
Face Image Analysis With

Convolutional Neural Networks

Dissertation

Zur Erlangung des Doktorgrades

der Fakultät für Angewandte Wissenschaften

an der Albert-Ludwigs-Universität Freiburg im Breisgau

von

Stefan Duffner

2007

Dekan: Prof. Dr. Bernhard Nebel

Prüfungskommission: Prof. Dr. Peter Thiemann (Vorsitz)
Prof. Dr. Matthias Teschner (Beisitz)
Prof. Dr. Hans Burkhardt (Betreuer)
Prof. Dr. Thomas Vetter (Prüfer)

Datum der Disputation: 28. März 2008

Acknowledgments

First of all, I would like to thank Dr. Christophe Garcia for his guidance and
support over the last three years. This work would not have been possible
without his excellent scientific as well as human qualities and the enormous
amount of time he spent for me.

I also want to express my gratitude to my supervisor Prof. Dr. Hans Burk-
hardt who accompanied me during my thesis, gave me helpful advice and who
always welcomed me in Freiburg.

Further, I would like to thank all my colleagues at France Telecom R&D
(now Orange Labs), Rennes (France) where I spent three very pleasant years.
Notably, Franck Mamalet, Sébastien Roux, Patrick Lechat, Sid-Ahmed Berrani,
Zohra Saidane, Muriel Visani, Antoine Lehuger, Grégoire Lefebvre, Manolis
Delakis and Christine Barbot.

Finally, I want to say thank you to my parents for their continuing support
in every respect.

ii

Abstract

In this work, we present the problem of automatic appearance-based facial
analysis with machine learning techniques and describe common specific sub-
problems like face detection, facial feature detection and face recognition which
are the crucial parts of many applications in the context of indexation, surveil-
lance, access-control or human-computer interaction.

To tackle this problem, we particularly focus on a technique called Convolu-
tional Neural Network (CNN) which is inspired by biological evidence found in
the visual cortex of mammalian brains and which has already been applied to
many different classification problems. Existing CNN-based methods, like the
face detection system proposed by Garcia and Delakis, show that this can be
a very effective, efficient and robust approach to non-linear image processing
tasks such as facial analysis.

An important step in many automatic facial analysis applications, e.g. face
recognition, is face alignment which tries to translate, scale and rotate the face
image such that specific facial features are roughly at predefined positions in
the image. We propose an efficient approach to this problem using CNNs and
experimentally show its very good performance on difficult test images.

We further present a CNN-based method for automatic facial feature detec-
tion. The proposed system employs a hierarchical procedure which first roughly
localizes the eyes, the nose and the mouth and then refines the result by detect-
ing 10 different facial feature points. The detection rate of this method is 96%
for the AR database and 87% for the BioID database tolerating an error of 10%
of the inter-ocular distance.

Finally, we propose a novel face recognition approach based on a specific
CNN architecture learning a non-linear mapping of the image space into a lower-
dimensional sub-space where the different classes are more easily separable.
We applied this method to several public face databases and obtained better
recognition rates than with classical face recognition approaches based on PCA
or LDA. Moreover, the proposed system is particularly robust to noise and
partial occlusions.

We also present a CNN-based method for the binary classification problem
of gender recognition with face images and achieve a state-of-the-art accuracy.

The results presented in this work show that CNNs perform very well on
various facial image processing tasks, such as face alignment, facial feature de-
tection and face recognition and clearly demonstrate that the CNN technique
is a versatile, efficient and robust approach for facial image analysis.

iii

Zusammenfassung

In dieser Arbeit stellen wir das Problem der automatischen, erscheinungsbasier-
ten Gesichts-Analyse dar und beschreiben gängige, spezifische Unterprobleme
wie z.B. Gesichts- und Gesichtsmerkmals-Lokalisierung oder Gesichtserkennung,
welche grundlegende Bestandteile vieler Anwendungen im Bereich Indexierung,
Überwachung, Zugangskontrolle oder Mensch-Maschine-Interaktion sind.

Um dieses Problem anzugehen, konzentrieren wir uns auf einen bestimmten
Ansatz, genannt Neuronales Faltungs-Netzwerk, englisch Convolutional Neural
Network (CNN), welcher auf biologischen Befunden, die im visuellen Kortex von
Säugetierhirnen entdeckt wurden, beruht und welcher bereits auf viele Klassifi-
zierungsprobleme angewandt wurde. Bestehende CNN-basierte Methoden, wie
das Gesichts-Lokalisierungs-System von Garcia und Delakis, zeigen, dass dies
ein sehr effektiver, effizienter und robuster Ansatz für nicht-lineare Bildverar-
beitungs-Aufgaben wie Gesichts-Analyse sein kann.

Ein wichtiger Schritt in vielen Anwendungen der automatischen Gesichts-
Analyse, z.B. Gesichtserkennung, ist die Gesichts-Ausrichtung und -Zentrierung.
Diese versucht das Gesichts-Bild so zu verschieben, zu drehen und zu vergrößern
bzw. verkleinern, dass sich bestimmte Gesichtsmerkmale an vordefinierten Bild-
Positionen befinden. Wir stellen einen effizienten Ansatz für dieses Problem
vor, der auf CNNs beruht, und zeigen experimentell und anhand schwieriger
Testbilder die sehr gute Leistungsfähigkeit des Systems.

Darüberhinaus stellen wir eine CNN-basierte Methode zur automatischen
Gesichtsmerkmals-Lokalisierung vor. Das System bedient sich einem hierarchi-
schen Verfahren, das zuerst grob die Augen, die Nase und den Mund lokalisiert,
und dann das Ergebnis verfeinert indem es 10 verschiedene Gesichtsmerkmals-
Punkte erkennt. Die Erkennungsrate dieser Methode liegt bei 96% für die AR-
Datenbank und 87% für die BioID-Datenbank mit einer Fehler-Toleranz von
10% des Augenabstandes.

Schließlich stellen wir einen neuen Gesichtserkennungs-Ansatz vor, welcher
auf einer spezifischen CNN-Architektur beruht und welcher eine nicht-lineare
Abbildung vom Bildraum in einen niedrig-dimensionalen Unterraum lernt, in
dem die verschiedenen Klassen leichter trennbar sind. Diese Methode wurde
auf verschiedene öffentliche Gesichts-Datenbanken angewandt und erzielte bes-
sere Erkennungsraten als klassische Gesichtserkennungs-Ansätze, die auf PCA
oder LDA beruhen. Darüberhinaus ist das System besonders robust bezüglich
Rauschen und partiellen Verdeckungen.

Wir stellen ferner eine CNN-basierte Methode zum binären Klassifizierung-
Problem der Geschlechtserkennung mittels Gesichts-Bildern vor und erzielen
eine Genauigkeit, die dem aktuellen Stand der Technik entspricht.

Die Ergebnisse, die in dieser Arbeit dargestellt sind, beweisen, dass CNNs
sehr gute Leistungen in verschiedenen Gesichts-Bildverarbeitungs-Aufgaben er-
zielen, wie z.B. Gesichts-Ausrichtung, Gesichtsmerkmals-Lokalisierung und Ge-
sichtserkennung. Sie zeigen außerdem deutlich, dass CNNs ein vielseitiges, effi-
zientes und robustes Verfahren zur Gesichts-Analyse sind.

iv

Résumé

Dans cette thèse, nous proposons le problème de l’analyse faciale basée sur
l’apparence avec des techniques d’apprentissage automatique et nous décrivons
des sous-problèmes spécifiques tels que la détection de visage, la détection de
caractéristiques faciales et la reconnaissance de visage qui sont des composants
indispensables dans de nombreuses applications dans le contexte de l’indexation,
la surveillance, le contrôle d’accès et l’interaction homme-machine.

Afin d’aborder ce problème, nous nous concentrons sur une technique nommée
réseau de neurones à convolution, en anglais Convolutional Neural Network
(CNN), qui est inspirée des découvertes biologiques dans le cortex visuel des
mammifères et qui a déjà été appliquée à de nombreux problèmes de classifica-
tion. Des méthodes existantes, comme le système de détection de visage proposé
par Garcia et Delakis, montrent que cela peut être une approche très efficace
et robuste pour des applications de traitement non-linéaire d’images tel que
l’analyse faciale.

Une étape importante dans beaucoup d’applications d’analyse facial, comme
la reconnaissance de visage, constitue le recadrage automatique de visage. Cette
technique cherche à décaler, tourner et agrandir ou reduire l’image de visage
de sorte que des caractéristiques faciales se trouvent environ à des positions
définies préalablement dans l’image. Nous proposons une approche efficace pour
ce problème en utilisant des CNNs et nous montrons une très bonne performance
de cette approche sur des images de test difficiles.

Nous présentons également une méthode basée CNN pour la détection de
caractéristiques faciales. Le système proposé utilise une procedure hiérarchique
qui localise d’abord les yeux, le nez et la bouche pour ensuite affiner le résultat en
détectant 10 points de caractéristiques faciales différentes. Le taux de détection
est de 96 % pour la base AR et de 87 % pour la base BioID avec une tolérance
d’erreur de 10 % de la distance inter-oculaire.

Enfin, nous proposons une nouvelle approche de reconnaissance de visage
basée sur une architecture spécifique de CNN qui apprend une projection non-
linéaire de l’espace de l’image dans un espace de dimension réduite où les classes
différentes sont séparables plus facilement. Nous appliquons cette méthode à
plusieurs bases publiques de visage et nous obtenons des taux de reconnais-
sance meilleurs qu’en utilisant des approches classiques basées sur l’Analyse en
Composantes Principales (ACP) ou l’Analyse Discriminante Linéaire (ADL).
En outre, le système proposé est particulièrement robuste par rapport au bruit
et aux occultations partielles.

Nous présentons également une methode basée CNN pour le problème de
reconnaissance de genre à partir d’images de visage et nous obtenons un taux
comparable à l’état de l’art.

Les résultats présentés dans cette thèse montrent que les CNNs sont très
performants dans de nombreuses applications de traitement d’images faciales
telles que le recadrage de visage, la détection de caractéristiques faciales et la
reconnaissance de visage. Ils démontrent également que la technique de CNN est
une approche très variée, efficace et robuste pour l’analyse automatique d’image
faciale.

v

Contents

1 Introduction 1

1.1 Context . 1
1.2 Applications . 2
1.3 Difficulties . 3

1.3.1 Illumination . 3
1.3.2 Pose . 4
1.3.3 Facial Expressions . 4
1.3.4 Partial Occlusions . 5
1.3.5 Other types of variations 5

1.4 Objectives . 5
1.5 Outline . 6

2 Machine Learning Techniques for Object Detection and Recog-

nition 7

2.1 Introduction . 7
2.2 Statistical Projection Methods 8

2.2.1 Principal Component Analysis 9
2.2.2 Linear Discriminant Analysis 10
2.2.3 Other Projection Methods 11

2.3 Active Appearance Models . 12
2.3.1 Modeling shape and appearance 12
2.3.2 Matching the model . 13

2.4 Hidden Markov Models . 14
2.4.1 Introduction . 14
2.4.2 Finding the most likely state sequence 15
2.4.3 Training . 16
2.4.4 HMMs for Image Analysis 16

2.5 Adaboost . 18
2.5.1 Introduction . 18
2.5.2 Training . 18

2.6 Support Vector Machines . 19
2.6.1 Structural Risk Minimization 19
2.6.2 Linear Support Vector Machines 20
2.6.3 Non-linear Support Vector Machines 21
2.6.4 Extension to multiple classes 22

2.7 Bag of Local Signatures . 22
2.8 Neural Networks . 24

2.8.1 Introduction . 24

vi

CONTENTS

2.8.2 Perceptron . 24
2.8.3 Multi-Layer Perceptron 25
2.8.4 Auto-Associative Neural Networks 26
2.8.5 Training Neural Networks 27
2.8.6 Radial Basis Function Networks 40
2.8.7 Self-Organizing Maps . 42

2.9 Conclusion . 44

3 Convolutional Neural Networks 47

3.1 Introduction . 47
3.2 Background . 48

3.2.1 Neocognitron . 48
3.2.2 LeCun’s Convolutional Neural Network model 50

3.3 Training Convolutional Neural Networks 53
3.3.1 Error Backpropagation with Convolutional Neural Networks 53
3.3.2 Other training algorithms proposed in the literature . . . 56

3.4 Extensions and variants . 59
3.4.1 LeNet-5 . 59
3.4.2 Space Displacement Neural Networks 60
3.4.3 Siamese CNNs . 61
3.4.4 Shunting Inhibitory Convolutional Neural Networks . . . 64
3.4.5 Sparse Convolutional Neural Networks 67

3.5 Some Applications . 69
3.6 Conclusion . 70

4 Face detection and normalization 71

4.1 Introduction . 71
4.2 Face detection . 72

4.2.1 Introduction . 72
4.2.2 State-of-the-art . 72
4.2.3 Convolutional Face Finder 75

4.3 Illumination Normalization . 82
4.4 Pose Estimation . 83
4.5 Face Alignment . 86

4.5.1 Introduction . 86
4.5.2 State-of-the-art . 87
4.5.3 Face Alignment with Convolutional Neural Networks . . . 88

4.6 Conclusion . 95

5 Facial Feature Detection 98

5.1 Introduction . 98
5.2 State-of-the-art . 99
5.3 Facial Feature Detection with Convolutional Neural Networks . . 103

5.3.1 Introduction . 103
5.3.2 Architecture of the Facial Feature Detection System . . . 103
5.3.3 Training the Facial Feature Detectors 107
5.3.4 Facial Feature Detection Procedure 109
5.3.5 Experimental Results . 109

5.4 Conclusion . 120

vii

CONTENTS

6 Face and Gender Recognition 121

6.1 Introduction . 121
6.2 State-of-the-art in Face Recognition 122
6.3 Face Recognition with Convolutional Neural Networks 125

6.3.1 Introduction . 125
6.3.2 Neural Network Architecture 126
6.3.3 Training Procedure . 127
6.3.4 Recognizing Faces . 129
6.3.5 Experimental Results . 129

6.4 Gender Recognition . 133
6.4.1 Introduction . 133
6.4.2 State-of-the-art . 134
6.4.3 Gender Recognition with Convolutional Neural Networks 136

6.5 Conclusion . 136

7 Conclusion and Perspectives 138

7.1 Conclusion . 138
7.2 Perspectives . 140

7.2.1 Convolutional Neural Networks 140
7.2.2 Facial analysis with Convolutional Neural Networks . . . 140

A Excerpts from the used face databases 142

A.1 AR . 142
A.2 BioID . 144
A.3 FERET . 146
A.4 Google Images . 148
A.5 ORL . 150
A.6 PIE . 152
A.7 Yale . 154

viii

List of Figures

1.1 An example face under a fixed view and varying illumination . . 3
1.2 An example face under fixed illumination and varying pose . . . 4
1.3 An example face under fixed illumination and pose but varying

facial expression . 4

2.1 Active Appearance Models: annotated training example and cor-
responding shape-free patch . 13

2.2 A left-right Hidden Markov Model 15
2.3 Two simple approaches to image analysis with 1D HMMs 17
2.4 Illustration of a 2D Pseudo-HMM 17
2.5 Graphical illustration of a linear SVM 21
2.6 The histogram creation procedure with the Bag-of-local-signature

approach . 23
2.7 The Perceptron . 24
2.8 A Multi-Layer Perceptron . 25
2.9 Different types of activation functions 26
2.10 Auto-Associative Neural Networks 26
2.11 Typical evolution of training and validation error 31
2.12 The two possible cases that can occur when the minimum on the

validation set is reached . 34
2.13 A typical evolution of the error criteria on the validation set using

the proposed learning algorithm 36
2.14 The evolution of the validation error on the NIST database using

