
λi = 1 andλj ≥ 0 for all j ∈ C2,

∑

j∈C2
λj = 1.

Let αi = λiD1 ≤ D1 for all i ∈ C1 andαj = λjD1 ≤ maxj∈C1{λj}D1 ≤ D2

for all j ∈ C2, then
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∑

i∈C1
αiyi +

∑

j∈C2
αjyj =

∑

i∈C1
λiD1 −

∑

j∈C2
λjD1

= D1

∑

i∈C1
λi − D1

∑

j∈C2
λj

= D1 − D1

= 0

Thereforeαi = λiD1 for all i ∈ C1 andαj = λjD1 for all j ∈ C2 is a feasible
solution for the dual problem. If we calculate the vectorw with these values, we obtain:

w =
∑

i∈C1
αixiyi +

∑

j∈C2
αjxjyj

=
∑

i∈C1
λiD1xi −

∑

j∈C2
λjD1xj

= D1

∑

i∈C1
λixi − D1

∑

j∈C2
λjxj

= D1p − D1p

= 0.

Finally, we conclude thatw = 0 is a feasible solution for the primal Problem 2.2.

�

Bennett and Bredensteiner [BCSTW00] proved that Problem 2.2, SVM, has also
another dual problem that can be seen in terms of the convex hull.

When a solution exists, a geometric interpretation of Problem 2.2 can be reduced
to the problem of finding the two closest points of the two convex hulls and then,
finding the line segment between the two points. Finally, theorthogonal plane to the
line segment that bisects it, is chosen to be the separating plane (see Figure 3.1).

Figure 3.1: Convex Hull interpretation for the SVM solution

But a solution not always exists for Problem 2.2, therefore,Problem 2.4 was
introduced allowing some mistakes.
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Under this approach, Problem 2.4, C-SV Classifier, leads to the geometric inter-
pretation of finding the closest points of the two reduced convex hulls according toD1

andD2 (see Figure 3.2).

Figure 3.2: Reduced Convex Hull interpretation for the C-SVM solution

This reduced convex hull will be still around the center of gravity of the original
convex hull. And in the case that the center of gravity of class C2 is inside the convex
hull of classC1, if D1 is big enough, the zero solution will be still a feasible solution.
This is resumed in the following corollary.

Corollary 1 (Zero Solution with Gravity Center) If the center of gravity of classC2,
s2, is inside of the convex hull of classC1, then, it can be represented as

s2 =
∑

i∈C1

λixi and s2 =
∑

j∈C2

1

m2

xj

with λi ≥ 0 for all i ∈ C1 and
∑

i∈C1
λi = 1.

If additionallyD1 ≥ λmaxD2m2, whereλmax = maxi∈C1{λi}, thenw = 0 is a
feasible solution for the primal Problem 2.2.

Proof
Let classC1 and classC2 be as in Definition 2.1, then the dual problem can be
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written as follows

maximize
∑

i∈C1
αi +

∑

i∈C2
αi +

∑

i∈C1,j∈C2
αiαj〈xi,xj〉,

− 1

2

∑

i,j∈C1
αiαj〈xi,xj〉 −

1

2

∑

i,j∈C2
αiαj〈xi,xj〉,

subject to
∑

i∈C1
αiyi +

∑

i∈C2
αiyi = 0,

0 ≤ αi ≤ D1 for all i ∈ C1,

0 ≤ αj ≤ D2 for all j ∈ C2,

Letαi = λiD2m2 ≤ λmaxD2m2 ≤ D1 for all i ∈ C1 andαj = D2 for all j ∈ C2,
then,

∑

i∈C1
αiyi +

∑

j∈C2
αjyj =

∑

i∈C1
λiD2m2 −

∑

j∈C2
D2

= D2m2

∑

i∈C1
λi − D2m2

= D2m2 − D2m2

= 0

Thereforeαi = λiD2m2 for all i ∈ C1 andαj = D2 for all j ∈ C2 is a feasible
solution for the dual problem.
If we calculate the vectorw with these values, we obtain:

w =
∑

i∈C1
αixiyi +

∑

j∈C2
αjxjyj

=
∑

i∈C1
λiD2m2xi −

∑

j∈C2
D2xj

= D2m2

∑

i∈C1
λixi − D2m2s2

= D2m2s2 − D2m2s2

= 0.

Finally, we conclude thatw = 0 is a feasible solution for the primal Problem 2.2.

�

Any reduced convex hull produced by a C-SV problem will stillcontain the gravity
center of the class. For the case where the gravity center of classCk̄ is in the convex
hull of classCk (see Figure 3.3) and if a non-degenerate solution wants to befound,
the convex hull of classCk must also be reduced enough (i.e.Dk must decrease).
The resulting hyperplane can then be adjusted with the threshold parameter to have no
errors in the hard class.

3.1.2 Reduction of Possibility of the Zero Solution

In order to reduce the classification time, the SVM with non-linear kernel will be sub-
stitute with a decision tree of linear support vector machines. The tree will first target
an area in the feature space that can be clearly assigned to class{ k̄} ∈ {2, 1} by a lin-
ear classifier. This will be achieved by finding the hyperplane with the widest margin
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Figure 3.3: Reduced Convex Hull interpretation for the C-SVM solution

that made no errors in classk = {1, 2} and that makes the least possible mistakes in
classk̄.

In order to decrease the number of trivial solutions (zero vector) that are in the
approach, the following new problem will be introduced:

Problem 1 (H1-SVM: Hard Margin for 1 class (Primal Prob.)) Let
2 classes be defined as in Definition 2.1, we will be interestedon solving the following
problem:

minimize
w∈H,b∈R

τ(w) = 1

2
‖w‖2 −

∑

i∈Ck̄
yi(〈xi,w〉 + b), (3.1)

subject to yi(〈xi,w〉 + b) ≥ 1 for all i ∈ Ck, (3.2)

wherek = 1 andk̄ = 2, or k = 2 andk̄ = 1.

