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ABSTRACT

In this paper, we present a novel method for the fast compu-
tation of rotational invariant ”uniform local binary patterns”
(uLBP) for texture analysis on 3D volume data.
We introduce an alternative computation method for uLBPs
in frequency space, which allows to effectively approximate
uniform patterns in 2D and 3D in order to avoid the enor-
mous computational complexity of a ”naive” 3D LBP im-
plementation.

1. INTRODUCTION

”Local Binary Patterns” (LBP) [1] have been established as
a standard feature based method for texture analysis in 2D
images and were applied to a wide range of different ap-
plications. Various extensions to the basic LBP algorithms
have been published in recent years, including rotational in-
variant and computationally efficient ”uniform binary pat-
terns” (uLBP) - an overview can be found in [1].
In this paper, we extend the basic concept of LBPs for tex-
ture analysis on 3D volume data. Recently, 3D texture fea-
tures have been successfully used for segmentation and clas-
sification of biological structures in volume images recorded
from e.g. 3D confocal laser scanning microscopes (LSM)
and other 3D imaging devices. The algorithms introduced
in [2],[3] and [4] use rotational invariant, Haar-Integration
based 3D texture features for different automatic biomedical
image analysis tasks. The aim of this work is to adapt LBPs
to these problems and evaluate the performance in compar-
ison to the existing methods.
Previous experiments [4] have shown, that it is favorable to
use rotational invariant features for the analysis of the given
mostly anisotropic biological structures.

1.1. Related Work

So far, LBPs have only been applied to 2D images and 2D
time series. There are several recent publications on ”vol-
ume local binary patterns” (vLBP)[5][6][7], but confusingly
these methods deal with dynamic texture analysis on 2D
time series and not on full 3D volumetric data. Respectively,

vLBP only provide rotational invariance towards rotations
around the z-axis.

1.2. Uniform LPBs

One commonly used extension of LBPs are the so called
”uniform” LBPs (uLBP), which were introduced in [8]. The
uLBPs are a subset of all theoretically possible patterns. Ex-
periments have shown that up to 90% of all patterns belong
to this subset. Fig. 1 shows a set of uLBP templates. Due

Fig. 1. Templates for uniform LBPs using 8 sampling
points. Black points correspond to the binary value1, white
to 0

to the template nature, uLBPs are very suitable for our al-
gorithm which computes uLBPs for 3D volume data in the
frequency domain.
In the next section we will discuss the problems of a ”naive”
LBP implementation in 3D. In the 3rd section we motivate
our algorithm in a simplified 2D setting before describing
the algorithm in detail in section 4.

2. NAIVE IMPLEMENTATION OF LBPS IN 3D

At a first glimpse, the extension of LBPs to 3D seams to
be straight forward: simply pick a voxel of the volumeV

as a center pointv ∈ V , and sample a fixed number ofn

pointsp0 . . . pn−1 on the surrounding sphereSr with radius
r. Then one can computev − pn for all points, and encode
the binary pattern as in the usual LBP algorithm.
This appears to be very simple, but one has to face sev-
eral severe problems following this direct approach: first,
equidistant sampling on a sphere is a very hard task which
is known asFejes Toth’s problem. In general, it can not be



solved analytically. Since we need equidistant sampling in
order to achieve full rotational invariance, we are limitedto
the few known point sets where a sampling is known [9]
or use rather expensive numerical approximations. Second,
rotational invariant LBPs require an order of the sampled
points, this is trivial in 2D - but turns out to be a very hard
problem on a sphere. And last, computational complexity
becomes an issue with the vast rising number of sampling
points needed on a sphere.
In order to overcome these challenges, we propose a new
approach for the direct computation of uniform LBPs in fre-
quency space, which avoids all the previous sampling and
ordering issues in a computational effective way.