Backpropagation and the proposed algorithm 37
2.15 The validation error curves of the proposed approach with differ-

ent initial global learning rates 37
2.16 The architecture of a RBF Network 41
2.17 A two-dimensional SOM with rectangular topology 43
2.18 Evolution of a two-dimensional SOM during training 45

3.1 The model of a S-cell used in the Neocognitron 48
3.2 The topology of the basic Neocognitron 50
3.3 Some training examples used to train the first two S-layers of

Fukushima’s Neocognitron . 51
3.4 The architecture of LeNet-1 . 52
3.5 Convolution and sub-sampling 52
3.6 Error Backpropagation with convolution maps 55
3.7 Error Backpropagation with sub-sampling maps 55

ix

LIST OF FIGURES

3.8 The architecture of LeNet-5 . 59
3.9 A Space Displacement Neural Network 61
3.10 Illustration of a Siamese Convolutional Neural Network 62
3.11 Example of positive (genuine) and negative (impostor) error func-

tions for Siamese CNNs . 63
3.12 The shunting inhibitory neuron model 65
3.13 The SICoNNet architecture . 66
3.14 The connection scheme of the SCNN proposed by Gepperth . . . 67
3.15 The sparse, shift-invariant CNN model proposed by Ranzato et al . 68

4.1 The architecture of the Convolutional Face Finder 76
4.2 Training examples for the Convolutional Face Finder 77
4.3 The face localization procedure of the Convolutional Face Finder 78
4.4 Convolutional Face Finder: ROC curves for different test sets . . 80
4.5 Some face detection results of the Convolutional Face Finder ob-

tained with the CMU test set . 81
4.6 The three rotation axes defined with respect to a frontal head . . 84
4.7 The face alignment process of the proposed approach 87
4.8 The Neural Network architecture of the proposed face alignment

system . 89
4.9 Training examples for the proposed face alignment system 90
4.10 The overall face alignment procedure of the proposed system . . 91
4.11 Correct alignment rate vs. allowed mean corner distance of the

proposed approach . 93
4.12 Precision of the proposed alignment approach and the approach

based on facial feature detection 93
4.13 Sensitivity analysis of the proposed alignment approach: Gaus-

sian noise . 94
4.14 Sensitivity analysis of the proposed alignment approach: partial

occlusion . 95
4.15 Some face alignment results of the proposed approach on the

Internet test set . 96

5.1 Principal stages of the feature detection process of the proposed
approach . 104

5.2 Some input images and corresponding desired output feature maps105
5.3 Architecture of the proposed facial feature detector 106
5.4 Eye feature detector: example of an input image with desired

facial feature points, desired output maps and superposed desired
output maps . 107

5.5 Mouth feature detector: example of an input image with desired
facial feature points, desired output maps and superposed desired
output maps . 107

5.6 Facial feature detector: virtual face images created by applying
various geometric transformations 108

5.7 Facial feature detector: detection rate versus me of the four features110
5.8 Facial feature detector: detection rate versus mei of each facial

feature (FERET) . 111
5.9 Facial feature detector: detection rate versus mei of each facial

feature (Google images) . 111

x

LIST OF FIGURES

5.10 Facial feature detector: detection rate versus mei of each facial
feature (PIE subset) . 112

5.11 The different types of CNN input features that have been tested 113
5.12 ROC curves comparing the CNNs trained with different input

features (FERET database) . 114
5.13 ROC curves comparing the CNNs trained with different input

features (Google images) . 114
5.14 ROC curves comparing the CNNs trained with different input

features (PIE subset) . 115
5.15 Sensitivity analysis of the proposed facial feature detector: Gaus-

sian noise . 115
5.16 Sensitivity analysis of the proposed facial feature detector: partial

occlusion . 116
5.17 Facial feature detection results on different face databases 117
5.18 Overall detection rate of the proposed facial feature detection

method for AR . 117
5.19 Overall detection rate of the proposed facial feature detection

method for BioID . 118
5.20 Some results of combined face and facial feature detection with

the proposed approach . 119

6.1 The basic schema of our face recognition approach showing two
different individuals . 126

6.2 Architecture of the proposed Neural Network for face recognition 127
6.3 ROC curves of the proposed face recognition algorithm for the

ORL and Yale databases . 130
6.4 Examples of image reconstruction of the proposed face recogni-

tion approach . 131
6.5 Comparison of the proposed approach with the Eigenfaces and

Fisherfaces approach: ORL database 132
6.6 Comparison of the proposed approach with the Eigenfaces and

Fisherfaces approach: Yale database 132
6.7 Sensitivity analysis of the proposed face recognition approach:

Gaussian noise . 133
6.8 Sensitivity analysis of the proposed face recognition approach:

partial occlusion . 134
6.9 Examples of training images for gender classification 136
6.10 ROC curve of the gender recognition CNN applied to the unmixed

FERET test set . 137

xi

List of Tables

2.1 Comparison of the proposed learning algorithm with Backpropa-
gation and the bold driver method (10 hidden neurons) 37

2.2 Comparison of the proposed learning algorithm with Backpropa-
gation and the bold driver method (40 hidden neurons) 38

3.1 The connection scheme of layer C3 of Lenet-5 60

4.1 Detection rate vs. false alarm rate of selected face detection meth-
ods on the CMU test set. 75

4.2 The connection scheme of layer C2 of the Convolutional Face
Finder . 77

4.3 Comparison of face detection results evaluated on the CMU and
MIT test sets . 81

4.4 Execution speed of the CFF on different platforms 81

5.1 Overview of detection rates of some published facial feature de-
tection methods . 102

5.2 Comparison of eye pupil detection rates of some published meth-
ods on the BioID database . 118

6.1 Recognition rates of the proposed approach compared to Eigen-
faces and Fisherfaces . 131

xii

List of Algorithms

1 The Viterbi algorithm . 16
2 The Adaboost algorithm . 19
3 The standard online Backpropagation algorithm for MLPs 30
4 The proposed online Backpropagation algorithm with adaptive

learning rate . 35
5 The RPROP algorithm . 39
6 The line search algorithm . 39
7 A training algorithm for Self-Organizing Maps 44
8 The online Backpropagation algorithm for Convolutional Neural

Networks . 57

xiii

Chapter 1

Introduction

1.1 Context

The automatic processing of images to extract semantic content is a task that
has gained a lot of importance during the last years due to the constantly
increasing number of digital photographs on the Internet or being stored on
personal home computers. The need to organize them automatically in a intel-
ligent way using indexing and image retrieval techniques requires effective and
efficient image analysis and pattern recognition algorithms that are capable to
extract relevant semantic information.

Especially faces contain a great deal of valuable information compared to
other objects or visual items in images. For example, recognizing a person on a
photograph, in general, tells a lot about the overall content of the picture.

In the context of human-computer interaction (HCI), it might also be im-
portant to detect the position of specific facial characteristics or recognize facial
expressions, in order to allow, for example, a more intuitive communication be-
tween the device and the user or to efficiently encode and transmit facial images
coming from a camera. Thus, the automatic analysis of face images is crucial
for many applications involving visual content retrieval or extraction.

The principal aim of facial analysis is to extract valuable information from
face images, such as its position in the image, facial characteristics, facial ex-
pressions, the person’s gender or identity.

We will outline the most important existing approaches to facial image anal-
ysis and present novel methods based on Convolutional Neural Networks (CNN)
to detect, normalize and recognize faces and facial features. CNNs show to be a
powerful and flexible feature extraction and classification technique which has
been successfully applied in other contexts, i.e. hand-written character recogni-
tion, and which is very appropriate for face analysis problems as we will exper-
imentally show in this work.

We will focus on the processing of two-dimensional gray-level images as this
is the most widespread form of digital images and thus allows the proposed
approaches to be applied in the most extensive and generic way. However,
many techniques described in this work could also be extended to color images,
3D data or multi-modal data.

1

1.2. APPLICATIONS

1.2 Applications

There are numerous possible applications for facial image processing algorithms.
The most important of them concern face recognition. In this regard, one has
to differentiate between closed world and open world settings. In a closed world
application, the algorithm is dedicated to a limited group of persons, e.g. to
recognize the members of a family. In an open world context the algorithm
should be able to deal with images from “unknown” persons, i.e. persons that
have not been presented to the system during its design or training. For example,
an application indexing large image databases like Google images or television
programs should recognize learned persons and respond with “unknown” if the
person is not in the database of registered persons.

Concerning face recognition, there further exist two types of problems: face
identification and face verification (or authentication). The first problem, face
identification, is to determine the identity of a person on an image. The second
one only deals with the question: “Is ‘X’ the identity of the person shown on
the image?” or “Is the person shown on the image the one he claims to be?”.
These questions only require “yes” or “no” as the answer.

Possible applications for face authentication are mainly concerned with ac-
cess control, e.g. restricting the physical access to a building, such as a corporate
building, a secured zone of an airport, a house etc. Instead of opening a door
by a key or a code, the respective person would communicate an identifier, e.g.
his/her name, and present his/her face to a camera. The face authentication
system would then verify the identity of the person and grant or refuse the
access accordingly. This principle could equally be applied to the access to sys-
tems, automatic teller machines, mobile phones, Internet sites etc. where one
would present his face to a camera instead of entering an identification number
or password.

Clearly, also face identification can be used for controlling access. In this
case the person only has to present his/her face to the camera without claiming
his/her identity. A system recognizing the identity of a person can further be
employed to control more specifically the rights of the respective persons stored
in its database. For instance, parents could allow their children to watch only
certain television programs or web sites, while the television or computer would
automatically recognize the persons in front of it.

Video surveillance is another application of face identification. The aim here
is to recognize suspects or criminals using video cameras installed at public
places, such as banks or airports, in order to increase the overall security of
these places. In this context, the database of suspects to recognize is often very
large and the images captured by the camera are of low quality, which makes
the task rather difficult.

With the vast propagation of digital cameras in the last years the number
of digital images stored on servers and personal home computers is rapidly
growing. Consequently, there is an increasing need of indexation systems that
automatically categorize and annotate this huge amount of images in order
to allow effective searching and so-called content-based image retrieval. Here,
face detection and recognition methods play a crucial role because a great part
of photographs actually contain faces. A similar application is the temporal
segmentation and indexation of video sequences, such as TV programs, where
different scenes are often characterized by different faces.

2

CHAPTER 1. INTRODUCTION

Figure 1.1: An example face under a fixed view and varying illumination

Another field of application is facial image compression, i.e. parts of images
containing faces can be coded by a specialized algorithm that incorporates a
generic face model and thus leads to very high compression rates compared to
universal techniques.

Finally, there are many possible applications in the field of advanced Human-
Computer Interaction (HCI), e.g. the control and animation of avatars, i.e. com-
puter synthesized characters. Such systems capture the position and movement
of the face and facial features and accordingly animate a virtual avatar, which
can be seen by the interlocutor. Another example would be the facilitation of
the interaction of disabled persons with computers or other machines or the
automatic recognition of facial expressions in order to detect the reaction of the
person(s) sitting in front of a camera (e.g. smiling, laughing, yawning, sleeping).

1.3 Difficulties

There are some inherent properties of faces as well as the way the images are
captured which make the automatic processing of face images a rather difficult
task. In the case of face recognition, this leads to the problem that the intra-class
variance, i.e. variations of the face of the same person due to lighting, pose etc.,
is often higher than the inter-class variance, i.e. variations of facial appearance
of different persons, and thus reduces the recognition rate. In many face analysis
applications, the appearance variation resulting from these circumstances can
also be considered as noise as it makes the desired information, i.e. the identity
of the person, harder to extract and reduces the overall performance of the
respective systems.

In the following, we will outline the most important difficulties encountered
in common real-world applications.

1.3.1 Illumination

Changes in illumination can entail considerable variations of the appearance of
faces and thus face images. Two main types of light sources influence the overall
illumination: ambient light and point light (or directed light). The former is
somehow easier to handle because it only affects the overall brightness of the
resulting image. The latter however is far more difficult to analyze, as face
images taken under varying light source directions follow a highly non-linear
function. Additionally, the face can cast shadows on itself. Figure 1.1 illustrates
the impact of different illumination on face images.

3

1.3. DIFFICULTIES

Figure 1.2: An example face under fixed illumination and varying pose

Figure 1.3: An example face under fixed illumination and pose but varying facial
expression

Many approaches have been proposed to deal with this problem. Some face
detection or recognition methods try to be invariant to illumination changes
by implicitly modeling them or extracting invariant features. Others propose a
separate processing step, a kind of normalization, in order to reduce the effect
of illumination changes. In section 4.3 some of these illumination normalization
methods will be outlined.

1.3.2 Pose

The variation of head pose or, in other words, the viewing angle from which
the image of the face was taken is another difficulty and essentially impacts
the performance of automatic face analysis methods. For this reason, many
applications limit themselves to more or less frontal face images or otherwise
perform a pose-specific processing that requires a preceding estimation of the
pose, like in multi-view face recognition approaches. Section 4.4 outlines some
2D pose estimation approaches that have been presented in the literature.

If the rotation of the head coincides with the image plane the pose can be
normalized by estimating the rotation angle and turning the image such that the
face is in an upright position. This type of normalization is part of a procedure
called face alignment or face registration and is described in more detail in
section 4.5.

Figure 1.2 shows some example face images with varying head pose.

1.3.3 Facial Expressions

The appearance of a face with different facial expressions varies considerably (see
Fig. 1.3). Depending on the application, this can be of more or less importance.
For example, for access control systems the subjects are often required to show
a neutral expression. Thus, invariance to facial expression might not be an
issue in this case. On the contrary, in an image or video indexation system, for

4

CHAPTER 1. INTRODUCTION

example, this would be more important as the persons are shown in every-day
situations and might speak, smile, laugh etc.

In general, the mouth is subject to the largest variation. The respective
person on an image can have an open or closed mouth, can be speaking, smiling,
laughing or even making grimaces.

Eyes and eyebrows are also changing subject to varying facial expressions,
e.g. when the respective person blinks, sleeps or widely opens his/her eyes.

1.3.4 Partial Occlusions

Partial occlusions occur quite frequently in real-world face images. They can
be caused by a hand occluding a part of the face, e.g. the mouth, by long hear,
glasses, sun glasses or other objects or persons.

In most of the cases, however, the face occludes parts of itself. For example,
in a view from the side the other side of the face is hidden. Also, a part of
the cheek can be occluded by the nose or an eye can be covered by its orbit for
example.

1.3.5 Other types of variations

Appearance variations a also caused by varying make-up, varying hair-cut and
the presence of facial hear (beard, mustache etc.).

Varying age is also an important factor influencing the performance of many
face analysis methods. This is the case for example in face recognition when the
reference face image has been taken some years before the image to recognize.

Finally, there are also variations across the subjects’ identities, such as race,
skin color or, more generally, ethnic origin. The respective differences in the
appearance of the face images can cause difficulties in applications like face or
facial feature detection or gender recognition.

1.4 Objectives

The goals pursued in this work principally concern the evaluation of Convo-
lutional Neural Networks (CNN) in the context of facial analysis applications.
More specifically, we will focus on the following objectives:

• evaluate the performance of CNNs w.r.t. appearance-based facial analysis

• investigate the robustness of CNNs against classical sources of noise in the
context of facial analysis

• propose different CNN architectures designed for specific facial analysis
problems such as face alignment, facial feature detection, face recognition
and gender classification

• improve upon the state-of-the-art in appearance-based facial feature detec-
tion, face alignment as well as face recognition under real-world conditions

• investigate different solutions improving the performance of automatic face
recognition systems

5

1.5. OUTLINE

1.5 Outline

In the following chapter we will outline some of the most important machine
learning techniques used for object detection and recognition in images, such
as statistical projection methods, Hidden Markov Models, Support Vector Ma-
chines and Neural Networks.

In chapter 3, we will then focus on one particular approach, called Con-
volutional Neural Networks (CNN), which is the foundation for the methods
proposed in this work.