Analyzing this problem more precisely, it can be seen that the feasible solution of
this optimization problem is the one that classifies correctly all the samples in classk
(becauseyi(〈w,xi〉 + b) ≥ 1 for all i ∈ Ck is a constrain) with no slack variables. On
the other hand, from all the vectors that satisfy this condition, the search vector is the
one that has a balance between the size of the margin and the number of misclassified
samples of classCk. As before, this problem can be transformed into the following
dual problem which is a special case of the original problem where all theαk for one
class are equal to one.

Problem 1 (H1-SVM: Hard Margin for 1 class (Dual Prob.)) Let the two classes be
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defined as in Definition 2.1. The H1-SVM for 1 class is based on the following problem

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyj〈xi,xj〉, (3.3)

subject to 0 ≤ αi ≤ Ci, i ∈ Ck, (3.4)

αj = 1, j ∈ Ck̄, (3.5)
∑m

i=1
αiyi = 0, (3.6)

wherek = 1 andk̄ = 2, or k = 2 and k̄ = 1.

With this new definition of the SVM problem, the zero solutioncan only occur with
a linear combination of the vector samples of the hard class.Without loss of generality,
if the hard class is classC1

w =

m
∑

i=1

αiyixi (3.7)

=
∑

i∈C1

αixi −
∑

i∈C2

αixi (3.8)

=
∑

i∈C1

αixi −
∑

i∈C2

xi (3.9)

(3.10)

if we definezi =
∑

i∈C2
xi and |C1| ≥ (n − 1) = dim(zi) − 1, then, there exist

{αi}, i ∈ C1, αi 6= 0 such that

w =
∑

i∈C1

αixi − zi = 0. (3.11)

So, the number of zero solutions that are feasible in the H1-SVM Problem 1 is
a subset (strictly smaller) than the number of zero solutions in the original C-SVM
Problem 2.5.

3.2 Description of the Algorithm

The aim is to build a tree which nodes are SVMs. At each step, a region defined by a
hyperplane is labeled with a class until the whole space is labeled.

To illustrate this and the further description of the algorithm, let us consider the
example in Figure 3.4.

This example can be found at the dataset web-page of the LIBSVM c++ library
[CL05a] under the name ofFourclass. The problem has 2 features and therefore it
can be represented in 2D. ClassC1 is represented with green triangles and classC2 is
represented with blue circles.

This example has clearly a non-linear solution, so a SVM withGaussian Kernel
was used. The graphical representation of the solution found is depicted in Figure 3.5.
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Figure 3.4: Fourclass example [CL05a]

Figure 3.5: Solution for the fourclass with a SVM (Gaussian kernel)

The classification function corresponding to the found hyperplane in the trans-
formed space is marked with a solid red line, the existing margin between the two
classes can be seen with the spotted red lines. The thicker points are the needed sup-
port vectors for the classification. As can be seen, these area big percent of the training
data, therefore a large evaluation time for classification new points is needed.
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3.2.1 Decision Tree with Linear SVM Nodes

Fast classification of a dataset is achived by the construction of a decision tree whose
nodes are hyperplanes obtained with the training of a support vector machine with
linear kernel.

linear
 SVM

linear
 SVM

linear
 SVM

linear
 SVM

label

No Yes

label

label

label label

Yes

Yes

Yes

No

No

No

(〈wi,x〉 + bi) × hci > 0

labelx = −hci

(〈wi,x〉 + bi) × hci > 0

(〈wi,x〉 + bi) × hci > 0

labelx = hci

i = 1

i = i + 1

i = i + 1

i = i + 1

(〈wi,x〉 + bi) × hci > 0

labelx = −hci

labelx = −hci

labelx = −hci

Figure 3.6: Decision tree with linear SVM

To obtain the decision tree, at each step ahard class Ck is chosen (in a greedy way,
see Chapter 4). Then a SVM is trained so that the resulting hyperplane will correctly
distinguish all points belonging to classCk, thus all the samplesxi, i ∈ Ck will lie
on one side of the hyperplane and all points on the other side of the plane will belong
to the non-hard classCk̄. The number of samples is then reduced by leaving out the
training samples of classCk̄ that were correctly classified with this SVM. This process
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is repeated with the reduced problem until the samples left belong all to the same class.
The classification then takes places by identifying at each node if the sample be-

longs to the non-hard class 2 being labeled with it, or keeping with the evaluation to
the next node. This is depicted in the diagram 3.6.

In the fourclass example, the class 1 (green triangles) is the hard class at the first
step, the line (hyperplane) obtained by solving Problem 1 with hard class1 will look
like in Figure 3.7.
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Figure 3.7: First hyperplane for Problem 1 forfourclass(hard class = triangles)

On Figure 3.8 the region which has exclusively samples belonging to the non-hard
class is depicted in cyan and it all will be labeled as class2.

Next, the problem is reduced by leaving out the samples that lie in the previously
marked region. For thefourclassexample, the new problem to solve is the one in Figure
3.9.

This procedure is repeated stepwise with the new sample-space marking the “safe”
areas (i.e. areas where samples of only 1 class were found) asnon-hard class.

Figures 3.10, 3.11 and 3.12 show which hyperplane is found bythe algorithm at
each step of the tree. A region in cyan represents the solution of a QP with the positive
class (green triangles) as the hard class, thus all the elements in the cyan region are
labeled as negative samples. Similarly, A region in yellow represents the solution of a
QP with the negative class (blue squares) as the hard class, thus all the elements in the
yellow region are labeled as positive samples.