3. 2D ULBP COMPUTATION IN FREQUENCY
SPACE

For the matter of simplicity, we first introduce the basic con-
cept of the computation of uLBPs in frequency space for the
2D case. Please note, that we are not actually suggesting to
use this method for 2D problems since the computational
overhead is way to large, but we will derive the 3D case
from the following algorithm later on.
Since we are about to compute the features in frequency
space, we start of with a continuous setting: for a given cen-
ter pointv ∈ V (in the 2D caseV is of cause an image) we
consider the gray-values which are ”touched” by the con-
centric circleCr with radiusr as a continuous functionf .
Then we then perform a fourier transform off . Using fast
convolution and so called ”circular harmonic” (CH) base
functions, this transform can be computed every efficient
and for all possible center pointsv ∈ V simultaneously.
First, we precompute the CH base functions for the desired
radius offline. For each bandb of expansion, except the
0th coefficient, we split the complex coefficients into a real
(CHℜ

b ) and a complex part (CHℑ
b ) (see fig. 2) using a pa-

rameterization aroundϕ:

CHℜ
b = ℜ(e−ibϕ), CHℑ

b = ℑ(e−ibϕ) (1)

Given these base function templates, we can now expand
every functionf on the concentric circle around eachv ∈

V via piecewise fast convolution (denoted as∗) of V with
all CH templates. The band of expansion has to be chosen
according to the desired number of samples and radius (see
experiments). Hence we obtain a vectorv

CH containing a
series of CH coefficients off for every center pointv:

v
CH
1ℜ = V ∗ CHℜ

1 ,vCH
1ℑ = V ∗ CHℑ

1 , ... (2)

Since it is impossible to binarize the relation of the center
v and its concentric neighbors inf in frequency space we
approximate the binarization with an continuous operation:
We subtract the value ofv from f ; sincev is constant for

Fig. 2. ”Circular Harmonic” base functions of the first 3
bands.

every single expansion this operation is equal to a shift of
the constant component onf and thus only effects the 0th
component:

v
CH
0 := V ∗ CH0 − v · babs (3)

wherebabs is the absolute number of expansion bands.

We apply the same procedure to the set of continuous uLBP
templates (see fig. 4) and obtain a CH expansionuLBP

CH

for each of then templates. Of cause this can be done offline
in advance. Having the templates in frequency space repre-
sentation, we are then computing the similarity of eachv

CH

with all n templates and chose the most similar one as uLBP
representation atv. The Similaritys between two circular
harmonic expansions can be measured in many ways. One
common approach is to use the absolute value of the com-
plex coefficients, which is invariant under rotation while
neglecting the sometimes valuable phase information. We
used a simple 2-norm to compare the differences of the ab-
solute values of template and data coefficients:
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Experiments (see section 6 for details) have shown, that this
similarity measure is sufficient to approximate the correct
uniform pattern in almost all cases, when the maximum
band of CH expansion was chosen high enough.
It has to be noted, that is very crucial to normalize the tem-
plate and data coefficients appropriately, e.g. by dividing
the template coefficients by the sum over template.

4. FAST ULBP COMPUTATION IN 3D

Now we derive fast uLBPs (fuLBPs) for 3D volume data.
Just as in the previous 2D case, will compute the features in



the frequency domain. The only difference is, that we are
now considering functions on a sphere instead of circles.
Analog to the CH, we use the well established Spherical
Harmonic transform (SH) [10], which forms an orthogonal
basis on the 2-Sphere.

4.1. Spherical Harmonics

Using SH coefficients, every spherical function can be rep-
resented by the sum of its harmonics:

f(θ, φ) =
∞
∑

l=0

l
∑

m=0

almY m
l (θ, φ) (5)

wherel denotes the band of expansion,m the number of
components for thel-th band andalm the harmonic coeffi-
cient. The harmonic base functionsY m

l (θ, φ) are calculated
as follows:

Y m
l (θ, φ) =

√

2l + 1

4π

(l − m)!

(l + m)!
· Pm

l (cos θ)eimφ (6)

with the associated Legendre polynomialPm
l .

Note that in this formulation we take advantage of the sym-
metry in the harmonic representation, neglecting the nega-
tive coefficients. For practical reasons we also split the base
components into their real and imaginary parts following
the notationY mℜ

l andY mℑ
l respectively. Fig. (3) shows

the first few spherical harmonics.
The transformationvSH

(l,m) of the original volumetric dataV
into the harmonic domain is easily computed via fast con-
volution:

v
SH
(l,m) = Y mℜ

l (θ, φ) ∗ V + Y mℑ
l (θ, φ) ∗ V (7)

where∗ denotes a convolution in Euclidean space and
Y m

l (θ, φ) a spherical harmonic base component. Given the
SH expansionvSH

(l,m) in every center point, the 3D algorithm
follows analog to the 2D case. We also use the same simi-
larity measure as the 2D case (4).