Having described, among other aspects, the principle architecture and train-
ing methods for CNNs, in chapter 4 we will outline the problem of face detection
and normalization and how CNNs can tackle these types of problems. Using
an existing CNN-based face detection system, called Convolutional Face Finder
(CFF), we will further present an effective approach for face alignment which
is an important step in many facial analysis applications.

In chapter 5, we will describe the problem of facial feature detection which
shows to be crucial for any facial image processing task. We will propose an ap-
proach based on a specific type of CNN to solve this problem and experimentally
show its performance in terms of precision and robustness to noise.

Chapter 6 outlines two further facial analysis problems, namely automatic
face recognition and gender recognition. We will also present CNN-based ap-
proaches to these problems and experimentally show their effectiveness com-
pared to other machine learning techniques proposed in the literature.

Finally, chapter 7 will conclude this work with a short summary and some
perspectives for future research.

6

Chapter 2

Machine Learning

Techniques for Object

Detection and Recognition

2.1 Introduction

In this chapter we will outline some of the most common machine learning
approaches to object detection and recognition. Machine Learning techniques
automatically learn from a set of examples how to classify new instances of
the same type of data. The capacity to generalize, i.e. the ability to success-
fully classify unknown data and possibly infer generic rules or functions, is an
important property of these approaches and is sought to be maximized.

Usually, one distinguishes between three types of learning:

Supervised learning A training set and the corresponding desired outputs of
the function to learn are available. Thus, during training the algorithm
iteratively presents examples to the system and adapts its parameters
according to the distance between the produced and the desired outputs.

Unsupervised learning The underlying structure of the training data, i.e.
the desired output, is unknown and is to be determined by the training
algorithm. For example, for a classification method this means that the
class information is not available and has to be approximated by grouping
the training examples using some distance measure, a technique called
clustering.

Reinforcement learning Here, the exact output of the function to learn is
unknown, and training consists in a parameter adjustment based on only
two concepts, reward and penalty. That is, if the system does not perform
well (enough) it is “penalized” and the parameters are adapted accord-
ingly. Otherwise, it is “rewarded”, i.e. some positive reinforcement takes
place.

Most of the algorithms described in the following are supervised, but they
are employed for rather different purposes: some of them are used to extract

7

2.2. STATISTICAL PROJECTION METHODS

features from the input data, some are used to classify the extracted features,
and others perform both tasks.

The application context varies also largely, i.e. some of the approaches can
be used for detection of features and/or objects, some only for recognition and
others for both. Further, in many systems a combination of several of the
techniques described in this chapter is used. Thus, in a sense, they could be
considered as some kind of building blocks for effective object detection and
recognition systems.

Let us begin with some of the most universal techniques used in machine
learning which are based on a statistical analysis of the data allowing to signif-
icantly reduce its dimensionality and extract valuable information.

2.2 Statistical Projection Methods

In order to be able to automatically analyze images, they are often resized to
have a certain width w and height h. Then, the respective image rows or columns
of each image are concatenated to build a vector of dimension n = w × h. The
resulting vector space is called image space, denoted I in the following.

In signal processing tasks there is often a lot of redundancy in the respective
images/vectors because, firstly, images of the same class of objects are likely to
be similar and, secondly, neighboring pixels in an image are highly correlated.

Thus, it seems obvious to represent the images in a more compact form,
i.e. to project the vectors into a subspace S of I by means of a statistical
projection method. In the literature, the terms dimensionality reduction or
feature selection are often employed in the context of these techniques. These
methods aim at computing S which, in general, is of lower dimension than I,
such that the transformed image vectors are statistically less correlated. There
are two main groups of projections: linear and non-linear projections.

Linear projection techniques transform an image vector x = (x1, . . . , xn)T ,
of dimension n into a vector s = (s1, . . . , sk)T of dimension k, by a linear k× n
transformation matrix W :

s = WTx (2.1)

In general, one eliminates those basis vectors that are supposed to contain the
least important information for a given application using a predefined criteria.
Thus, the dimension k of the resulting subspace S can be chosen after calculating
the basis vectors spanning the entire subspace.

The most common and fundamental projection methods are the Principal
Component Analysis (PCA) and the Linear Discriminant Analysis (LDA) which
will be described in the following sections.

Non-linear approaches are applied when a linear projection does not suffice
to represent the data in a way that allows the extraction of discriminant features.
This is the case for more complex distributions where mere hyperplanes fail to
separate the classes to distinguish. As most of these approaches are iterative,
they require an a priori choice of the dimension k of the resulting subspace S.

8

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

2.2.1 Principal Component Analysis

Principal Component Analysis (PCA), also known as the discrete Karhunen-
Loève Transform (KLT) or Hotelling Transform as it is due to Hotelling [101],
is a linear orthogonal projection into the subspace where the first dimension (or
axis) corresponds to the direction of I having the greatest variance, the second
dimension to the direction with the second greatest variance and so on.

Thus, the resulting orthogonal subspace S, called principal subspace, de-
scribes best the distribution of the input space I. It finds the directions of
greatest variance, which are supposed to reflect the most “important” aspects
of the data.

Given a certain number N of input vectors {x1,x2, . . . ,xN} (xi ∈ R
n)

that are assumed to have a multi-normal distribution and to be centered, i.e.
1
N

∑N
i=1 xi = 0, the corresponding projected vectors are

si = WTxi i ∈ 1..N , (2.2)

where si ∈ R
k. Now let Σ be the covariance matrix of the input vectors

Σ =
1

N

N∑

i=1

xi xi
T . (2.3)

Hence, the covariance matrix of the projected vectors si is defined as

Σ′ = WT ΣW . (2.4)

Finally, the projection matrix W is supposed to maximize the variance of the
projected vectors. Thus,

W = argmax
W̃

|W̃T ΣW̃ | . (2.5)

The k columns of W , i.e. the basis vectors of S, are called the principal com-
ponents and represent the eigenvectors corresponding to the largest eigenvalues
of the covariance matrix Σ.

An important characteristic of PCA is that if k < n the reconstruction error
e in terms of the Euclidean distance is minimal,

e =
1

N

N∑

i=1

∥
∥
∥
∥
xi −W si

∥
∥
∥
∥

. (2.6)

Thus, the first k eigenvectors form a subspace that optimally encodes or rep-
resents the input space I. This fact is exploited for example in compression
algorithms and template matching techniques.

The choice of k depends largely upon the actual application. Additionally,
for some applications it might not even be optimal to select the eigenvectors
corresponding to the largest eigenvalues.

Kirby et al . [122] introduced a classical selection criteria which they call
energy dimension. Let λj be the eigenvalue associated with the jth eigenvector.
Then, the energy dimension of the ith eigenvector is:

Ei =

∑n
j=i+1 λj
∑n

j=1 λj

. (2.7)

9

2.2. STATISTICAL PROJECTION METHODS

One can show that the Mean Squared Error (MSE) produced by the last n−i re-
jected eigenvectors is

∑n
j=i+1 λj . The selection of k now consists in determining

a threshold τ such that Ek−1 > τ and Ek < τ .
Apart from image compression and template matching, PCA is often applied

to classification tasks, e.g. the Eigenfaces approach [243] in face recognition.
Here, the projected vectors si are the signatures to be classified. To this end,
the signatures of the N input images are each associated with a class label and
used to build a classifier. The most simple classifier would be a nearest neighbor
classifier using an Euclidean distance measure.

To sum up, PCA calculates the linear orthogonal subspace having its axes
oriented with the directions of greatest variances. It thus optimally represents
the input data. However, in a classification context it is not guaranteed that
in the subspace calculated by PCA the separability of the data is improved. In
this regard, the Linear Discriminant Analysis (LDA) described in the following
section is more suitable.

2.2.2 Linear Discriminant Analysis

The Linear Discriminant Analysis (LDA) has been introduced by Fisher [69]
in 1936 but generalized later on to the so-called Fisher’s Linear Discriminant
(FLD). It is, in contrast to the PCA, not only concerned with the best repre-
sentation of the data but also with its separability in the projected subspace
with regard to the different classes.

Let Ω = {x1, . . .xN} be the training set partitioned into c annotated classes
denoted Ωi (i ∈ 1..c). We are now searching the subspace S that maximizes the
inter-class variability while minimizing the intra-class variability, thus improving
the separability of the respective classes. To this end, one maximizes the so-
called Fisher’s criterion [69, 16]:

J(W) =
|WT ΣbW |

|WT ΣwW |
. (2.8)

Thus,

W = argmax
W̃

|W̃T ΣbW̃ |

|W̃T ΣwW̃ |
, (2.9)

where

Σw =
1

N

c∑

j=1

∑

xi∈Ωj

(xi − xj)(xi − xj)
T (2.10)

represents the within-class variance and

Σb =
1

N

c∑

j=1

Nj(xj − x)(xj − x)T (2.11)

the between-class variance. Nj is the number of examples in Ωj (i.e. of class j)
and xj are the respective means, i.e. xj = 1

Nj

∑

xi∈Ωj
xi. x is the overall mean

of the data which is assumed to be centered, i.e. x = 0.
The projection matrix W is obtained by calculating the eigenvectors associ-

ated with the largest eigenvalues of the matrix Σ−1
w Σb. These eigenvectors form

the columns of W .

10

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

A problem occurs when the number of examples N is smaller than the size of
the input vectors, i.e. for images the number of pixels n. Then, Σw is singular
since its rank is at most N−c. The calculation of Σ−1

w is thus impossible. Several
approaches have been proposed to overcome this problem. One is to produce
additional examples by adding noise to the images of the training database.
Another approach consists in first applying PCA to reduce the input vector
space to the dimension N − c and then perform LDA as described above.

2.2.3 Other Projection Methods

There are many other projection techniques proposed in the literature and which
can possibly be applied to object detection and recognition.

For example, Independent Component Analysis (ICA) [17, 2, 35, 109, 108] is
a technique often used for blind source separation [120], i.e. to find the different
independent sources a given signal is composed of. ICA seeks a linear sub-space
where the data is not only uncorrelated but statistically independent. In its
most simple form, the model is the following:

x = AT s , (2.12)

where x is the observed data, s are the independent sources and A is the so-
called mixing matrix. ICA consists in optimizing an objective function, denoted
contrast function, that can be based on different criteria. The contrast function
has to ensure that the projected data is independent and non-Gaussian. Note
that ICA does not reduce the dimensionality of the input data. Hence, it is
often employed in combination with PCA or any other dimensionality reduction
technique. Numerous implementations of ICA exist, e.g. INFOMAX [17], JADE
[35] or FastICA [109].

Yang et al . [263] introduced the so-called two-dimensional PCA, which does
not require the input image to be transformed into a one-dimensional vector
beforehand. Instead, a generalized covariance matrix is directly estimated using
the image matrices. Then, the eigenvectors are determined in a similar manner
than for 1D-PCA by minimizing a special criterion based on this covariance
matrix. Finally, in order to perform classification a distance measure between
matrix signatures has to be defined. It has been shown that this method outper-
forms one-dimensional PCA in terms of classification rate [263] and robustness
[254].

Visani et al . [252] presented a similar approach based on LDA: the two-
dimensional oriented LDA. The procedure is analogical to the 2D-PCA method
where the projection is directly performed on the image matrices, either column-
wise or row-wise. A generalized Fisher’s criterion is defined and minimized in
order to obtain the projection matrix. Further, the authors showed that in
contrast to LDA, the two-dimensional oriented LDA can implicitly circumvent
the singularity problem. In a later work [253], they generalized this approach
to the Bilinear Discriminant Analysis (BDA) where column-wise and row-wise
2D-LDA is iteratively applied to estimate the pair of projection matrices min-
imizing an expression similar to the Fisher’s criterion which combines the two
projections.

Note that the projection methods presented so far are all linear projection
techniques. However, in some cases the different classes cannot be correctly

11

2.3. ACTIVE APPEARANCE MODELS

separated in a linear sub-space. Then, non-linear projection methods can help
to improve the classification rate. Most of the linear projection methods can be
made non-linear by projecting the input data into a higher-dimensional space
where the classes are more likely to be linearly separable. That means, the
separating hyperplane in this sub-space represents a non-linear sub-space of the
input vector space. Fortunately, it is not necessary to explicitly describe this
higher-dimensional space and the respective projection function if we find a so-
called kernel function that implements a simple dot-product in this vector space
and satisfies the Mercer’s condition (see Theorem 1 on p. 22). For a more formal
explanation see section 2.6.3 on non-linear SVMs. The kernel function allows to
perform a dot-product in the target vector space and can be used to construct
non-linear versions of the previously described projection techniques e.g. PCA
[219, 264], LDA [161] or ICA [6].

The projection approaches that have been outlined in this section can in
principal be applied to any type of data in order to perform a statistical anal-
ysis on the respective examples. A technique called Active Appearance Model
(AAM) [41] can also be classified as a statistical projection approach but it is
much more specialized to model images of deformable objects under varying
external conditions. Thus, in contrast to methods like PCA or LDA, where the
input image is treated as a “static” vector, small local deformations are taken
into account. AAMs have been especially applied to face analysis, and we will
therefore describe this technique in more detail in the following section.

2.3 Active Appearance Models

Active Appearance Models (AAM), introduced by Cootes et al . [41] as an exten-
sion to Active Shape Models (ASM) [43], represent an approach that statistically
describes not only the texture of an object but also its shape. Given a new im-
age of the class of objects to analyze, the idea is here to interpret the object by
synthesizing an image of the respective object while approximating as good as
possible its appearance in the real image. It has mainly been applied to face
analysis problems [60, 41]. Therefore, face images we will used in the following
to illustrated this technique. Modeling the shape of faces appears to be helpful
in most face analysis applications where the face images are subject to changes
in pose and facial expressions.

2.3.1 Modeling shape and appearance

The basis of the algorithm is a set of training images with a certain number of an-
notated feature points, so-called landmark points, i.e. two-dimensional vectors.
Each set of landmarks is represented as a single vector x, and PCA is applied
to the whole set of vectors. Thus any shape example can be approximated by
the equation:

x = x + Psbs , (2.13)

where x is the mean shape, and Ps is the linear subspace representing the
possible variations of shape parameterized by the vector bs.

Then, the annotated control points of each training example are matched
to the mean shape while warping the pixel intensities using a triangulation
algorithm. This leads to a so-called shape-free face patch for each example.

12

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

Labelled image Points Shape−free patch

Figure 2.1: Active Appearance Models: annotated training example and corre-
sponding shape-free patch

Figure 2.1 illustrates this with an example face image. Subsequently, a PCA is
performed on the gray values g of the shape-free images forming a statistical
model of texture:

g = g + Pgbg , (2.14)

where g represents the mean texture, and the matrix Pg linearly describes the
texture variations parameterized by the vector bg.

Since shape and texture are correlated, another PCA is applied on the con-
catenated vectors of bs and bg leading to the combined model:

x = x + Qsc (2.15)

g = g + Qgc , (2.16)

where c is a parameter controlling the overall appearance, i.e. both shape and
texture, and Qs and Qg represent the combined linear shape-texture subspace.

Given a parameter vector c, the respective face can be synthesized by first
building the shape-free image, i.e. the texture, using equation 2.16 and then
warping the face image by applying equation 2.15 and the triangulation algo-
rithm used to build the shape-free patches.

2.3.2 Matching the model

Having built the statistical shape and texture models, the objective is to match
the model to an image by synthesizing the approximate appearance of the object
in the real image. Thus, we want to minimize:

∆ = |Ii − Im| , (2.17)

where Ii is the vector of gray-values of the real image and Im is the one of the
synthesized image.

The approach assumes that the object is roughly localized in the input image,
i.e. during the matching process, the model with its landmark points must not
be too far away from the resulting locations.

Now, the decisive question is how to change the model parameters c in order
to minimize ∆. A good approximation appears to be a linear model:

δc = A(Ii − Im) , (2.18)

13

2.4. HIDDEN MARKOV MODELS

where A is determined by a multi-variate linear regression on the training data
augmented by examples with manually added perturbations.