Each time a hyperplane is chosen, the samples belonging the the non-hard class
are removed and the QP for the remaining samples is solved. The space can be step-
wise labeled by considering the region that is on the side of the hyperplane where only
samples belonging to the non-hard class were found.
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Figure 3.8: First labeling after resolution of Problem 1 forfourclass
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Figure 3.9: Reduced problem for next classification step

At each step, the algorithm chooses the hyperplane that can reduce the problem
most, therefore it can happen that the same class is chosen asthe hard class for consec-
utive nodes in the decision tree.
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(a) Second plane (b) Third Plane

Figure 3.10: Second and third plane for thefourclassproblem

(a) Fourth plane (b) Fifth Plane

Figure 3.11: Fourth and fifth plane for thefourclassproblem
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(a) Sixth plane (b) Seventh Plane

Figure 3.12: Sixth and seventh plane for thefourclassproblem

By repeating this procedure, new regions are labeled until the remaining samples
belong all to the same class. The algorithm will label the whole remaining region
containing these samples with the class they belong.

Figure 3.13: Final solution for the fourclass problem

Picture 3.13 depicts the final solution of the algorithm for the fourclass problem
and how the space was divided according to the decision tree.
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3.2.2 Search for the Best Hyperplane

As seen in the theoretical approach, two QP problems are considered. One is the ap-
proach given by Boser, Guyon and Vapnik [BGV92] with a large penalization value for
the hard class. The second one is the new approach where a hardclass is defined and
the objective is to find a hyperplane with the maximum margin and the least possible
mistakes on the non-hard class.

Once the QP Problem 2.5 or Problem 1 have been solved, the direction of the
orthogonal vector can be calculated as.

w =

m
∑

i=1

αiyixi. (3.12)

The rest is to find the thresholdb of this hyperplane, equivalent to the intersection with
the axes of it.

It has to be taken into consideration that the searched hyperplane is one that makes
no mistakes in the hard class and makes the less possible mistakes in the other class.
The usual way of calculating the threshold in 2.22, cannot belonger used to define
the hyperplane. Instead, the threshold is calculated by assigning to b1 the minimum
(maximum) value of〈w,xi〉 for all i ∈ C1 (i ∈ C2) and then, for those samples
belonging to the non-hard class that are correctly classified, the maximum (minimum)
value of〈w,xi〉 for all i ∈ C2 (i ∈ C1) is assigned tob2 and the threshold is set to
b = 1

2
(b1 + b2). That is,

for hard class = 1

b =
mini∈C1〈w,xi〉 + max{j∈C2∧〈w,xj〉<0}〈w,xj〉

2
(3.13)

for hard class = -1

b =
maxj∈C2 〈w,xj〉 + min{i∈C1∧〈w,xi〉>0}〈w,xi〉

2
(3.14)

In Figure 3.14 the calculation of the threshold is depicted.For this example, the
hard class is the positive class (the green triangles). An orthogonal vectorw is given,
the green hyperplane is the one withb1 as threshold; this has the characteristic that
all samples in class 1 are correctly classified, except for the ones that〈w,xi〉 = b1,
i ∈ C1. From this threshold, the nearest hyperplane is searched such that the least
possible errors in classC2 is obtained. This is represented with the blue hyperplane
with thresholdb2. Finally, b is calculated as the average of these two values.

The proposed solution for Problem 2.7 can be seen in Figure 3.15, as usual, the
yellow area represents the positive class and the cyan area represents the negative class
with the assigned probability accordingly to the hyperplane that is classifying that area.
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Figure 3.14: Search of thresholdb for non-linear problem

Figure 3.15: Final solution for problem in Figure 2.7 (Mexican Hat solution)

3.3 Non-Linear Extension

In order to classify a sample, one simply runs it down the SVM-tree. When using
only linear nodes, we already obtained good results but we also observed that first of
all, most errors occur in the last node, and second, that overall only a few samples
will reach the last node during the classification procedure. This motivated us to add a
non-linear node (e.g. using RBF kernels) to the end of the tree.
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Figure 3.16: SVM tree with non-linear extesion

Training of the extended SVM-tree is analog to the original case. First a pure linear
tree is build. Then we use a heuristic (tradeoff between average classification depth and
accuracy) to move the final, non-linear node from the last node up the tree. It is very
important to notice that the final non-linear SVM has to be trained on the entire initial
training set and not only on the samples remaining after the last linear node. Other wise
the final node is very likely to suffer from strong overfitting. This way the final model
will have many SVs but since only a few samples will reach the final node the average
classification depth will hardly be effected as our experiments showed.



Chapter 4

Implementation Details

For the implementation, the library LibSVMTL [Rea04] was modified. This is a highly
customizable C++ Support Vector Machine library based in the one designed by Chang
and Lin [CL05a].

This chapter summarizes specific details about the implemented algorithms. The
construction of the decision tree is straightforward; therefore, we focus on solving the
resolution of the optimization problem and in obtaining thehyperplane in each node of
the tree.

Section 4.1 deals with the QP problem and its resolution. Section 4.2 is focused on
obtaining the parametersw andb to define the hyperplane. Finally, Section 4.3 shows
the additional heuristics that were used.

4.1 Quadratic Problem

Each node in the decision tree consists of a hyperplane. A hyperplane can be defined
with a vectorw orthogonal to it and an offsetb. The problem of finding the hyperplane
with maximum margin and no errors in one class leads to an optimization problem
(Problem 2.4 or 1) which dual problem (Problem 2.5 or 1, respectively) results to be a
QP problem with the form:

Problem 1 (Constrained Optimization Problem)

minimize
α

f(α) = 1

2
αT Qα − eT α ,

subject to Li ≤ αi ≤ Ci,

yT α = 0.