4.2. Data depended uniform patterns

It turns out, that besides all the nice properties discussed
so far, our method suffers from one major pitfall: the num-
ber of possible uniform patterns (templates) in the 3D case
is drastically larger than in the 2D case. On a circle, the
uLBPs are clearly defined as all patterns which have one or
no binary transition (zero to one) - see fig. 1. This definition
would be way to limiting in the 3D case. On the other hand,
alternative uLBP definitions would produce very large sets
of templates.
To overcome this problem, we suggest an adjusted process.
Instead of having a fixed global set of uLBPs, which would

Fig. 3. Spherical Harmonic base functions of the first 3
bands.

be extremely large in the 3D case, we propose to choose
the set of uLBPs dependent on the input data. Building a
”code-book” of typical templates for every new task has the
advantage that only a small set of templates is needed and
that we can focus on the most discriminative patterns for the
given classes.
The ”code-book” can be precomputed offline. After extract-
ing the SH coefficientsvSH

(l,m) from sample data, we use k-
means clustering with our similarity measure to find thek

first uLBP templates - a representative of each cluster is then
binarized and stored in the ”code-book”.

5. EXPERIMENTS

In order to validate our approach we performed a series of
different experiments: first, we prove that uLBP can be
approximated via computations in the frequency domain.
Then we test the computational complexity of our approach
before we evaluate the method on real 3D volume data.

5.1. Proof of Concept

In order to show that it is possible to perform the uLBP
computation in the frequency domain, we first validated our
method on the the uLBP templates. Fig. 4 shows the con-
tinuous equivalents to the templates 1,2 and 3 (compare



to Fig.1) which were transformed to CH domain and then
reconstructed by the inverse transformation with different
bands of expansion. Note, that due to the later convolution,
we use a cyclic translation of the actual circle. We also per-
formed these experiments for the 3D case, but these results
are hard to visualize. 3D results were analog to the 2D case.
Fig. 4 clearly indicates, that the correct choice of the exten-

template babs = 5 babs = 16

Fig. 4. Left: continuous templates 1,2 and 3 (from top
down) for 16 sample uLBP.Center: reconstruction using
base functions up to band 5.Right: reconstruction using
base functions up to band 16.

sion band is crucial, e.g. a 5-band expansion does not have
the appropriate high frequencies in order to reconstruct tem-
plate 1. On the other hand, the computational complexity is
increasing linearly with the number of bands. We further
investigated this trade-off while simultaneously evaluating
the performance of our similarity measure: We rotated a set
of templates in various angles around the center point and
compared the approximated templates to the unrotated ver-
sion. Figures 5 through 7 show several important properties
of our method: first, the band of expansion has to match the
number of samples for the 2D case - in 3D, the band should
match the maximum number of samples which can be found
on a single circle bound to the surface of the sphere. Sec-
ond, the number of samples of an uLBP which can be ap-
proximated by our method is limited by the radius. And
last: our method works perfectly for radii>= 4, but has
some problems with smaller radii - this is due the fact, that
for small radii the discrete approximation of circles/spheres
causes problems.
In a final experiment for the concept proof, we directly eval-
uated our method with 2D uLBP results (we did this exper-
iment only for 2D, because as mentioned before, uniform
patterns are not defined for the 3D case). Fig.8 shows that

Fig. 5. Experiments with 2D templates with a fixed radius
of 8 and 16 sampling points show an increas of accuracy
until the band reaches the number of sampling points.

Fig. 6. Experiments with 2D templates with a fixed radius
of 4 and an expansion to the 16th band indicate that the
accuracy is not only limited by the band of expansion, but
also by the number of samples for a given radius.

Fig. 7. Given the best possible combination of sampling rate
and expansion band, the approximation has some problems
for small radii while uLBP for lager radii can be computed
without loss.