To calculate Ii − Im, the respective real and synthesized images are trans-
formed to be shape-free using a preliminary estimate of the shape model. Thus,
we compute:

δg = gi − gm (2.19)

and obtain
δc = Aδg . (2.20)

This linear approximation shows to perform well over a limited range of the
model parameters, i.e. about 0.5 standard deviations of the training data.

Finally, this estimation is put into an iterative framework, i.e. at each iter-
ation we calculate:

c′ = c−Aδg (2.21)

until convergence, where the matrix A is scaled such that it minimizes |δg|.
The final result can then be used, for example, to localize specific feature

points, to estimate the 3D orientation of the object, to generate a compressed
representation of the image or, in the context of face analysis, to identify the
respective person, gender or facial expression.

Clearly, AAMs can cope with small local image transformations and ele-
gantly model shape and texture of an object based on a preceding statistical
analysis of the training examples. However, the resulting projection space can
be rather large, and the search in this space, i.e. the matching process, can be
slow. A fundamentally different approach to take into account local transfor-
mations of a signal are Hidden Markov Models (HMM). This is a probabilistic
method that represents a signal, e.g. an image, as a sequence of observations.
The following section outlines this approach.

2.4 Hidden Markov Models

2.4.1 Introduction

Hidden Markov Models (HMM), introduced by Rabiner et al . [190, 191], are
commonly used to model the sequential aspect of data. In the signal process-
ing context for example, they have been frequently applied to speech recog-
nition problems modeling the temporal sequence of states and observations,
e.g. phonemes. An image can also be seen as a sequence of observations, e.g.
image subregions, and here the image either has to be linearized into a one-
dimensional structure or special types of HMMs have to be used, for example
two-dimensional Pseudo HMMs or Markov Random Fields.

Being the most common approaches in image analysis, we will focus on 1D
and Pseudo 2D HMMs in the following. The major disadvantage of “real” 2D
HMMs is their relatively high complexity in terms of computation time.

A HMM is characterized by a finite number of states, and it can be in only
one state at a time (as a finite state machine). The initial state probabilities
define, for every state, the probability of the HMM being in that state at time
t = 1. For each following time step t = 2..T it can either change the state or stay
in the same state with a certain probability defined by the so-called transition
probabilities. Further, in any state it creates an output from a pre-defined

14

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

State 3State 2State 1

Figure 2.2: A left-right Hidden Markov Model

vocabulary with a certain probability, determined by the output probabilities.
At time t = T the HMM will have produced a certain sequence of outputs,
called observations; O = {o1, . . . , oT }. The sequence of states Q = {q1, . . . , qT }
it has traversed, however, is unknown (hidden) and has to be estimated by
analyzing the observation whereas a single observation could be produced by
different state sequences.

Fig. 2.2 illustrates a simple example of a HMM with 3 states. This type of
HMM is called left-right model or Bakis model.

More formally we can describe a HMM as follows:

Definition 1 A Hidden Markov Model is defined as λ = {S, V, A, B, Π}, where

• S = {s1, . . . , sN} is the set of N possible states,

• V = {v1, . . . , vL} is the set of L possible outputs constituting the vocabu-
lary,

• A = {aij}i,j=1..N is the set transition probabilities from state i to state j,

• B = {bi(l)}i=1..N,l=1..L define the output probabilities of output l in state
i,

• Π = {π1, . . . , πN} is the set of initial state probabilities.

Note that
N∑

i=1

πi = 1 , (2.22)

N∑

j=1

aij = 1 ∀i = 1, . . . , N and (2.23)

L∑

l=1

bi(l) = 1 ∀i = 1, . . . , N . (2.24)

Given a HMM λ, the goal is to determine the probability of a new observation
sequence O = {o1, . . . , oT }, i.e. P [O|λ]. For this purpose, there are several
algorithms, the most simple one being explained in the following section.

2.4.2 Finding the most likely state sequence

There are many algorithms for estimating P [O|λ] and the most likely state
sequence Q∗ = {q∗1 , . . . , q

∗
T } having generated O. The most well known of these

are called Viterbi algorithm and Baum-Welsh algorithm. Algorithm 1 describes
the former which is a kind of simplification of the latter. Note that δti denotes

15

2.4. HIDDEN MARKOV MODELS

Algorithm 1 The Viterbi algorithm

for i = 1 to N do

δ1i = πibi(o1)
end for

for t = 2 to T do

for i = 1 to N do

δti = bi(ot)max{δt−1,jaji ∀j = 1..N}
φti = sj where j = argmaxj{δt−1,jaji ∀j = 1..N}

end for

end for

P [O|λ] = max{δTj ∀j = 1..N}
q∗T = argmaxj{δTj ∀j = 1..N}
for t = T − 1 to 1 do

q∗t = φt+1,q∗

t+1

end for

the probability of being in state si at time t, and φti denotes the most probable
preceding state being in si at time t. Thus, the φti store the most probable state
sequence. The last loop allows to retrieve the final most likely state sequence
Q∗ by recursively traversing φti.

When applying a HMM to a given observation sequence O it suffices for most
applications to calculate P [O|λ] as stated above. The actual state sequence Q∗

however is necessary for the training process explained in the following section.

2.4.3 Training

In order to automatically determine and re-adjust the parameters of λ a set of
training observations Otr = {ot1, . . . , otM} is used, and a training algorithm,
for example algorithm 1, is applied to estimate the probabilities: P [Otr|λ] and
P [Otr, qt = si|λ] for every state si at every time step t.

Then each parameter can be re-estimated by re-generating the observation
sequences Otr and “counting” the number of events determining the respective
parameter. For example, to adjust aij one calculates:

a′
ij =

expected number of transitions from si to sj

expected number of transitions from si

=
P [qt = si, qt+1 = sj |Otr , λ]

P [qt = si|Otr , λ]
(2.25)

The output probabilities B and the initial state probabilities Π are estimated
in an analogical way. However, the number and topology of states S has to be
determined experimentally in most cases.

2.4.4 HMMs for Image Analysis

HMMs are one-dimensional models and have initially been applied to the pro-
cessing of audio data [190]. However, there are several approaches to adapt this
technique to 2D data like images.

16

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

...

(a) 1D HMM based on image bands

...

(b) 1D HMM based on image blocks

Figure 2.3: Two simple approaches to image analysis with 1D HMMs

State 3State 2State 1

State 3State 2State 1

State 3State 2State 1

Figure 2.4: Illustration of a 2D Pseudo-HMM

One of them [214] is to consider an image as a sequence of horizontal bands,
possibly overlapping and spreading from top to bottom. Fig. 2.3(a) illustrates
this. The HMM consequently has a left-right topology. Visual features of the
image bands, e.g. pixel intensities, then correspond to the outputs of the HMM.

A similar approach is to partition the image into a set of blocks of predefined
size. A one-dimensional sequence is then formed by concatenating the lines (or
columns) of blocks. Fig. 2.3(b) illustrates this procedure. Additional constraints
can be added in order to ensure that certain states correspond to the end of
lines in the image.

Finally, an approach called 2D Pseudo-HMM uses a hierarchical concept
of super-states, illustrated in Fig. 2.4. The super-states form a vertical 1D
sequence corresponding to the lines (or bands) of the image. Each super-state
in turn contains a 1D HMM modeling the sequence of horizontal observations
(pixels or blocks) in a line. Thus, determining the hidden state sequence Q
of an observation O implies a two-level procedure, i.e. first, to calculate the
most likely sequence of super-states using the lines or bands of the image and,
secondly, to determine the most likely sequence of sub-states corresponding to
each line independently.

Obviously, HMMs are very suitable for modeling sequential data, and thus

17

2.5. ADABOOST

they are principally used in signal processing tasks. Let us now consider some
more general machine learning techniques which do not explicitely model this
sequential aspect but, on the other hand, can more easily and efficiently be
applied to higher dimensional data such as images. Adaptive Boosting is one
such approach and will be explained in the following section.

2.5 Adaboost

2.5.1 Introduction

Adaptive Boosting, short Adaboost, is a classification technique introduced by
Freund and Schapire [70]. The basic idea here is to combine several “weak”
classifiers into a single “strong” classifier, where the weak classifiers perform
only slightly better than just random guessing.

The principle of the algorithm is to learn a global binary decision function
by iteratively adding and training weak classifiers, e.g. wavelets networks or
Neural Networks, while focusing on more and more difficult examples. It has
been applied to many classification problems and has become a widely used
machine learning technique due to its simplicity and performance in terms of
classification rate and computation time.

2.5.2 Training

Let {(x1, y1), . . . , (xm, ym)} be the training set where the xi ∈ X are the training
examples and yi ∈ Y the respective class labels. We will focus here on the
basic Adaboost algorithm where Y = {−1, +1} but extensions to multi-class
classification have been proposed in the literature [71, 216].

The procedure is as follows: at each iteration t = 1..T a weak classifier
ht : X → {−1, +1} is trained using the training examples weighted by a set of
weights Dt(i), i = 1..m. Then, the weights corresponding to misclassified ex-
amples are increased and weights corresponding to correctly classified examples
are decreased. Thus, the algorithm focuses more and more on harder examples.
The final decision H(x) calculated by the strong classifier is then a weighted
sum of the weak decisions ht(x) where the weights αt are chosen to be inversely
proportional to the error ǫt of the classifier ht, i.e. if the error is large the respec-
tive classifier will have less influence on the final decision. Algorithm 2 describes
the basic Adaboost algorithm. The variable Zt is a normalization constant in
order to make Dt+1 a distribution.

Now, let γt = 1
2 − ǫt, i.e. the improvement of the classifier over a random

guess. It has been proven [71] that the upper bound of the error on the training
set is:

∏

t

[

2
√

ǫ(1− ǫt)
]

=
∏

t

√

1− 4γ2
t ≤ exp

(

−2
∑

t

γ2
t

)

. (2.26)

Thus, if γt > 0, i.e. each hypothesis is only slightly better than random, the
training error drops exponentially fast.

Schapire et al . [215] also conducted theoretical studies in terms of the gen-
eralization error. To this end, they define the margin of the training examples

18

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

Algorithm 2 The Adaboost algorithm

1: D1(i) = 1/m ∀i = 1..m
2: for t = 1 to T do

3: Train weak classifier ht(i) using the distribution Dt

4: Calculate the produced error:

ǫt =
∑

i:ht(xi) 6=yi

Dt(i)

5: Set αt = 1
2 ln

(
1−ǫt

ǫt

)

6: Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

7: end for

8: Output the final decision function:

H(x) = sign

(
T∑

t=1

αtht(x)

)

as:

margin(x, y) =
y
∑

t αtht(x)
∑

t αt

, (2.27)

i.e. a value in the interval [−1, +1] and positive if and only if the example is
correctly classified. Then, they show that the generalization error is with a high
probability upper bounded by:

P̂r[margin(x, y) ≤ θ] + Õ

(√

d

mθ2

)

(2.28)

for any θ > 0, where P̂r[·] denotes the empirical probability on the training set
and d the VC-dimension of the weak classifiers.

Adaboost is a very powerful machine learning technique as it can turn any
weak classifier into a strong one by linearly combining several instances of it.
A completely different classification approach called Support Vector Machine
(SVM) is based on the principal of Structural Risk Minimization which not
only tries to minimize the classification error on the training examples but also
takes into account the ability of the classifier to generalize to new data. The
following section explains this approach in more detail.

2.6 Support Vector Machines

2.6.1 Structural Risk Minimization

The classification technique called Support Vector Machine (SVM) [23, 246, 44]
is based on the principle of Structural Risk Minimization (SRM) formulated by
Vapnik et al . [245]. One of the basic ideas of this theory is that the test error

19

2.6. SUPPORT VECTOR MACHINES

rate, or structural risk R(α), is upper bounded by the training error rate, or
empirical risk Remp and an additional term called VC-confidence which depends
on the so-called Vapnik-Chervonenkis (VC)-dimension h of the classification
function. More precisely, with the probability 1− η, the following holds [246]:

R(α) ≤ Remp(α) +

√

h(log(2l/h) + 1)− log(η/4)

l
, (2.29)

where α are the parameters of the function to learn and l is the number of
training examples. The VC-dimension h of a class of functions describes its
“capacity” to classify a set of training data points. For example, in the case of
a two-class classification problem, if a function f has a VC-dimension of h there
exists at least one set of h data points that can be correctly classified by f , i.e.
assigned the label −1 or +1 to it. If the VC-dimension is too high the learning
machine will overfit and show poor generalization. If it is too low, the function
will not sufficiently approximate the distribution of the data and the empirical
error will be too high. Thus, the goal of SRM is to find a h that minimizes the
structural risk R(α), which is supposed to lead to maximum generalization.

2.6.2 Linear Support Vector Machines

Vapnik [246] showed that for linear hyperplane decision functions:

f(x) = sign((w · x) + b) (2.30)

the VC-dimension is determined by the norm of the weight vector w.
Let {(xi, yi), . . . , (xl, yl)} (xi ∈ R

n, yi ∈ {−1, +1}) be the training set.
Then, for a linearly separable training set we have:

yi(xi ·w + b)− 1 ≥ 0 ∀i = 1..l . (2.31)

The margin between the positive and negative points is defined by two hyper-
planes x ·w + b = ±1 where the above term actually is zero. Fig. 2.5 illustrates
this. Further, no points lie between these hyperplanes and the width of the mar-
gin is 2/||w||. The support vector algorithm now tries to maximize the margin
by minimizing ||w||, which is supposed to be an optimal solution, i.e. where
generalization is maximal. Once the maximum margin is obtained, data points
lying on one of the separating hyperplanes, i.e. for which equation 2.31 yields
zero, are called support vectors (illustrated by double circles in Fig. 2.5).

To simplify the calculation, the problem is formulated in a Lagrangian frame-
work (see [246] for details). This leads to the maximization of the Lagrangians:

LD =

l∑

i=1

αi −
1

2

∑

ij

αiαjyiyj xi · xj (2.32)

subject to

w =

l∑

i=1

αiyixi , (2.33)

l∑

i=1

αiyi = 0 and (2.34)

20

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

margin

w

w · x + b > 0
w · x + b < 0

Figure 2.5: Graphical illustration of a linear SVM

αi ≥ 0 ∀i = 1..l , (2.35)

where αi (i = 1..l) are the Lagrangian multipliers that are to be determined.
Further, the solutions to αi and condition 2.31 imply a value for b. Note that
all αi are zero except those corresponding to the support vectors.

Finally, new examples can simply be classified using the decision function
2.30.

In many cases, however, the training data cannot be completely separated
because of some “outliers”. Then, we might simply loosen the constraint 2.31
by introducing the constants ξi > 0 in the following way:

yi(xi ·w + b) ≥ (1− ξi) ∀i = 1..l , (2.36)

and condition 2.35 becomes

0 ≤ αi ≤ ξi ∀i = 1..l . (2.37)

2.6.3 Non-linear Support Vector Machines

In order to use a non-linear decision function, the above formulas can quite
easily be generalized. Boser et al . [23] proposed a simple method based on the
so-called kernel trick. That is, before applying the dot product xi ·xj in equation
2.32 the d-dimensional data is projected into a higher dimensional space where
it is supposed to be linearly separable. Thus, a function Φ : R

d → H is defined
and xi · xj becomes Φ(xi) · Φ(xj). Now, instead of calculating Φ each time we
use a kernel function K(xi,xj) = Φ(xi) · Φ(xj), i.e. each occurrence of the dot
product is replaced by K(·, ·). Thus, if we want to classify a new data point s

the decision function

f(x) = sign

(
l∑

i=1

αiyi xi · s + b

)

(2.38)

21

2.7. BAG OF LOCAL SIGNATURES

becomes

f(x) = sign

(
l∑

i=1

αiyi Φ(xi) ·Φ(s) + b

)

= sign

(
l∑

i=1

αiyi K(xi, s) + b

)

.