If the problem hasm samples,Q is a m × m matrix containing the kernel func-
tion applied to each pair of samples:Qij = k(xi,xj); e is the vector of ones with
lengthm; Li andCi are the lower and upper bound, respectively, forαi. Finally,
y = (y1, ..., ym)T is the vector containing the labels for samplesxi.

Finding an optimum in the dual space, is equivalent to findingan optimum in the
primal space. The solution of these QP problems, contains the optimal values for the

30
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dual variablesαi. With the help of the KKT conditions 2.10, the vectorw can be later
calculated by:

w =

m
∑

i=1

αiyixi, (4.1)

while the biasb can be fixed according to the stated problem.
For the original approach of SVM (Problem 2.5) whereLi = 0, if we use the

form or Problem 4.1, several simplifications to the resolution method (solver) could be
applied to speed it up. Therefore, some small adjustments had to be implemented in
the code of the LIBSVM in order to solve problems withLi 6= 0. This algorithm can
be found in [CL05b] under the name ofAlgorithm 1.

For the resolution of theTwo-variable QP Subproblem, the next algorithm was
implemented. This consist only on a slight variation of the algorithm implemented
by Fan [FCL05], Chang and Lin [CL05b], where the lower bound is allowed to be
different from zero.

Algorithm 1 (SMO-iteration solution)

Used variables:
Q[i][j] = kernel evaluation of sample i, x[i] and sample j, x[j]
y[i] = label for sample x[i]
alpha = array of size m
G[i] = i-th element of the gradient of the objective function
L_i = lower bound for alpha[i]
C_i = upper bound for alpha[i]

if(y[i]!=y[j]) {
delta = (-G[i]-G[j])/max{Q[i][i]+Q[j][j]+2*Q[i][j],0}
diff = alpha[i] - alpha[j]
alpha[i] += delta
alpha[j] += delta

if(diff > 0) {
if(alpha[j] < L_j) {

alpha[j] = L_j
alpha[i] = diff + L_j } }

else {
if(alpha[i] < L_i) {

alpha[i] = L_i
alpha[j] = -diff + L_i } }

if(diff > C_i - C_j) {
if(alpha[i] > C_i) {

alpha[i] = C_i
alpha[j] = C_i - diff } }

else {
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if(alpha[j] > C_j) {
alpha[j] = C_j
alpha[i] = C_j + diff } } }

else {
delta = (G[i]-G[j])/max{Q[i][i]+Q[j][j]-2*Q[i][j],0}
sum = alpha[i] + alpha[j]
alpha[i] -= delta
alpha[j] += delta
if(sum > C_i) {

if(alpha[i] > C_i) {
alpha[i] = C_i
alpha[j] = sum - C_i } }

else {
if(alpha[j] < L_j) {

alpha[j] = L_j
alpha[i] = sum - L_j } }

if(sum > C_j) {
if(alpha[j] > C_j) {

alpha[j] = C_j
alpha[i] = sum - C_j } }

else {
if(alpha[i] < L_i) {

alpha[i] = L_i
alpha[j] = sum - L_i } } }

4.1.1 QP Speed-up Techniques

Two techniques were used to improve the resolution time of the QP problem.
The first one,shrinking, was proposed in [Joa98]. This technique is used since for

many problems the number of free vectors (i.e. whereLi < αi < Ci) is small. The
shrinking technique reduces the size of the working problemwithout considering some
bounded variables. Near the end of the iterative process, the possible setA, where all
final freeαi may reside in, is identified.

The other method used to reduce the computational time is thecaching. The ele-
ments ofQij are calculated as needed sinceQ is fully dense and may fit in the computer
memory. Only the recently usedQij are stored. Hence, the computational cost of later
iterations can be reduced.

This two methods were not modified from the original version in the LIBSVM
library and are explained in detail in [Joa98] and [CL05b].

4.2 Obtaining the Decision Hyperplane

The aim of solving the QP problem is to go back to the primal Problem 2.4 and obtain
the orthogonal vectorw and the biasb for the corresponding node in the decision tree.
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With this, a decision function with the formsign(〈w,x〉 + b) can be used to classify
new samples.

4.2.1 Orthogonal Vector

In the two-classDefinition 2.1, the hard class will be denoted asCk and the non-hard
class asCk̄. Two different problems are solved with(k = 1, k̄ = 2) and later with
(k = 2, k̄ = 1).

The first problem solved is based directly on Problem 2.5, where a very large cost
is given to the errors on the hard class and a standard low costis given to the non-hard
class, in this way, the hyperplane will avoid misclassification in the hard class:

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyj〈xi,xj〉, (4.2)

subject to 0 ≤ αi ≤ Ck, i ∈ Ck

0 ≤ αj ≤ 1, j ∈ Ck̄
∑m

i=1
αiyi = 0.

whereCK is a value large enough so that the resulting hyperplane willclassify the
samples in classCk correctly.

The initial solution for this problem is set toαi = 0 for all i ∈ C .
The next problem is based on the new approach proposed in Problem 1. This prob-

lem is explicitly formulated so that the feasible solutionsare the ones that does not
allow any misclassification in the hard class (in numerical terms, this is equivalent to
assigning a very large cost on the errors in the hard class) and the hyperplane is then
adjusted to do the least possible errors in the other class. The quadratic problem takes
the next form:

maximize
α∈Rm

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyj〈xi,xj〉, (4.3)

subject to 0 ≤ αi, i ∈ Ck

αj = 1, j ∈ Ck̄
∑m

i=1
αiyi = 0.

The initial solution for this problem isαi = 0 for all i ∈ Ck andαj = 1 for all
j ∈ Ck̄.

The solution of these problems will give the values forα on the optimal point. To
obtain the orthogonal vectorw, the KKT Condition 2.10 is used:

w =

m
∑

i=1

αiyixi.