Fig. 8. Direct comparison of 2D uLBPs and the approxima-
tion in the frequency domain.Top left: original 2D texture
image (paper texture).Top right: difference image.Bot-
tom left: uLBP response with radius 8, 16 samples.Bottom
right: approximation with expansion to the 16th band.

our method is able to approximate uLBPs fairly good - even
though there are some errors shown in the difference image.
By evaluating the histograms, we could see that the error
is evenly distributed among all template patterns. As indi-
cated by the experiments before, we found that the error is
decreasing with an increase in radius.
For the 3D case one has to expect larger errors: due to the
problems of discrete representations of spheres and the in-
crease in coefficients more errors are likely to occur.

5.2. Complexity

In theory, the complexity of our method, as well as the orig-
inal uLBP, can be given directly. Regardless the dimension-
alty, for givenN data points ands samples, uLBP has a
complexity ofO(N ·s2) weres samples have to be evaluated
at allN points; finding the right pattern takes anotherO(s).
While our approach lies inO((NlogN) · (b + 1) + N · b2),
O((NlogN) for the fourier transform ofb bands plus the
cost of finding the right pattern. So, for 2D, whereb = s,
our method is just to expensive - but in 3D, wheres >> b

the additional overhead for the fourier transform will pay
off drastically.
In practice, it turns out that the actual complexity is strongly
influenced by some linear terms, which are not considered
by theO-notation. The following tables give some results
for experimental complexities based on a 2.8 GHz P4 mashine.

In the 3D case, we used naive standard LBPs for the com-
parison with our fuLBPs.

radius/samples=banduLBP 2D fuLBP 2D
4/16 4s 7s
8/16 8s 8s
16/32 16s 23s

Fig. 9. Complexity for the computation on a2562 image.

radius/samples/band LBP 3D fuLBP 3D
4/24/6 10m 27s 1m 8s
4/124/8 24m 1m 40s
8/124/16 - 5m 31s

Fig. 10. Complexity for the computation on a2563 volume.

Fig. 11. Sample database entry, xy-slices of 3D volumetric
data. From left to right: YoPro marker, Cy3 marker, ground
truth labeling of the cell nuclei, binary mask for the database
entry.

5.3. 3D Volume Data

We evaluated the texture analysis performance of the fuLBPs
on 3D volumetric biological data and compared the results
the methods presented in [11]. A database of 229 3D vol-
ume datasets of 3 different classes of cell-nuclei was given.
The cells were recorded in tissue via confoncal laser mi-
croscopy using two different anti-body markers, YoPro and
Cy3, which were recorded in separate channels. For this
experiment we used only the YoPro channel. A sample
database entry is shown in Fig. 11, please refer to [11] or
[2] and [3] for further details on the database.
We used 12 different features of varying radii, number of
samples and expansion bands. For each radius a separate



Celltype result in [11] fuLBP
Erythrocyte 93,3% 88,7%

Endothelial cell 84,6% 75,8%
Fibroblast 79,8% 74,2%

Background 94,1 % 90,9

Fig. 12. Rersults of the nuclei classification comparing the
Haar-Intergral based fetures from [11] with fuLBPs.

code-book of size 10 was generated via k-means clustering.
After feature extraction, we performed a voxel-wise clas-
sification via support-vector machine (SVM) following the
algorithms in [11], [2] and [3]. Results are shown in table
12.

5.4. Results

The experiments for the 2D case clearly indicate that our
proposed method is able to approximate uLBPs very well.
The accuracy of our approach clearly depends on the ra-
dius and the band of expansion - while there are some prob-
lems with very small radii, mid and large scale radii fuLBPs
work very well when the CH/SH transforms are expanded
to bands corresponding to the number of samples and the
radius.
For the 3D case, our method is significant faster than a
naive uLBP implementation, even when a expansion to high
bands is needed.
First experiments with 3D fuLBPs on the biomedical datasets
indicate that this new method is competitive, although fuLBPs
were outperformed by the Haar-Intergral based features from
[11]. The reason for this may be manifold: first, the Haar-
features are not gray scale invariant, just robust to nono-
tonic gray scale changes - it might turn out, that after all
a true gray scale invariance is not favorable for the given
task. Second, uLPBs have a larger spacial resolution, but a
weaker gray scale resolution than Haar-features. And third,
which is probably the most important point, the continuous
feature space of the Haar-features is easier to handle for the
SVM than the discrete space generated by the uLBPs.
There is still plenty of room for further improvement of the
presented approach: one could increase the size of the code-
book, or even more important, design a better similarity
measure.
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