(2.39)
With the kernel function K we don’t need to calculate Φ or H but we must

know if for a given K there exists a mapping Φ and some space H in which K
is the dot product K(xi,xj) = Φ(xi) · Φ(xj). This property is ensured by the
Mercer’s condition [246]:

Theorem 1 There exists a mapping Φ and an expansion

K(x,y) =
∑

k

Φ(x)kΦ(y)k (2.40)

if and only if, for any g(x) such that

∫

g(x)2 dx is finite (2.41)

then ∫

K(x,y)g(x)g(y) dxdy ≥ 0 . (2.42)

Some examples for which the condition is satisfied are:

K(x,y) = (x · y + 1)n polynomial kernels (2.43)

K(x,y) = e−γ||x−y||2 Gaussian radial basis function (RBF) kernels
(2.44)

K(x,y) = tanh(κ(x · y)− δ) sigmoid kernels (2.45)

2.6.4 Extension to multiple classes

Up to this point, we only considered two-class problems. However, there are
simple ways to extend the SVM method to several classes. One approach, called
one-against-all, consists in training one classifier for each class that distinguishes
between the examples of that class and the examples of all other classes. Thus,
the number of SVMs equals the number of classes n.

Another approach trains a SVM for each possible pair of classes. To classify
an example, it is input to each SVM and the class label corresponding to the
maximal number of “winning” SVMs represents the final answer. The number
of classifiers needed by this approach is n(n−1)/2, which is a drawback in terms
of complexity compared to the first approach.

2.7 Bag of Local Signatures

As opposed to SVMs, being a very general classification technique, an approach
called Bag-of-Local-Signatures (BOLS) has recently been introduced by Csurka
et al . [51] for image classification problems, particularly object detection and

22

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

... ...

b) c) d) e)a)

s1

s2

s3

v1

v2

v3

di

Figure 2.6: The histogram creation procedure with the Bag-of-local-signature
approach: a) input image I, b) detected salient points, c) extracted local signa-
tures, d) quantized vectors (dictionary entries), e) histogram h(I).

recognition. It was motivated by the bag-of-words approach for text categoriza-
tion which simply counts the number of pre-defined key words in a document
in order to classify it into one of several categories.

In the first step of the BOLS method, n salient points pi = (xi, yi) of the
input image are detected using an interest point detection algorithm, e.g. the
Harris affine detector [162]. The small image region around each detected point
is then represented by some local descriptors, such as the Scale-Invariant Feature
Transform (SIFT) descriptors [148], leading to a local signature si for each
salient point.

In the following step, the extracted signatures are classified applying any
kind of vector quantization method. To this end, a dictionary of k representative
signatures dj (j = 1..k) is calculated from the training set using a clustering
algorithm. For example, Csurka et al . [51] used the k-means clustering algorithm
and Ros et al . [199] used a Self-Organizing Map (SOM).

Thus, for an image I to classify a bag of local signatures vi, i.e. entries
of the dictionary, is obtained representing the appearance of the object in the
image. However, for two different images of the same object the respective
representations might differ due to the varying appearance in different views or
partial occlusions making an efficient comparison difficult.

Therefore, discrete histograms h(I) of the bag of local signatures vi are calcu-
lated by simply counting the number of occurrences of the respective signatures.
Finally, the histograms can be classified by using classical histogram distance
measures, such as χ2 or the Earth Mover’s Distance (EMD) or by training a
classifier on the vectors obtained from the histogram values, such as a Bayes
classifier or SVMs [51].

Figure 2.6 illustrates the overall procedure for generating the Bag-of-Local-
Signatures representation. A major advantage of this approach compared to
statistical projection methods, for example, is its robustness to partial occlusions
and to changing pose of the object to recognize. This is due to the purely
local representation and the rotation- and scale-invariant description of the local
image patches.

As this technique is a relatively new approach in the field of machine learning
and very specific to image classification we won’t describe it here in more detail.
We will rather concentrate on a very versatile and powerful machine learning
technique constituting the basis for all of the face analysis approaches proposed
in this work, namely Artificial Neural Networks.

23

2.8. NEURAL NETWORKS

...

Σ φ(V)V

b

1x1

x2

xn

w1

w2

wn

y

Figure 2.7: The Perceptron

2.8 Neural Networks

2.8.1 Introduction

Artificial Neural Networks (ANN), short Neural Networks (NN), denote a ma-
chine learning technique that has been inspired by the human brain and its
capacity to perform complex tasks by means of inter-connected neurons per-
forming each a very simple operation. Likewise, a NN is a trainable structure
consisting of a set of inter-connected units, each implementing a very simple
function, and together eventually performing a complex classification function
or approximation task.

2.8.2 Perceptron

The most well known type of neural unit is called Perceptron and has been
introduced by Rosenblatt [200]. Its basic structure is illustrated in Fig. 2.7. It
has n inputs and one output where the output is a simple function of the sum
of the input signals x weighted by w and an additional bias b. Thus,

y = φ(x ·w + b) . (2.46)

Often, the bias is put inside the weight vector w such that w0 = b and the
input vector x is extended correspondingly to have x0 = 1. Equation 2.46 then
becomes:

y = φ(x ·w) . (2.47)

where φ is the Heavyside step function:

φ : R→ R

φ(x) =

{
1 if x ≥ 0
0 else.

(2.48)

The Perceptron thus implements a very simple two-class classifier where w

is the separating hyperplane such that w · x ≥ 0 for examples from one class
and w · x < 0 for examples from the other.

In 1962, Rosenblatt introduced the perceptron convergence theorem [201],
a supervised training algorithm capable of learning arbitrary two-class classi-
fication problems. However, Minsky and Papert [163] pointed out that there
are very simple classification problems where the perceptron fails, namely when
the two classes are not linearly separable like in the XOR-problem, where the

24

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

input layer hidden layer output layer

x

y

z

Figure 2.8: A Multi-Layer Perceptron

pattern (0, 0) and (1, 1) belong to one class and (0, 1) and (1, 0) to the other.
This motivated the use of several interconnected perceptrons which are able to
form more complex decision boundaries by combining several hyperplanes. The
most common type of these NNs is the Multi-Layer Perceptron described in the
following section.

2.8.3 Multi-Layer Perceptron

Multi-Layer Perceptrons (MLP) are capable of approximating arbitrarily com-
plex decision functions. With the advent of a practicable training algorithm
in the 1980’s, the so-called Backpropagation algorithm [208], they became the
most widely used form of NNs.

Fig. 2.8 illustrates the structure of a MLP. There is an input layer, one or
more hidden layer(s) and an output layer of neurons, where each neuron except
the input neurons implements a perceptron as described in the previous section.
Moreover, the neurons of one layer are only connected to the following layer.
We call this type of network: feed-forward network, i.e. the activation of the
neurons is propagated layer-wise from the input to the output layer. And if
there is a connection from each neuron to every neuron in the following layer,
as in Fig. 2.8, the network is called fully connected. Further, the neurons’
activation function has to be differentiable in order to adjust the weights by
the Backpropagation algorithm. Commonly used activation functions are for
example:

φ(x) = x linear (2.49)

φ(x) =
1

1 + e−cx
(c > 0) sigmoid (2.50)

φ(x) =
1− e−x

1 + e−x
hyperbolic tangent. (2.51)

25

2.8. NEURAL NETWORKS

-6

-4

-2

 0

 2

 4

 6

-4 -2 0 2 4

(a) linear

 0

 0.5

 1

-4 -2 0 2 4

(b) sigmoid

-1

-0.5

 0

 0.5

 1

-4 -2 0 2 4

(c) hyperbolic tangent

Figure 2.9: Different types of activation functions

input outputhidden
“bottleneck”

(a) 3-layer AANN

input outputhidden 1 hidden 2 hidden 3

“bottleneck”

(b) 5-layer AANN

Figure 2.10: Auto-Associative Neural Networks

Figure 2.9 shows the three types of functions. Note that the linear function is in
the range]−∞, +∞[, the sigmoid function in]0, +1[and the hyperbolic tangent
function in] − 1, +1[. The linear activation function is mostly bounded by a
maximum and minimum value, e.g. −1 and +1, and thus it becomes a step-wise
linear function. However, when using the Backpropagation learning algorithm
(explained in section 2.8.5) one has to be careful with the points where the
step-wise function is not differentiable, e.g. x = −1 and x = +1.

2.8.4 Auto-Associative Neural Networks

Auto-Associative Neural Networks (AANN) [47, 46, 86] are a special type of
MLP where the hidden layer has fewer neurons than the input and output layers,
a so-called “bottle-neck”. The NN is trained to reproduce the input pattern at
its output. Thus, input and output layer have the same dimension. Figure
2.10(a) illustrates this architecture. When training the AANN to reconstruct
the input patterns, it will actually learn a mapping into a lower-dimensional
space and the respective inverse mapping. Thus, the hidden layer learns a
compact representation of the data, and this technique can be applied to data

26

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

compression. If the neurons’ activation functions are linear, it has been shown
by Baldi and Hornik [9] that the projection performed by this type of NN is
equivalent to a PCA of the input data’s covariance matrix, and the weight
vectors of the output neurons correspond to its leading eigenvectors. However,
if the activation functions are non-linear [47] this is not true as proven by
Japkowitz et al . [114]. In that case, a non-linear projection is learned which
is still closely connected to the theoretical PCA [24]. Further, as pointed out
by Bourlard et al . [24] and Funahashi [79], the compression with non-linear
activation functions is not superior to the linear one.

A superior architecture is composed of three hidden layers as illustrated in
Fig. 2.10(b) and has been used many times in the literature [45, 244, 174, 125,
168]. The activation functions of the first and third hidden layer are non-linear.
These layers are referred to as mapping layer. The second hidden layer has either
a linear or non-linear activation function and is called representation layer.

As the 3-layer AANN with sigmoid activation function, this NN performs
a non-linear dimensionality reduction. By means of the Backpropagation al-
gorithm, it can thus learn any non-linear mapping from the input space to a
lower-dimensional sub-space and the respective reconstruction. However, a ma-
jor drawback is the manual choice of the subspace’s dimension, i.e. the number
of hidden neurons in the “bottleneck” layer, before training the NN.

2.8.5 Training Neural Networks

In general, the parameters of a NN, i.e. the weights and biases, are learned
using a training data set. However, as the space of possible weights can be very
large and of high dimension the analytical determination of these weights might
be very difficult or even infeasible. For this reason, an iterative approach is
adopted in most cases.

There are two principal training modes which determine the way the weights
are updated:

Online training: After presentation of each training example, the error is cal-
culated, and the weights are updated accordingly.

Offline training: The whole training set is propagated through the NN, and
the respective errors are accumulated. Finally, the weights are updated
using the accumulated error. This is also called batch training.

Many different NN training algorithms have been published in the literature.
Some work only in online, some only in offline mode, and some can be executed
in both ways. Which algorithm is best for a given problem depends on the NN
architecture, the nature and cardinality of the training data set and the type of
function to learn. Therefore, there is no basic rule for the choice of the training
algorithm.

In the following, we will focus on the Backpropagation algorithm since it is
the most common and maybe most universal training algorithm for feed-forward
NNs, especially for MLPs. Some alternative methods will also be presented at
the end of this section.

27

2.8. NEURAL NETWORKS

The Backpropagation algorithm

In the context of NNs, the Backpropagation (BP) algorithm has initially been
presented by Rumelhart et al . [208]. It is a supervised learning algorithm defin-
ing an error function E and applying the gradient descent technique in the
weight space in order to minimize E. The combination of weights leading to
a minimum of E is considered to be a solution of the learning problem. Note
that the BP algorithm does not guarantee to find a global minimum which is
an inherent problem of gradient descent optimization. However, we will discuss
some approaches to overcome this problem in the following section. In order
to calculate the gradient of E, at each iteration, the error function has to be
continuous and differentiable. Thus, the activation function of each individual
perceptron must also have this property as mentioned in section 2.8.3. Mostly,
a sigmoid or hyperbolic tangent activation function is employed, depending on
the range of desired output values, i.e.]0, 1[or]− 1, +1[. Note that BP can be
performed in online or offline mode, i.e. E represents either the error of one
training example or the sum of errors produced by all training examples.

In the following, we will explain the standard online BP algorithm, also
known as Stochastic Gradient Descent, applied to MLPs. There are two phases
of the algorithm:

• the forward pass, where a training example is presented to the network
and the activations of the respective neurons is propagated layer by layer
until the output neurons.

• the backward pass, where at each neuron the respective error is calculated
starting from the output neurons and, layer by layer, propagating the error
back until the input neurons.

Now, let us define the error function as:

E =
1

2

P∑

p=1

||op − tp||
2 , (2.52)

where P is the number of training examples, op are the output values produced
by the NN having presented example p, and tp are the respective target values.
The goal is to minimize E by adjusting the weights of the NN. With online
learning we calculate the error and try to minimize it after presenting each
training example. Thus,

Ep =
1

2
||op − tp||

2 =
1

2

K∑

k=1

(opk − tpk)2 , (2.53)

where K is the number of output units. When minimizing this function by
gradient descent, we calculate the steepest descent of the error surface in the

weight space, i.e. the opposite direction of the gradient∇Ep =
(

∂Ep

∂w1
, . . . ,

∂Ep

∂wk

)

.

In order to ensure convergence, the weights are only updated by a proportion
of the gradient. Thus,

∆wk = −λ
∂Ep

∂wk

(2.54)

28

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

Now, let us define

epk = opk − tpk the error of pattern p at output neuron k

wo
kj the weight from hidden neuron j to output neuron k

wh
ji the weight from input neuron i to hidden neuron j

zpj = φ

(
∑

i

wji xpi

)

the output of hidden neuron j

Vpk =
∑

j

wo
kj zpj the weighted sum of all inputs zpj of output neuron k

Vpj =
∑

i

wh
ji xpi the weighted sum of all inputs xpi of hidden neuron j.

Note that for simplicity we consider only one hidden layer containing J neurons
(as in Fig. 2.8). The subscript p always refers to pattern p, i refers to input
neuron i, j to hidden neuron j and k to output neuron k. By applying the chain
rule to equation 2.54, for one particular weight wo

kj and training example p, we
have:

∆wo
kj = −λ

∂Ep

∂wo
kj

= −λ
∂Ep

∂epk

∂epk

∂opk

∂opk

∂Vpk

∂Vpk

∂wo
jk

= −λ epk φ′(Vpk) zpj

= −λ δpk zpj ,

where
δpk = epk φ′(Vpk) (2.55)

is the local gradient. This holds for output neurons. For the hidden neurons
the respective equations are slightly different:

∆wh
ji = −λ

∂Ep

∂wh
ji

= −λ
∂Ep

∂zpj

∂zpj

∂Vpj

∂Vpj

∂wh
ji

= −λ

(
K∑

k=1

epk

∂epk

∂zpj

)

φ′(Vpj)xpi

= −λ

(
K∑

k=1

epk

∂epk

∂opk

∂opk

∂Vpk

∂Vpk

∂zpj

)

φ′(Vpj)xpi

= −λ

(
K∑

k=1

epk φ′(Vpk)wo
kj

)

φ′(Vpj)xpi

= −λ δpj xpi

where

δpj =

(
K∑

k=1

δpkwo
kj

)

φ′(Vpj) (2.56)

29

2.8. NEURAL NETWORKS

is the local gradient for hidden neuron j (j = 1..J). Algorithm 3 summa-
rizes the standard online Backpropagation algorithm. The respective variables
are noted as functions of iteration n, e.g. wkj(n). ǫ is a small constant that
determines the convergence criteria and maxiter is the maximum number of
iterations.