After solving these problems, four possible solutions forw are obtained, two are
the solutions of Problem 4.2 after solving the problem withk = 1 and then fork = 2.
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The other two are the solutions obtained from Problem 4.3, again, after solving the
problem fork = 1 and then fork = 2.

Each hyperplane reduces the problem by removing the samplesof class̄k that were
correctly classified. The hyperplane that reduces the problem the most is finally as-
signed to the next node in the decision tree with the appropriate thresholdb. For the
classification step, all samplesx that have not been classified in a previous node, and
that satisfyyk̄(〈w,x〉 + b) > 0 will be assigned to class̄k at this node of the tree. A
reduced problem is stated with the unlabeled samples.

The algorithm iteratively finds hyperplanes for the reducedproblem and builds with
these the tree.

4.2.2 Threshold

The resolution of the QP problem is a vectorw orthogonal to a hyperplane. The thresh-
old b is then calculated as in Equation 2.22:

b =
1

2

(

min
i∈I0∪I1∪I2

{

〈xi,w〉
}

+ max
i∈I0∪I3∪I3

{

〈xi,w〉
}

)

, (4.4)

with I0 = {i|0 < αi < Ci}; I1 = {i|yi = 1, αi = 0}; I2 = {i|yi = −1, αi = Ci};
I3 = {i|yi = 1, αi = Ci}; I4 = {i|yi = −1, αi = 0}.

This cannot be used for the new implementation since this is calculated considering
a margin of error in both classes [KSBM99] and [KG02]. Our aimis to find a threshold
that correctly classifies all the samples in the hard class and minimizes the number of
misclassified samples in the non-hard class. The following algorithm was implemented
to calculateb:

Algorithm 1 (Pseudo-code for Calculation of threshold) Calculation
of the thresholdb for the problem in Equations 4.2 or 4.3.

m = number of samples
n = feature space size
x[i] = feature vector of sample i
y[i] = label of sample i
hc = hard class (1 or -1)
w = orthogonal vector to the found hyperplane

ub = INF
lb = -INF
for i=0 to m {

if ((y[i])*hc > 0) {
yG = x[i]’ * w

if(y[i] > 0)
ub = min{ub,yG}

else
lb = max{lb,yG} } }
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if (ub != INF)
r1 = ub

else
r1 = lb

ub = INF
lb = -INF
for i=0 to m {

if ((y[i])*hc < 0) {
yG = (x[i]’ * w) - r1

if ( (y[i]*yG) > 0) {
yG = yG + r1
if(y[i] > 0)

ub = min{ub,yG}
else

lb = max{lb,yG} } } }

if (ub != INF)
r2 = ub

else if (lb !=-INF)
r2 = lb

else
r2 = r1

r=(r1+r2)/2

return r

4.3 Heuristics Used

Even though the optimization function is a quadratic function, numeric problems,
speed-up techniques and semi-positive definite matrices can mislead the algorithm to-
wards finding the global optimum. Several heuristics were implemented to assure the
convergence of algorithm.

4.3.1 Greedy Heuristic

At each step, Problem 2.5 and Problem 1 are solved for both cases: first, using classC1

as the hard class and then classC2. The number of vectors that can be left out by using
each of these 4 solutions is counted. The selected hyperplane is the one that reduces
the problem the most. This heuristic is illustrated in Figure 4.1.
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Figure 4.1: Greedy heuristic. The problem to be solved is defined with the samples in
the white area (triangles = class 1, circles = class -1). The possible solutions for the
next step are the red linesa, b, c andd. These were obtained with the method{C-SVM,
hard class=-1}, {C-SVM, hard class=1}, {H1-SVM, hard class=-1} and{H1-SVM,
hard class=1}, respectively (a and c resulted the same hyperplane). Linea will be
added to the next node since it can correctly classify the most number of samples in the
non-hard class (class -1).

4.3.2 Avoiding the Zero Solution

As seen in Corollary 1, the zero solution can result if the cost of the hard class is
significantly bigger than the cost of the non-hard class. Onemethod to avoid obtaining
trivial solutions, is to reduce the upper bound,Ck, for the alphas in the hard classCk,
is reduced until a solution different to the trivial one is found. If‖w‖ < tol, thenCk is
adjusted as follows:

Ck = Ck/f, (4.5)

wheretol is a number close to zero that states the tolerance of the normof vectorw
and the factorf > 1.

Another method to overcome the problem of the degenerated solution, is to set all
αi = 1 for i ∈ Ck̄ as described in Problem 1.

4.3.3 Change of Sign ofw

In several cases, the given hyperplane in not able to reduce the problem. In this case, if
no sample could be left out, then,−w is used instead. This is equivalent to changing
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the inequality direction for the classification. This is illustrated in Figure 4.2

Figure 4.2: Change of sign ofw. The direction of vectorw points towards the positive
class. The line using this parameter (dashed line) can not classify correctly any sample
in the non-hard class (positive class, represented with triangles). If the inequality is
changed, this line can reduce the problem for the next iteration.

4.3.4 Perpendicular Hyperplanes

In the case were the given hyperplane cannot reduce the problem, it was observed that
the hyperplane was oriented in the direction of the distribution of the samples. In such
cases, some of the orthogonal hyperplanes could reduce the problem.

The use of these perpendicular hyperplanes in the decision tree –in a greedy way–
increased the classification rate and the generalization ability. Experimentally, it was
observed that this heuristic was not frequently used. It wasused when the morphology
of the problem had to be changed to be able to go further (i.e. when the algorithm got
stuck).

An additional degree of greediness was implemented with this heuristic. This con-
sists on having the option of considering also the orthogonal hyperplanes together with
the original hyperplane that result from the QP problem and not only when it get stuck.
Again the chosen hyperplane is the one that reduced the problem the most.

This heuristic is illustrated in Figure 4.3.
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Figure 4.3: Searching perpendicular hyperplanes tow. The direction of vectorw
points towards the positive class. The possible solutions (dashed lines) can not classify
correctly any sample in the non-hard class (positive class,represented with triangles)
for both inequalities. Instead, a perpendicular line (withw′) is used.

4.3.5 Reduction of Useless Hyperplanes (Pruning)

The algorithm stops building the tree after all the samples have been left out (or, when
all the remaining samples belong to the same class). At the end of the algorithm,
several hyperplanes are useless in the classification sincelater hyperplanes were more
general than these. If some hyperplanes deeper in the decision tree are used before,
previous ones could be left aside. The size of the tree would be reduced (and therefore
the classification time). Figure 4.4 shows an example of thiscase.

An algorithm was implemented to “clean” the set
{

(wi, bi)
}

, where each(wi, bi)
corresponds to the hyperplane at nodei in the decision tree. The accuracy in the train-
ing set is measured by classifying it without a specific node (starting from the last one).
If the accuracy does not decrease, the node is removed from the tree. An extension of
this technique could be done by allowing a degree of error.

Algorithm 1 (Decision Tree Pruning) Implemented algorithm to prune the obtained
decision tree.

Used variables:
w = two-dimensional array, w[i] contains the hyperplane in node i
rho[i] = threshold for node i
hard_class_vector[i] = hard class for node i
reached_errors = number of errors with the original decision
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Figure 4.4: Pruning, useless lines are removed from the tree. The classification in the
space will be slightly changed, normally generalized

tree, without reduction
x[j] = sample j
y[j] = label for sample j
Classify(w, rho, hard_class_vector, x) = function that classifies

sample x with the decision tree that can be formed with:
w, rho and hard_class_vector

function erase(i) = erase element i of the vector
function insert(i,obj) = insert obj at position i

w_temp= w[0]
rho_temp = 0
hcv_temp = 0

for (int i=w.size - 1; i>=0 ; i--) {
errors = 0

w_temp = w[i]
rho_temp = rho[i]
hcv_temp = hard_class_vector[i]

w.erase(i)
rho.erase(i)
hard_class_vector.erase(i)
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for (int j=0; j<prob->l ; j++) {
x_class = Classify(w,rho,hard_class_vector,x[j])
if ( y[j]*x_class <=0 )

errors++ }
if ( errors > (reached_errors) ) {

w.insert(i,w_temp)
rho.insert(i,rho_temp)
hard_class_vector.insert(i,hcv_temp) }

if (w.size()==1)
break }

To get an idea of how these heuristic were applied, thefourclassProblem [TKH96]
was solved. Table 4.1 shows for each hyperplane in the decision tree if the hyperplane
was obtained by solving the C-SVM (c) of the H1-SVM (h) Problem; if the sign of the
inequality was changed which class was the hard class and if aperpendicular plane
had to be used at any point.

Line Solver Hard Sign of Use of a
Number used Class w perpendicular hyperplane

1 h -1 1 no
2 c 1 1 no
3 h 1 1 no
4 h 1 1 yes
5 h 1 1 no
6 h -1 1 yes
7 c -1 1 no
8 h -1 1 no
9 h -1 1 no
10 h 1 1 yes
11 c 1 1 no
12 c 1 1 no

Table 4.1: Used heuristics for thefourclassexample

It can be observed that the H1-SVM could find in several occasions better hyper-
planes than the C-SVM. The sign ofw was never changed and in just a few cases where
the algorithm got stuck, the used of perpendicular hyperplanes was needed.

After the pruning process, line number 9 and 5 were removed, thus, the final tree
had depth 10.



Chapter 5

Experiments and Comparisons

5.1 Verification of the Approach

In order to show the validity and classification accuracy of our algorithm we performed
a series of experiments on standard benchmark data-sets. Inthis series of experiments
the data was split into training and test sets and normalizedto minimum and maximum
feature values (Min-Max) or standard deviation (Std-Dev).We used One-Vs-One
multi-class algorithm.

Tables for each example are presented with the number of features of each dataset,
the number of training and testing samples used, the number of require SVs or hy-
perplanes, depending on the method; training and classification time1 (hh:mm:ss.00);
finally the classification accuracy is shown.

Speedup comparison with similar works is difficult to state since most publications
(see related work) used datasets with less than 1000 samples, where the training and
testing time are negligible compared to the size of out datasets.

5.1.1 DNA Dataset

This dataset contains features of a DNA sequence [BJ]. Splice junctions are points on
a DNA sequence at which ‘superfluous’ DNA is removed during the process of protein
creation in higher organisms. The problem posed in this dataset is to recognize, given
a sequence of DNA, the boundaries between exons (the parts ofthe DNA sequence
retained after splicing) and introns (the parts of the DNA sequence that are spliced out).
This problem consists of two subtasks: recognizing exon/intron boundaries (referred
to as EI sites), and recognizing intron/exon boundaries (IEsites). (In the biological
community, IE borders are referred to a “acceptors” while EIborders are referred to as
“donors”.)

1These experiments were run in a computer with a P4, 2.8 GHz and1G in Ram.

41
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From the original dataset, two sets were randomly created with the same proportion
of elements of each class. One third of the the observations were used for the training
set and the rest as testing set.