Algorithm 3 The standard online Backpropagation algorithm for MLPs

Initialize all weights of the NN to some small random value
Set the learning rate λ to a small positive value
n = 1
repeat

for p = 1 to P do

propagate pattern xp through the network
compute the weight changes for the K output neurons:

∆wo
kj(n) = −λ δpk(n) zpj(n) with δpk(n) = epk(n)φ′(Vpk(n))

compute the weight changes for the J hidden neurons:
∆wh

ji(n) = −λ δpj(n)xpi(n)

with δpj(n) =
(
∑K

k=1 δpk(n)wo
kj(n)

)

φ′(Vpj(n))

update all weights: w(n + 1) = w(n) + ∆w(n)
n = n + 1

end for

E = 1
2

∑P
p=1 ||op − tp||

2

until E < ǫ or n > maxiter

The extension of the described algorithm to several hidden layers is straight-
forward and will not be discussed further. In the next section, we will rather
concentrate on some common improvements to the Backpropagation algorithm.

Extensions to Backpropagation

Many enhancements to standard Backpropagation have been proposed in the
literature. They aim mainly at improving the convergence of the algorithm,
avoiding local minima or improving the generalization of the NN.

Momentum In order to take into account previous weight changes, a mo-
mentum term [186] can be added to the weight update formula, i.e.

∆wk(n) = −λ
∂Ep

∂wk(n)
+ α∆wk(n− 1)
︸ ︷︷ ︸

momentum term

, (2.57)

where 0 ≤ α < 1 is the momentum rate. The objective of the momentum term
is to improve the convergence speed. If there are several consecutive weight
updates in the same direction the weight changes will be bigger, and, on the
contrary, if the weight vector oscillates the changes will be smaller or even zero.
Thus, the momentum term causes some kind of smoothing or averaging over
time (i.e. over the iterations) regarding the weight updates.

Weight decay This is a regularization technique introduced by Werbos et al .
[257] where the term α

2

∑

x w2
x is added to the error function. The wx are all

30

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

training error

validation error

iteration

error

Emin

Figure 2.11: Typical evolution of training and validation error

the weights and biases of the NN, and α is a small positive constant to choose
beforehand. Thus,

Ep =
1

2
||op − tp||

2 +
α

2

∑

x

w2
x . (2.58)

This term penalizes large weights and reduces the flexibility of the NN. The
goal here is to improve the generalization capacity of the NN and to avoid
overfitting to the data. Performing gradient descent on this error function leads
to the following weight update formula:

∆wx = −λ
∂Ep

∂wx

− λα wx . (2.59)

This means, at each iteration the weights are decreases by a proportion of their
value unless they are reinforced by Backpropagation. The effect is similar to
pruning where useless weights are set to zero.

Cross-validation A common technique used to improve the generalization
capacity of a NN is called cross-validation. Here, the training set is divided into
two disjoint parts. One used for the actual training and the other for validation,
i.e. to verify how well the NN performs on unknown data. In most cases it can
be noticed that both the error on the training and validation set decrease at the
beginning of training but at some point the validation error stays constant or
even increases (as shown in Fig. 2.11). It is assumed that at this point the NN
starts to overtrain the data and generalization decreases. Thus, the training
is stopped when the validation error is minimal. This technique is commonly
known as “early stopping”.

Determining the learning rate

The choice of the learning rate λ used when updating the weights is crucial for
the successful convergence and the generalization capacity of the network. A
too small learning rate leads to slow convergence and a too high learning rate
to divergence. Moreover, in the latter case the network is likely to overfit to
the training data when using an online Backpropagation algorithm as it might
specialize to the examples presented at the beginning of the training. Numerous

31

2.8. NEURAL NETWORKS

solutions for the dynamic adaptation of the learning rate have been proposed
in the literature. Most of them focus on the acceleration of the training process
rather than their generalization performance. They can roughly be divided into
two groups: global and local adaption techniques. The former is referring to
methods adjusting an overall learning rate for the whole network and the latter
to the adaptation of independent learning rates for each weight.

A method for global adaptation has been proposed by Chan et al . [37] where
the angle between the last weight update and the current gradient is calculated.
If it is less than 90◦ the learning rate is increased otherwise it is decreased. Sa-
lomon et al . [213] proposed an evolutionary based adaption of the learning rate.
At each iteration, two weight updates, one with increased and the other with
decreased learning rate, are performed separately. The resulting network that
performs better is retained and used as a starting point for the next iteration.
A heuristic method, the so-called “bold driver” method, has been employed
by Battiti et al . [14] and Vogl et al . [255]. Here the learning rate is adjusted
according to the evolution of the error criteria E. If E decreases the learning
rate is slightly increased, otherwise it is drastically decreased. Hsin et al . [102]
proposed to use a weighted average of the cosines between successive weight up-
dates, and Plagianakos et al . [179] calculated a two point approximation to the
secant equation underlying quasi-Newton methods in order to obtain a dynamic
learning rate and additionally make use of an acceptability condition to ensure
convergence. Finally, the approach of Magoulas et al . [151] estimates the local
shape of the error surface by the Lipschitz constant and sets the learning rate
accordingly. They also employed this technique to calculate a separate dynamic
learning rate for each weight [152].

Local learning rate adjustment methods have been very popular due to their
efficiency and generally higher convergence speed. A very well-know technique
is the Delta-Bar-Delta method introduced by Jacobs et al . [112]. Here, the
learning rates are adjusted according to sign changes of the exponential averaged
gradient. Similarly, Silva and Almeida [226] proposed a method where the
learning rates are increased if the respective gradients of the last two iterations
have the same sign and decreased otherwise.

Finally, many methods do not use an explicit learning rate but first calculate
a descent gradient direction and then perform a line search (c.f . Alg. 6) such
that the error criteria is minimized in the direction of the gradient [149, 63, 140].

Note that most of the existing adaptive learning algorithms are offline learn-
ing algorithms However, online algorithms generally converge faster when the
input space is large compared to the number of examples (e.g. in image process-
ing tasks) or in more complex architectures like Convolutional Neural Networks
(CNN) that use shared weights. Thus, for many real world applications the
online Backpropagation algorithm or its variants are still the best choice. There
are also some adaptive online algorithms in the literature. For example, Schrau-
dolph [220], Harmon et al . [95] and Almeida et al . [1] proposed methods similar
to the Incremental Delta-Bar-Delta approach introduced by Sutton et al . [232],
an extension of the Delta-Bar-Delta technique for online training.

In the following section we will propose a novel approach to learning rate
adaption with online Backpropagation. We will show that our algorithm not
only increases convergence speed but also improves the generalization capacity
of the resulting NN.

32

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

A novel approach to learning rate adaption with online Backpropa-

gation

We now introduce a new method to automatically adapt the learning rate of
the online Backpropagation algorithm [57]. The proposed algorithm requires a
separation of the data set into training and validation set, as described on page
31. But here the validation set is not only used for “early stopping” but also to
control the learning rate, i.e. to accelerate or decelerate learning. The learning
rate is now denoted as a function of n, denoting the iteration, i.e. λ(n). Thus,
it is adjusted only after each iteration and not after each training example.

The algorithm consists of two consecutive phases:

1. the main learning phase and

2. the refinement phase.

The main learning phase The adaption of the learning rate in our approach
is similar to the “bold driver” method [255, 14] where the learning rate is ini-
tialized with a very small value (e.g. 10−10) and adjusted after each training
iteration according the difference of the error criteria E between the current
and the preceding iteration.

The proposed method applies this idea to the validation set instead of the
training set in order to reduce overfitting. Moreover, the procedure is slightly
modified to be more tolerant to error increases as the validation error is more
likely to oscillate than the training error. Let us consider the typical shapes
of the error curves of a training and validation set when using standard Back-
propagation. Fig. 2.11 illustrates this in a simplified manner. When applying
the technique of “early stopping” the weight configuration at iteration nmin,
i.e. where the validation error is minimal, is retained as the network is supposed
to show the highest generalization performance at this point. Further train-
ing likely leads to overfitting. The purpose of the first phase of the proposed
algorithm is thus to reach the point nmin more quickly.

To this end, the normalized difference between the error criteria of the cur-
rent and the preceding iteration is calculated:

δ(n) =
Ev(n)− Ev(n− 1)

Ev(n)
. (2.60)

Ev(n) is the error criteria at iteration n calculated on the whole validation
set (c.f . Eq. 2.52).

The algorithm further requires a running average δ̄(n) of the preceding values
of δ:

δ̄(n) = α · δ(n) + (1 − α) · δ̄(n− 1) , (2.61)

where 0 < α ≤ 1 (e.g. α = 0.1).
The principal learning rate updating rule is the following:

λ(n) =

{

d · λ(n− 1) if δ(n) · δ̄(n− 1) < 0 and |δ̄(n− 1)| > θ ,

u · λ(n− 1) otherwise .
(2.62)

where u and d are positive constants, 0 < d < 1 < u, and θ is a threshold to
allow for small error oscillations. In our experiments we used u = 1.1, d = 0.5

33

2.8. NEURAL NETWORKS

iterationnmin − 1 nminEmin

Ev

(a) The actual minimum has been missed be-

fore iteration nmin

iterationnmin nmin + 1Emin

Ev

(b) The actual minimum has been missed af-

ter iteration nmin

Figure 2.12: The two possible cases that can occur when the minimum on the
validation set is reached

and θ = 0.01. Thus, the learning rate adaption is based on the signs of the
error differences of the current and the preceding iterations. If the sign changes
the learning rate is decreased, otherwise it is increased. The principle of this
procedure is similar to the Delta-Bar-Delta method [112] but the calculation is
not based on gradients.

Refinement phase If the training has passed iteration nmin where Ev is
minimal the network is likely to overtrain. In fact, as the gradient descent is
performed in discrete steps the actual minimum Emin of the error surface of the
validation set is likely to be missed and lies between the weight configurations
of two successive training iterations. Fig. 2.12 illustrates this. Clearly, there
are two cases to differentiate: the minimum Emin has been missed either be-
fore or after iteration nmin. Now we assume that the validation error surface
is relatively smooth and that no other local minimum lies between iterations
nmin−1 and nmin or between iterations nmin and nmin +1 respectively. In order
to try to attain a smaller error the network reverts to the weight configuration
at iteration nmin − 1, decreases the learning rate, and training is continued.
Note that for training only the examples of the training set are used. Thus, it
is uncertain if the actual minimum can be attained at all. If no smaller error
has been found for a certain number of iterations N the “real” minimum, i.e.
the minimum on Ev, is more likely to have occurred “after” iteration nmin, (see
Fig. 2.12(b)). In this case, the network reverts to iteration nmin, the learning
rate is again decreased and training continues. If a smaller error is reached
during this process, the temporary minimum is retained, and the training con-
tinues normally. Otherwise, the reverting procedure is repeated while always
retaining the absolute minimum and the respective weight configuration found
so far. Algorithm 4 summarizes the overall training procedure. Note that the
computational overhead of the algorithm compared to standard Backpropaga-
tion with fixed learning rate is negligible as the error on the validation set needs
to be calculated anyway if cross-validation is performed.

Fig.2.13 illustrates a typical evolution of the error criteria Ev(n) during the
training process using the proposed learning algorithm. Due to the initialization
with a very small value, the error stays nearly constant at the beginning but

34

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

Algorithm 4 The proposed online Backpropagation algorithm with adaptive
learning rate

1: Initialize weights and individual learning rates

2: Set λ(0) := 10−10, δ(0) := 0 and δ̄(0) := 0

3: Calculate Ev(0)

4: Emin = Ev(0)

5: n := 0

6: repeat

7: Do one training iteration

8: n := n + 1

9: Calculate δ(n) = Ev(n)−Ev(n−1)
Ev(n)

10: if δ(n) · δ̄(n− 1) < 0 and |δ̄(n− 1)| > θ then

11: λ(n) = d · λ(n− 1)

12: else

13: λ(n) = u · λ(n− 1)

14: end if

15: δ̄(n) = α · δ(n) + (1− α) · δ̄(n− 1)

16: if Ev(n) < Emin then

17: save the current weight configuration

18: Emin = Ev(n)

19: nmin := n

20: end if

21: if n− nmin > N then

22: Revert to weight configuration at nmin − 1 (or nmin)

23: end if

24: until n = nmax

drops very quickly at some point due to the exponential increase of the learning
rate, and finally it converges to a minimum. In general, the main part of the
minimization is done in the first phase, and the error decrease in the refinement
phase is relatively small.

In order to validate the approach and to show the benefit compared to stan-
dard BP and the basic “bold driver” method we will present some experimental
results hereafter.

Experimental Results We evaluated the proposed learning algorithm on
a MLP trained to classify the examples of the well-known NIST database of
handwritten digits. The database contains 3823 training and 1797 test examples
of 8x8 matrices. From the training set 500 examples were selected randomly
and used for validation. The MLP we used for the experiments had 64 input,
10 hidden and 10 output neurons, fully inter-connected. The neurons all had
sigmoid activation functions.

To ensure that the neural network is well-conditioned, we additionally used
fixed local learning rates that were distributed stepwise from the last layer to

35

2.8. NEURAL NETWORKS

refinementmain learning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 400 500 600
iteration

 300

E
v

Figure 2.13: A typical evolution of the error criteria on the validation set using
the proposed learning algorithm

the first layer according to the incoming connections of each neuron. Thus, the
output neurons had the highest and the input the lowest local learning rate.
The overall learning rate is just the product of the fixed local and the dynamic
global learning rate.

In the first experiment, we compared the convergence properties of the pro-
posed algorithm to the ones of standard Backpropagation. Fig. 2.14 shows the
resulting error curves evaluated on the validation set. The different curves for
the Backpropagation algorithm have been obtained by using different global
learning rates (10−3, 10−4 and 10−5). The global learning rate of the proposed
method was initialized with the value 10−7. Note that our approach converges
more slowly at the beginning but catches up quickly and finishes stable on the
same level or even lower than Backpropagation.

Fig. 2.15 illustrates that our method is not sensitive to different initializa-
tions of the global learning rate. The curves show the validation error curves for
three different runs with initial learning rates of 10−6, 10−8 and 10−10 respec-
tively. Note that the point of time where the minimum is reached increases only
linearly when the initial learning rate is decreased exponentially. This is another
side effect of the exponential learning rate update rule. All the runs converge to
approximately the same solution, and the recognition rates are about the same
for all networks.

The final experiment demonstrates that the algorithm not only converges
faster but also improves the generalization performance of the resulting neural
networks. To this end, the training set was gradually reduced and the respective
recognition rates on the test set were calculated and compared to the standard
Backpropagation as well as to the bold driver method [255, 14]. Table 2.1 shows
the overall results. One can see that the proposed method performs slightly
better with training set sizes 3323 and 1000 and clearly outperforms the other
algorithms when only 600 and 100 training examples are used.

Table 2.2 shows the respective results with a neural network with 40 hidden
neurons. The recognition rates of the proposed method are slightly better then
for the other algorithms, although the difference is less significant than with

36

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

iteration

E
v

Backpropagation (LR = 10−5)
Backpropagation (LR = 10−4)
Backpropagation (LR = 10−3)

proposed algorithm (LR = 10−7)

Figure 2.14: The evolution of the validation error on the NIST database using
Backpropagation and the proposed algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600

iteration

E
v

10−6

10−8

10−10

Figure 2.15: The validation error curves of the proposed approach with different
initial global learning rates

training set size 3323 1000 600 100
algorithm

Backpropagation 94.30 93.42 78.31 73.88
bold driver [255, 14] 93.41 91.32 83.74 72.75
proposed algorithm 94.50 93.71 85.29 78.10

Table 2.1: Recognition rate (in %) with varying training set size (10 hidden
neurons)

37

2.8. NEURAL NETWORKS

training set size 3323 1000 600 100
algorithm

Backpropagation 95.71 93.89 86.58 80.31
bold driver [255, 14] 94.97 93.20 86.45 79.96
proposed algorithm 95.77 93.81 87.06 80.47

Table 2.2: Recognition rate (in %) with varying training set size (40 hidden
neurons)

the smaller NN. However, convergence speed is still superior as illustrated in
Fig. 2.14.