DNA RBF H1-SVM H1-SVM RBF/H1 RBF/H1
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 180 180 180
Nr. Train Samples 1330 1330 1330

Nr. SVs or 798 3 3 266 266
Hyperplanes

Training Time 00:02.35 00:01.84 00:03.74 1.28 0.63

Nr. Test Samples 1446 1446 1446
Classif. Accuracy 1354 1305 1305 1.04 1.04

Classification Time 00:06.70 00:01.86 00:01.81 3.6 3.7
Classif. Accurancy % 93.64 % 90.25 % 90.25 % 1.04 1.04

Table 5.1: Results for the DNA dataset with the Min-Max normalization method

DNA RBF H1-SVM H1-SVM RBF/H1 RBF/H1
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 180 180 180
Nr. Train Samples 1330 1330 1330

Nr. SVs or 881 3 3 293.67 293.67
Hyperplanes

Training Time 00:02.62 00:02.11 00:03.82 1.24 0.69

Nr. Test Samples 1446 1446 1446
Classif. Accuracy 1351 1315 1315 1.03 1.03

Classification Time 00:06.78 00:01.85 00:01.71 3.66 3.96
Classif. Accurancy % 93.43 % 90.94 % 90.94 % 1.03 1.03

Table 5.2: Results for the DNA dataset with the Std-Dev normalization method

It can be observed that with the H1-SVM the classification could be done almost 4
times faster than with the C-SVM.
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5.1.2 Faces Dataset

This dataset containing faces and non-faces images can be found in Peter Carbonetto’s
homepage [Car]. The objective is to determinate if the imageis a face or not. From the
original dataset, two sets were randomly created with the same proportion of elements
of each class. Two thirds of the the observations were used for the training set and the
rest as testing set.

Faces RBF H1-SVM H1-SVM RBF/H1 RBF/H1
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 576 576 576
Nr. Train Samples 9172 9172 9172

Nr. SVs or 1902 9 9 211.33 211.33
Hyperplanes

Training Time 31:53.67 43:59.77 47:46.43 0.72 0.67

Nr. Test Samples 4262 4262 4262
Classif. Accuracy 4148 3926 3926 1.06 1.06

Classification Time 03:05.80 00:13.55 00:14.51 13.71 12.8
Classif. Accurancy % 97.33 % 92.12 % 92.12 % 1.06 1.06

Table 5.3: Results for the Faces dataset with the Std-Dev normalization method

Faces RBF H1-SVM H1-SVM RBF/H1 RBF/H1
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 576 576 576
Nr. Train Samples 9172 9172 9172

Nr. SVs or 2206 4 4 551.5 551.5
Hyperplanes

Training Time 14:55.23 10:55.70 14:21.99 1.37 1.04

Nr. Test Samples 4262 4262 4262
Classif. Accuracy 4082 3879 3879 1.05 1.05

Classification Time 03:13.60 00:14.73 00:14.63 13.14 13.23
Classif. Accurancy % 95.78 % 91.01 % 91.01 % 1.05 1.05

Table 5.4: Results for the Faces dataset with the Min-Max normalization method

With the new algorithm, the classification time was improvedmore than 10 times,
although, the algorithm to solve the QP problem for the training still has to be optimized
to solve linear problems.
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5.1.3 Fourclass Dataset

This is a 2D Dataset from the Proceedings of the 13th International Conference on
Pattern Recognition, Vienna, Austria [TKH96]. The test andthe training samples were
randomly generated; one third of the population became training samples

Fourclass RBF H1-SVM H1-SVM RBF/H1 RBF/H1
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 2 2 2
Nr. Train Samples 287 287 287

Nr. SVs or 135 7 5 19.29 27
Hyperplanes

Training Time 00:00.30 00:00.09 00:00.11 3.33 2.73

Nr. Test Samples 618 618 618
Classif. Accuracy 538 600 593 0.9 0.91

Classification Time 00:00.18 00:00.05 00:00.07 3.6 2.57
Classif. Accurancy % 87.06 % 97.09 % 95.95 % 0.9 0.91

Table 5.5: Results for the Fourclass dataset with the Std-Dev normalization method

Fourclass RBF H1-SVM H1-SVM RBF/H1 RBF/H1
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 2 2 2
Nr. Train Samples 287 287 287

Nr. SVs or 150 16 8 9.38 18.75
Hyperplanes

Training Time 00:00.10 00:00.18 00:00.11 0.56 0.91

Nr. Test Samples 618 618 618
Classif. Accuracy 498 573 596 0.87 0.84

Classification Time 00:00.08 00:00.05 00:00.05 1.6 1.6
Classif. Accurancy % 80.58 % 92.72 % 96.44 % 0.87 0.84

Table 5.6: Results for the Fourclass dataset with the Min-Max normalization method

The classification time was considerably decreased (12 times) while the classifica-
tion correctness was improved.
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5.1.4 Isolet Dataset

Dataset for Isolated Letter Speech Recognition [Rep]. The test and the training samples
were randomly generated two third of the population was testing samples

Isolet RBF H1-SVM H1-SVM RBF/H1 RBF/H1
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 617 617 617
Nr. Train Samples 155950 155950 155950

Nr. SVs or 35340 344 344 102.73 102.73
Hyperplanes

Training Time 07:13.75 18:51.98 1:04:11.3 0.38 0.11

Nr. Test Samples 1559 1559 1559
Classif. Accuracy 1499 1472 1472 1.02 1.02

Classification Time 03:01.99 00:32.85 00:36.43 5.54 5
Classif. Accurancy % 96.15 % 94.42 % 94.42 % 1.02 1.02

Table 5.7: Results for the Isolet dataset with the Std-Dev normalization method

Isolet RBF H1-SVM H1-SVM RBF/H1 RBF/H1
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 617 617 617
Nr. Train Samples 155950 155950 155950

Nr. SVs or 22932 325 325 70.56 70.56
Hyperplanes

Training Time 12:46.70 06:14.40 52:47.43 2.05 0.24

Nr. Test Samples 1559 1559 1559
Classif. Accuracy 1493 1496 1496 1 1

Classification Time 03:16.56 00:39.92 00:24.37 4.92 8.07
Classif. Accurancy % 95.77 % 95.96 % 95.96 % 1 1

Table 5.8: Results for the Isolet dataset with the Min-Max normalization method

The classification time could be improved up to factor 8. Important is that the
classification accuracy of a SVM with RBF-kernel could be reached.
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5.1.5 USPS Dataset

The USPS data is a database for handwritten text recognitionresearch [Hul94], the
training set contains 2007 examples and the test set contains 7291 examples as pro-
vided.