Other learning algorithms

Backpropagation is by far the most widely used training algorithm for feed-
forward NNs but there are other possible solutions for searching for a weight
configuration that minimizes the overall error of the NN. In the following, some
of them will be briefly explained.

RPROP The Resilient Backpropagation (RPROP) learning algorithm intro-
duced by Riedmiller et al . [197] uses a step size which doesn’t depend on the
gradient magnitude but which is increased or decreased according to gradient
sign changes. RPROP is also an offline learning algorithm. Further, it uses
an independent step size ∆i(n) for each weight wi(n). Algorithm 5 describes
the principal procedure of RPROP. Recommended values for the constants are:
∆max = 50, ∆max = 50, u = 1.2, d = 0.5.

Conjugate gradient algorithm This is a training algorithm based on line
search and works only in offline mode. Algorithm 6 outlines the principal steps
of a line search algorithm.

In the conjugate gradient algorithm, we have for the first search direction
d(1) = −∇E(n), and each following direction d(n) (∀n > 1) satisfies:

d(n)Hd(n− 1) = 0 , (2.71)

where H is the Hessian matrix whose components are defined as

Hij =
∂2E

∂wi ∂wj

. (2.72)

Note that if H is the identity matrix two consecutive directions are orthogo-
nal. d(n) is called the conjugate direction. It has the property that along this
direction the gradient does not change its direction but only its length. Thus,
moving along d does not affect the result of the previous iteration.

Calculating H is rather inefficient in more complex settings. For this reason,
there are some practical methods to calculate d(n) without computing H ex-
plicitely but only by using d(n− 1) and gradient information. The new search
direction d(n) is given as:

d(n) = −∇E(n) + β(n)d(n− 1) , (2.73)

38

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

Algorithm 5 The RPROP algorithm

1: n = 1
2: ∆i(1) = ∆min ∀i = 1..N
3: repeat

4: Perform forward propagation of every example while accumulating∇E(n)
5: for i = 0 to N do

6: Update the step sizes:

∆i(n) = ∆i(n− 1) · u if
∂E(n)

∂wi(n)
·

∂E(n− 1)

∂wi(n− 1)
> 0 (2.63)

∆i(n) = ∆i(n− 1) · d if
∂E(n)

∂wi(n)
·

∂E(n− 1)

∂wi(n− 1)
< 0 (2.64)

∆i(n) = ∆max if ∆i(n) ≥ ∆max (2.65)

∆i(n) = ∆min if ∆i(n) ≤ ∆min (2.66)

7: Update the weights:

if
∂E(n)
∂wi(n) ·

∂E(n−1)
∂wi(n−1) ≥ 0 then

∆wi(n) = −∆i(n) if
∂E(n)

∂wi(n)
> 0 (2.67)

∆wi(n) = +∆i(n) if
∂E(n)

∂wi(n)
< 0 (2.68)

8: else

∆wi(n) = 0 (2.69)

9: end if

10:

wi(n) = wi(n− 1) + ∆wi(n) (2.70)

11: end for

12: until E < ǫ

Algorithm 6 The line search algorithm

1: n=1
2: repeat

3: Determine a search direction d(n)
4: Minimize E(n) w.r.t. a factor λ by modifying the weight vector w(n)

along the search direction, i.e. w̃(n) = w(n)+λd. Let λopt be this value.
5: Update the weight vector: w(n + 1) = w(n) + λopt d

6: n = n + 1
7: until E < ǫ (ǫ being a small positive constant)

39

2.8. NEURAL NETWORKS

where β(n) can be calculated by using, for example, the Fletcher-Reeves for-
mula:

β(n) =
∇E(n)T∇E(n)

∇E(n− 1)T∇E(n− 1)
(2.74)

or the Polak-Ribiere formula:

β(n) =
(∇E(n)−∇E(n− 1))T∇E(n)

∇E(n− 1)T∇E(n− 1)
. (2.75)

It has been shown that in case of a quadratic polynomial error function the
algorithm converges in N steps, where N is the number of weight parameters.
However, in most applications the error function is not quadratic, hence the
convergence is slower.

Newton algorithm In Newton’s method the error surface E is assumed to
be quadratic polynomial. Then, the minimum of E can be reached in one step
(the so-called Newton step):

∆w = −H−1∇E , (2.76)

where H is the Hessian matrix (c.f . Eq. 2.72). However, as E is usually non-
quadratic only a small step in this direction is performed, and H is computed
with the new weight configuration. Thus, at each iteration we calculate,

∆w = −λH−1∇E , (2.77)

where 0 < λ < 1.
In most applications, the basic Newton’s algorithm is impractical because of

the following reasons:

• H has to be positive definite in order to allow calculating its inverse.
However, this is not always the case.

• A N × N matrix must be stored and inverted at each iteration which is
of O(N3) computational complexity.

• The quadratic local approximation of E is often two imprecise such that
λ has to be chosen very small.

A partial solution to this presents the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method or Quasi-Newton method [188]. The authors propose to ap-
proximate H−1 iteratively by only using first order gradient information. How-
ever, the algorithm still needs to store a N ×N matrix and the computational
complexity is O(N2). Further, LeCun et al . [138] presented a method to iter-
atively estimate the largest eigenvalue of H and also showed that the optimal
learning rate λ is approximately the inverse of this value.

2.8.6 Radial Basis Function Networks

Introduction

The idea behind Radial Basis Function (RBF) Networks, shortly RBF, is based
on Cover’s theorem [48]:

40

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

input RBFs output

X

Tj

yk

Figure 2.16: The architecture of a RBF Network

“A complex pattern-classification problem cast in a high-dimensional
space nonlinearly is more likely to be linearly separable than in a
low-dimensional space.”

Powell [187] introduced RBFs as a solution to the real multivariate interpola-
tion problem but Broomhead and Lowe [30] were the first to exploit the use of
RBFs in the context of NNs. They have been applied to many real-world prob-
lems since then, notably in the fields of functional approximation, time-series
modeling and pattern classification.

RBF Networks are three-layer feed-forward NNs similar to MLPs, i.e. they
consist of

• an input layer having no weights and receiving the input pattern,

• a hidden layer implementing the non-linear RBFs and fully connected to
the input layer,

• an output layer consisting of perceptrons with linear activation functions.

Figure 2.16 illustrates the principal architecture of RBF Networks.
The principal difference to MLPs are the hidden neurons performing a non-

linear mapping onto a subspace which is characterized by the RBFs that are
parameterized by the respective neurons.

Thus, for a RBF Network having I inputs, J hidden neurons and K outputs,
the outputs yk are are calculated as follows:

yk =

J∑

j=0

wkjΦj(||X −Tj||) , (2.78)

where wkj is the weight from hidden neuron j to output neuron k, Φj is the
RBF integrated by hidden neuron j with center Tj ∈ R

I , X ∈ R
I is the input

41

2.8. NEURAL NETWORKS

vector, and || · || represents some norm, in general the L1 or L2 norm. Φ0 can
be set to 1 in order to use bias terms (i.e. wk0). As can be noticed, the output
of a hidden neuron j depends on the distance of X from the neuron’s center Tj,
a distance of zero leading to a maximum or minimum activation according to
the function Φj chosen.

The most common RBF is the Gaussian function:

Φj(||X−Tj||) = exp
[
−(X−Tj)

T Σ−1
j (X−Tj)

]
, (2.79)

Σj being the covariance matrix which determines the shape, size and orientation
of the receptive field of the neuron j, i.e. a subspace of the input space where
Φj is having a higher activation. For example, for a diagonal covariance matrix
with equal diagonal elements the receptive field is a hypersphere centered at Tj;
in the general case it is a hyperellipsoid.

Training

As MLPs, RBF Networks are trained using an labeled training data set and by
adjusting its parameters such that an error function is minimized. In most of
the cases, the error function is the sum over all training examples of the squared
distances between the NN output and the desired output (see Eq. 2.52).

However, different training strategies can be adopted w.r.t. the hidden layer:

1. use fixed Gaussian RBFs chosen at random

2. use RBFs with fixed variance and adjust their centers by an unsupervised
learning algorithm

3. adjust centers and variances of the RBFs by a supervised learning algo-
rithm.

In the first case, the only parameters to learn are the weights and the biases
of the output neurons. This can be done for example by the Least-Mean-Squares
(LMS) algorithm or Error Backpropagation (c.f . Algorithm 3).

The second learning strategy consists of two stages. In the first stage, the
centers of the RBFs are initialized randomly and then determined iteratively
by a clustering algorithm, such as k-means, Linear Vector Quantization (LVQ)
or Self-Organizing Maps (SOM). The variances are then computed using the
variances of the respective clusters. In the second stage, the weights of the
output neurons are calculated by a supervised learning algorithm.

The third learning strategy is completely supervised, i.e. the centers, the
covariance matrix and the weights of the output neurons are adjusted iteratively
by offline Backpropagation.

2.8.7 Self-Organizing Maps

Introduction

The NNs discussed so far are all used for supervised learning. Self-Organizing
Maps (SOM) however rely on an unsupervised learning algorithm and are used
when the structure of the training data is unknown. This approach has been
proposed by Willshaw, von der Malsburg [258] and Kohonen [123]. The idea is to
project high-dimensional input vectors onto a low-dimensional map (mostly 1D,

42

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

...
x1

x2

x3

x4

xn

w1 w2

wN

input SOM

Figure 2.17: A two-dimensional SOM with rectangular topology

2D or 3D) such that the topology of the data (i.e. neighborhood relationships)
is preserved and the input data is represented with optimal accuracy.

Thus, a SOM consists of a d-dimensional map of N neurons where each
neuron i has a fixed position pi ∈ N

d which is used during training to define a
spatial relationship between neighboring units. Further, each neuron contains
a vector wi ∈ R

n that stores the coordinates it represents in the input space.
Figure 2.17 illustrates a two-dimensional SOM with a rectangular topology.
Then, an arbitrary input vector v is projected by identifying the Best Matching
Unit (BMU) of the map, i.e. the neuron with the closest weight vector in terms
of the Euclidean distance measure. Thus, we have

iBMU = argmin
i

||wi − v|| i = 1..N . (2.80)

Training

As mentioned above, the training of SOMs is unsupervised. The algorithm
is iterative, and we now define each parameter as a function of the iteration
step (or time step) t. First, the weights wi(0) of all neurons are initialized at
random. Subsequently, at each iteration and for each training example x, the
BMU iBMU(t) according to the current weights wi(t) is determined (Eq. 2.80).
Each weight vector wi(t) is then updated using the following formula:

wi(t + 1) = wi(t) + ρ(t) h(||pi − piBMU ||, t) (x−wiBMU) , (2.81)

where h(||pi−pj||, t) is a function determining the influence of the weight update
on the neighborhood of the BMU in the map. It is a symmetric function hav-
ing its maximum at 0 and monotonically decreasing towards 0 with increasing
distance ||pi − pj ||. A common choice for h is a Gaussian function:

h(||pi − pj ||, t) = exp

(

−
||pi − pj ||

2 σ(t)2

)

(2.82)

43

2.9. CONCLUSION

In Eq. 2.81, the Gaussian function is centered at piBMU . Thus, the BMU receives
the largest update, and it is smaller for the neighboring units according to their
distance to the BMU in the map. The influence of the neighborhood is gradually
narrowed by decreasing the variance σ(t). For example:

σ(t) = σ(0) e−
t

τ1 , (2.83)

where σ(0) is the initial variance and τ1 is some positive constant.
The function ρ(t) ∈ R is the learning rate and monotonically decreasing

towards 0 with increasing time t. A popular choice is:

ρ(t) = ρ(0) e−
t

τ2 , (2.84)

where ρ(0) is the initial learning rate and τ2 is some positive constant.
Algorithm 7 summarizes the self-organizing map training with J training

examples.

Algorithm 7 A training algorithm for Self-Organizing Maps

t = 0
Initialize the weights wi at random (∀ i = 1..N)
for t = 0 to tmax do

σ(t) = σ(0) exp(−t/τ1)
ρ(t) = ρ(0) exp(−t/τ2)
for j = 0 to J do

iBMU = argmini ||wi − xj || (∀ i = 1..N)
for i = 1 to N do

wi(t + 1) = wi(t) + ρ(t) h(||pi − piBMU ||, t) (xj −wiBMU)
end for

end for

end for

The initialization of σ and ρ with a relatively high value and their gradual
decrease is important for the self-organization process. At the beginning, weight
updates have an effect on almost the entire map and lead to an ordering of
the neurons. With increasing time, the SOM gradually converges to a stable
solution.

Figure 2.18 shows the evolution of a two-dimensional SOM of size 25 × 25
after 0, 20, 100, 1000, 5000 and 100000 training iterations [124]. The 10000
vectors of the training set are 2D vectors that are randomly drawn from the
unit square. The initial weights are close to the center of the unit square as can
be seen in the top left of Fig. 2.18.

2.9 Conclusion

In this chapter, we presented the most important machine learning approaches
used for object detection and recognition in images. We began with some ba-
sic statistical projection methods which map the input images onto a lower-
dimensional sub-space in order to select the most prominent features for further
processing. Then, we focused on a statistical projection method, known as Ac-
tive Appearance Model, which is more specific to facial analysis. By modeling

44

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR OBJECT

DETECTION AND RECOGNITION

Figure 2.18: Evolution of a two-dimensional SOM during training

explicitely and separately shape and texture of the objects being processed, this
technique allows to cope with varying pose and local deformations, e.g. facial
expressions.

In the succeeding section, we described a rather different approach, called
Hidden Markov Models (HMM), which focuses on the sequential aspect of the
data and models it in a probabilistic way. Being initially designed for one-
dimensional signals, e.g. speech, we outlined some existing methods extending
HMMs for two-dimensional data such as images.

Another machine learning approach for visual object detection and recogni-
tion tasks is called Adaptive Boosting, short Adaboost. The main idea of this
technique is to combine many weak classifiers based on simple features into a
strong, more complex classifier by means of a specific selection and weighting
procedure iteratively focusing on more and more difficult training examples.

Then, we briefly described Support Vector Machines, which are binary linear
classifiers trained not only to minimize the empirical error on the training data
but also the so-called structural risk, i.e. the generalization capacity of the
resulting classifier. We also describe how this approach can be extended to the
non-linear case and to multiple classes.

A more recent approach which is much more specific to image classifica-
tion and object recognition is called “Bag of Local Signatures”. It is based on
the extraction of salient feature points in images and a subsequent invariant de-
scription of the respective local image patches. The quantization of the resulting
local patches and the construction of histograms of these patches over the whole
images then allows a classification of the visual content of the respective images.

Finally, we described a classical but nevertheless very versatile machine
learning approach, known as Neural Networks. Starting with a description
of the earliest models, such as the Perceptron and the Multi-Layer Perceptron,

45

2.9. CONCLUSION

and the way they can be trained we then outlined some more specific neural
approaches being used for image processing tasks, i.e. Auto-Associative Neural
Networks, Radial Basis Function Networks and Self-Organizing Maps.

A neural network approach showing to be particularly appropriate for visual
object detection and recognition tasks and being inspired by biological evidence
in the visual system of mammals is called Convolutional Neural Network. Being
the foundation of the methods proposed in this work, we will describe this
approach in more detail in the following chapter.

46

Chapter 3

Convolutional Neural

Networks

3.1 Introduction

Multi-layer feed-forward Neural Networks (NN) have shown to be a very power-
ful machine learning technique as they can be trained to approximate complex
non-linear functions from high-dimensional input examples. Classically, stan-
dard Multi-Layer Perceptrons (MLP) (c.f . section 2.8.3) have been utilized in
pattern recognition systems to classify signatures coming from a separate fea-
ture extraction algorithm operating on the input data. However, the manual
choice of the feature extraction algorithm and the features to classify is often
empirical and therefore sub-optimal. Thus, a possible solution would be to di-
rectly apply the NN on the “raw” input data and let the training algorithm,
e.g. Backpropagation, find the best feature extractors by adjusting the weights
accordingly.