USPS RBF H1-SVM H1-SVM RBF/H1 RBF/H1
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 256 256 256
Nr. Train Samples 18063 18063 18063

Nr. SVs or 4522 102 99 44.33 45.68
Hyperplanes

Training Time 00:27.52 00:35.26 02:37.48 0.78 0.17

Nr. Test Samples 7291 7291 7291
Classif. Accuracy 7030 6798 6816 1.03 1.03

Classification Time 02:07.23 00:29.75 00:17.22 4.28 7.39
Classif. Accurancy % 96.42 % 93.24 % 93.49 % 1.03 1.03

Table 5.9: Results for the Usps dataset with the Std-Dev normalization method

USPS RBF H1-SVM H1-SVM RBF/H1 RBF/H1
(Min-Max) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 256 256 256
Nr. Train Samples 18063 18063 18063

Nr. SVs or 3597 49 49 73.41 73.41
Hyperplanes

Training Time 00:44.74 00:22.70 02:09.58 1.97 0.35

Nr. Test Samples 7291 7291 7291
Classif. Accuracy 6986 6836 6836 1.02 1.02

Classification Time 01:58.59 00:19.99 00:20.07 5.93 5.91
Classif. Accurancy % 95.82 % 93.76 % 93.76 % 1.02 1.02

Table 5.10: Results for the Usps dataset with the Min-Max normalization method

As shown in the table, the classification time could be reduced between factor 4 to
7.
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5.2 Classification of very large Datasets

Due to the lack of available very large datasets (we considerdatasets with several mil-
lion samples to be very large), we performed our experimentsmainly on our own
database of cell nuclei features. This data holds the initial assumption, that a large
classification problem can be split into mainly easy and onlya few hard subproblems.

5.2.1 Data

The experiments were performed on 3D volumetric data samples of chicken embryo
chorioallantoic membrane (CAM) probes recorded by a confocal laser scanning micro-
scope (LSM). The CAM is a widely used model for angiogenesis research at cellular
level. An automatic localization and identification of the different cell types is crucial.
Understanding angiogenesis has been found to be th e key to treatment of many fre-
quent diseases, including cancer and heart ischemia. The samples were prepared as
described in [K+02] and treated with YoPro-1 and SMACy3 fluorescent markers and
recorded in two channels. Fig. 5.1 shows a typical xy-slice of the YoPro channel with
most frequent cell types.

Figure 5.1: Sample data, cross section of a capillar y. Cell types with 3D reconstruc-
tion: 1. erythrocyte (Ery ),2. endoth elial cell (EC), 3. pericyte (PC), 4. fibroblast (F
B), 5. macrophage (MΦ).
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5.2.2 Method

In total 32 gray scale invariants [ORB05, Feh04, SM95, BS01], that have already been
successfully applied to the recognition of pollen grains involumetric data sets [RBS02,
RSB02] were extracted and used as features.

Nuclei RBF H1-SVM H1-SVM RBF/H1 RBF/H1
(Std-Dev) Kernel g1=0 g1=1 g1=0 g1=1

Nr. Features 32 32 32
Nr. Train Samples 3372 3372 3372

Nr. SVs or 980 122 86 8.03 11.4
Hyperplanes

Training Time 00:00.98 00:03.03 00:02.43 0.32 0.4

Nr. Test Samples 65536 65536 65536
Classif. Accuracy 64021 61480 62541 1.04 1.02

Classification Time 01:01.70 00:23.44 00:17.41 2.63 3.54
Classif. Accurancy % 97.69 % 93.81 % 95.43 % 1.04 1.02

Table 5.11: Results for the Nuclei dataset with the Std-Dev normalization method

Class Correctness Accuracy % Error %
0 6073/6887 ( 88.18%) 1009/58650 ( 1.72%)
2 498/539 ( 92.39%) 1010/65000 ( 1.554%)
4 437/565 ( 77.35%) 786/64970 ( 1.21%)
6 657/896 ( 73.33%) 195/64640 ( 0.3017%)
10 54876/56649 ( 96.87%) 142/8887 ( 1.598%)

total: 62541/65536 ( 95.43%) 2995/65536 ( 4.57%)

Table 5.12: Summary of classification results for the Nucleidata, Std-Dev, greedy l
evel = 0
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5.2.3 Non-linear Extension

In a final experiment, we compared the performance and accuracy of a strictly linear
SVM-tree and one using the non-linear extension.

RBF-Kernel linear tree non-linear tree
H1-SVM H1-SVM

training time ≈1s ≈3s ≈5s
Nr. SVs or 980 86 86

Hyperplanes
average classification - 7.3 8.6

depth
classifiaction time ≈1.5h ≈2 min ≈2 min

accuracy 97.69% 95.43% 97.5%

Table 5.13: Comparison of the performance and accuracy of a strictly linear SVM-tree
and one using the non-linear extension.
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5.3 Conclusion

We have presented a new method for fast SVM classification. Compared to non-linear
SVM and speedup methods our experiments showed a very competitive speedup while
achieving reasonable classification results (loosing onlymarginal when we apply the
non-linear extension compared to non-linear methods). Especially if our initial as-
sumption holds , that large problems can be split in mainly easy and only a few hard
problems, our algorithm achieves very good results. The advantage of this approach
clearly lies in its simplicity since no parameter has to be tuned.
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