The problem with this approach is that when the input dimension is high,
as in images, the number of connections, thus the number of free parameters
is also high because each hidden unit would be fully connected to the input
layer. Typically, this number may be in the order of several 10,000 or rather
several 100,000 according to the application. The number of training examples,
however, might be relatively small compared to the pattern dimension, which
means that the NN would have a too high complexity and, thus, would tend to
overfit the data.

Another disadvantage of this type of MLP comes from the fact that its
input layer has a fixed size and the input patterns have to be presented well
aligned and/or normalized to this input window, which, in practice, is a rather
complicated task. Thus, there is no built-in invariance w.r.t. small translations
and local distortions.

Finally, fully-connected NN architectures do not take into account correla-
tions of neighboring input data. However, in pattern recognition problems there
is generally a high amount of local correlation. Thus, it would be preferable to
extract local features and combine them subsequently in order to perform the
detection or recognition.

As we will see in this chapter, Convolutional Neural Networks (CNN) are an

47

3.2. BACKGROUND

input

input output
excitatory

inhibitory

u(1)

u(2)

u(3)

u(4)

u(5)

u(6)

a(1)

a(2)

a(3)

a(4)

a(5)

a(6)

v
b

e

h

1+e
1+h
− 1 X

X

W

φ W = φ(X)Σ

Figure 3.1: The model of a S-cell used in the Neocognitron

approach that tries to alleviate the above mentioned problems. That is, they
automatically learn local feature extractors, they are invariant to small transla-
tions and distortions in the input pattern, and they implement the principle of
weight sharing which drastically reduces the number of free parameters and thus
increases their generalization capacity compared to NN architectures without
this property.

3.2 Background

3.2.1 Neocognitron

The first implementation of a CNN was the so-called Neocognitron proposed by
Fukushima [74, 75, 76, 77] which has been originally applied to the problem of
handwritten digit recognition. The Neocognitron makes use of receptive fields,
i.e. each neuron is only connected to a sub-region corresponding to a certain
number of neighboring neurons, in the preceding layer. This idea has been
inspired by the discovery of locally-sensitive, orientation-selective neurons in the
cat’s visual system by Hubel and Wiesel [106]. Local connections have been used
many times with NNs [73, 133, 167]. They can be used to detect elementary
visual features in images, such as oriented edges, end points or corners. As
one feature extractor can be useful in several parts of the input image, the
weights are forced to be identical for all possible locations of the receptive field,
a principal called weight sharing [208].

The outputs of the respective neurons with identical weights, the so-called
S-cells, form a S-plane. Fig. 3.1 illustrates the model of a S-cell. Note that
besides the input from the receptive field, called excitatory input e, there is
also an inhibitory input h which has a negative effect on the activation of the
neuron. If h is greater than e the output of the neuron is zero. The excitatory
input is calculated as follows:

e =

N∑

i=1

a(i) u(i) , (3.1)

48

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

where a(i) are the training weights, u(i) denote the inputs from the preceding
cells, and N is the number of weights. For the inhibitory input, we have:

h = b v , (3.2)

where b is a trainable weight. In the Neocognitron, the input v is calculated as
the weighted root mean-squared values coming from the receptive field and thus
represents some kind of normalization. Finally, the activation of a S-cell is:

uS(i) = φ

(
1 + e

1 + h
− 1

)

, (3.3)

where the activation function φ is defined as:

φ(X) =

{
X if X ≥ 0
0 otherwise

(3.4)

Fukushima [76] showed that the outputs of the S-cells approximate a convo-
lution normalized by the length of the weight vector and the input vector. Sev-
eral S-planes, each containing a different set of weights, can be used to extract
different features at the same locations. The set of S-planes at one particular
level form a S-layer.

The exact position of each feature is not very important in most cases.
Therefore, each S-plane is followed by a C-plane which reduce the resolution of
the respective S-plane by a constant factor, e.g. two and thus performs a kind
of sub-sampling or blurring. The sub-sampling also reduces the sensitivity of
the NN to small shifts and distortions of the input pattern.

By alternating C-layers and S-layers and combining the outputs of the re-
spective maps, one can construct more complex feature extractors. This princi-
ple was inspired by Hubel and Wiesel’s notion of “simple” and “complex” cells
and it has been implemented in the Neocognitron where the first S-planes extract
simple visual features, such as oriented edges or corner points, and the following
layers combine them to extract more complex features, such as combinations of
line segments.

The topology of the basic Neocognitron is illustrated in Fig. 3.2. It has
an input layer uC0 and four alternating S- and C-layers, uS1, uC1, . . . , uS4, uC4,
where uC4 is the output layer consisting of single neurons representing the de-
cision of the NN for some input pattern, in this case a digit. Note that the
inhibitory inputs v are not depicted in Fig. 3.2. In fact, all inhibitory inputs
of the S-planes of one layer uSi are connected to a so-called V-plane uV i. The
V-neurons of each V-plane receive their inputs from corresponding sub-regions
in each preceding C-plane. The output is the weighted root mean square of
these values and form the input v of the S-cells at the respective positions.

The training of the Neocognitron can be supervised or unsupervised. The
first implementations used an unsupervised training algorithm based on self-or-
ganization and a particular reinforcement learning rule. However, later studies
showed that the performance of the Neocognitron trained with a supervised
algorithm was higher than with the original self-organization method. Further,
training is performed layer by layer, i.e. starting from the first S-layer uS1 until
the output layer uC4, such that the training of a particular layer is only started
after the training of the previous layer is finished. A reinforcement technique is

49

3.2. BACKGROUND

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

uC0

uS1 uC1
uS2

uC2 uS3
uC3 uS4

uC4

a1

d1

receptive field

Figure 3.2: The topology of the basic Neocognitron

employed by the supervised algorithm in order to train each plane in a layer to
detect a specific visual feature, e.g. a horizontal edge. The trainable parameters
are the weights a and b, whereas the weights of the C-planes are not modified
by the training algorithm and fixed at the beginning. At each step, the input
pattern is propagated until the layer that is currently learned. For example, with
handwritten digit recognition, the first layer is trained to recognize some very
simple 3 × 3 pixel patterns, representing oriented edges (see Fig. 3.3(a)). The
second layer is then trained to detect some more complex feature, e.g. oriented
line end points, corner points or combinations of oriented line segments (see
Fig. 3.3(b)). Each S-plane learns a particular pattern. The following S-layers
are trained to recognize more and more complex features until the final S-layer
uS4, the planes of which are supposed to recognize the whole digit patterns.

The complete description of the rather complex Neocognitron would be be-
yond the scope of this work, and we refer to the literature [73, 74, 75, 76, 77]
for further details. Fukushima presented many extensions to the basic model
described here. For example, a non-linear activation function φ or the concept
of selective attention [75], where there are not only forward but also backward
connections of the layers and also interactions between the different planes of a
layer controlling the learning process.

3.2.2 LeCun’s Convolutional Neural Network model

An important breakthrough of CNNs came with the widespread use of the Back-
propagation learning algorithm (c.f . section 2.8.5) for multi-layer feed-forward
NNs. LeCun et al . [134] presented the first CNN that was trained by Backprop-
agation and applied it to the problem of handwritten digit recognition. As this
model forms the basis of all the NN architectures presented in this work we will
describe it in more detail in this section. From now on, when we employ the
term Convolutional Neural Network we principally refer to NN models that are
similar to the one proposed by LeCun et al . [134], which is actually a simpler
model than the Neocognitron and its extensions.

50

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

(a) Layer uS1 (b) Layer uS2

Figure 3.3: Some training examples used to train the first two S-layers of
Fukushima’s Neocognitron. Right: each row represents the training examples
of one specific S-plane

Nevertheless, the architecture of LeCun’s CNN and Fukushima’s Neocog-
nitron resemble in many aspects. It is a sequence of alternating S-layers and
C-layers, here called convolution and sub-sampling layers, consisting of so-called
feature maps corresponding to the S- and C-planes of the Neocognitron. Note
that, contrary to what one would expect from the notations, S -layers correspond
to convolution layers and C -layers to sub-sampling layers. The CNN model also
implements the concepts of receptive fields and weight sharing. However, the
model of the individual neurons is the basic Perceptron [200] with a sigmoid
activation function. That means, there is no inhibitory input and no V-planes,
which simplifies the overall model and architecture. A further advantage of this
model is that the network does not have to be trained layer by layer but all the
weights are adjusted iteratively by Error Backpropagation minimizing a global
error function. As a consequence, the features to extract, i.e. edges, corners etc.,
are not chosen manually but found automatically by learning the convolution
masks formed by the weights of respective feature maps (see section 3.3).

Figure 3.4 shows the topology of the CNN proposed by LeCun et al . [134],
in later work referred to as LeNet-1. The input layer y(0) is of size 28 × 28
and receives the gray-level image containing the digit to recognize. The pixel
intensities are normalized between−1 and +1. The first hidden layer H1 consists

of four feature maps y
(1)
j each having 25 weights w

(1)
j0 (u, v), constituting a 5× 5

trainable kernel, and a bias b
(1)
j . Thus, the values of the feature maps y

(1)
j (x, y)

are obtained by convolving the input map y(0) with the respective kernel w
(1)
j0

and applying an activation function φ(1) to the result:

y
(1)
j (x, y) = φ(1)

(∑

(u,v)∈K

w
(1)
j0 (u, v) y(0)(x + u, y + v) + b

(1)
j

)

, (3.5)

where K = {(u, v) ∈ N
2 | 0 ≤ u < 5 and 0 ≤ v < 5} Note that due to border

effects the resulting feature maps are smaller, i.e. 24× 24.

51

3.2. BACKGROUND

. .
 .

input layer

output layer
H1 H2

H3 H4

Figure 3.4: The architecture of the CNN proposed by LeCun et al . [134] for
handwritten digit recognition (LeNet-1)

Each convolution map is followed by a sub-sampling map y
(2)
j which performs

a kind of averaging and reduces the dimension of the respective convolution map
by a factor two. Hence, the sub-sampling maps of layer H2 are of size 12× 12.

Further, each sub-sampling map has a weight w
(2)
j and a bias b

(2)
j . Thus,

y
(2)
j (x, y) = φ(2)

(

w
(2)
j ×

∑

(u,v)∈{0,1}2

y
(1)
j (2x + u, 2y + v) + b

(2)
j

)

. (3.6)

φ(2) again is an activation function which has to be continuous and differentiable
as required by the Backpropagation learning algorithm.

Figure 3.5 illustrates the process of convolution and sub-sampling.
Layers H3 and H4, each contain 12 convolution and sub-sampling maps of

dimensions 8×8 and 4×4 respectively. The function they implement is exactly

convolution 5x5

subsampling

Figure 3.5: An input image followed by a feature map performing a 5 × 5
convolution and a 2× 2 sub-sampling map

52

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

the same as the layers H1 and H2 except that the feature maps of layer H3
perform a 3 × 3 convolution instead of a 5 × 5. Further, one convolution map

j in layer H3 can have several kernels w
(3)
ji operating on different maps i in the

preceding layer H2. The activation of respective convolution maps is then simply
the sum of all convolution results and the bias. Thus, the general activation
formula for a convolution map j in layer l is:

y
(l)
j (x, y) = φ(l)

(∑

i∈I

∑

(u,v)∈K

w
(l)
ji (u, v) y

(l−1)
i (x + u, y + v) + b

(l)
j

)

, (3.7)

where K = {(u, v) ∈ N
2 | 0 ≤ u < sx ; 0 ≤ v < sy}, (sx, sy) is the dimension

of the convolution kernel, and I is the set of maps of the preceding layer the
convolution map j is connected to. The feature maps in layer H3 learn to extract
more complex features by combining the extracted simple features of layer H2.
The connection scheme is illustrated in Fig. 3.4.

Finally, the output layer contains a set of 10 neurons, fully connected to
the previous sub-sampling maps of layer H4, and representing the 10 digits to
recognize. The “winning” neuron is supposed to respond with the value +1 and
the other neurons with −1.

In total, the network has 4635 units, 98442 connections, but, due to weight
sharing, only 2578 independent parameters to learn.

3.3 Training Convolutional Neural Networks

The training of CNNs is very similar to the training of other types of NNs, such
as ordinary MLPs. A set of training examples is required, and it is preferable
to have a separate validation set in order to perform cross-validation and “early
stopping” and to avoid overtraining (see section 2.8.5).

To improve generalization, small transformations, such as shift and distor-
tion, can be manually applied to the training set. Consequently the set is
augmented by examples that are artificial but still form valid representations of
the respective object to recognize. In this way, the CNN learns to be invariant
to these types of transformations.

In terms of the training algorithm, in general, online Error Backpropagation
leads to the best performance of the resulting CNN. Therefore, this algorithm
has been applied for all experiments throughout this work, and it will be de-
scribed in detail in the following section. In section 3.3.2, we will also outline
some alternatives published in the literature.

3.3.1 Error Backpropagation with Convolutional Neural

Networks

As the online Backpropagation algorithm is the most commonly used learning
algorithm for CNNs it will be described in more detail in this section. In fact,
it is almost identical to the Backpropagation algorithm for standard MLPs (see
section 2.8.5). The only difference to take into account is the weight sharing in
the convolution and sub-sampling layers.

53

3.3. TRAINING CONVOLUTIONAL NEURAL NETWORKS

We also want to minimize the error function Ep after each training example
p:

Ep =
1

2
||op − tp||

2 =
1

2

K∑

k=1

(opk − tpk)2 , (3.8)

where K is the number of output units, opk is the output of neuron k for pattern
p and tpk is the respective target value (tpk ∈ [−1, +1] in most cases). The
learning process is an iterative procedure, where at each iteration the weight
update is a small step in the opposite direction of the steepest gradient ∇E.
Thus,

w
(l)
ji ← w

(l)
ji + ∆w

(l)
ji = w

(l)
ji − λ

∂Ep

∂w
(l)
ji

, (3.9)

where λ is the learning rate and w
(l)
ji denotes the weight from neuron i to neuron

j in layer l. For the sake of clarity, we will drop the pattern index p.
For the output layer we can adopt the equations of the MLP (see section

2.8.5):

∆w
(l)
kj = −λ δ

(l)
k y

(l−1)
j , (3.10)

where

y
(l−1)
j is the activation of neuron j in layer l − 1, (3.11)

δ
(l)
k = ek φ′(V

(l)
k) is the local gradient, (3.12)

ek = ok − tk denotes the error, and (3.13)

V
(l)
k =

∑

j

w
(l)
kj y

(l−1)
j is the weighted sum of all inputs y

(l−1)
j of neuron k.

(3.14)

The activation function φ of the output neurons is usually the hyperbolic tangent
function:

φ(x) =
1− e−x

1 + e−x
. (3.15)

If there is an additional hidden layer containing simple neurons between the
last sub-sampling layer and the output layer the equation is the same as for
MLPs, and we have:

δ
(l)
j = e

(l)
j φ′

(

V
(l)
j

)

=

(
K∑

k=1

δ
(l+1)
k w

(l+1)
kj

)

φ′
(

V
(l)
j

)

(3.16)

for the local gradient of hidden neuron j. We denote e
(l)
j the error at neuron j

back-propagated from the neurons of the following layer l + 1.
Now, let us consider the case of a convolution layer. The update of a par-

ticular weight wji(u, v) from feature map i to j at kernel position (u, v) then
actually becomes a sum over all positions (x, y) of the feature map.

∆w
(l)
ji (u, v) = −λ

∑

(x,y)

(

δ
(l)
j (x, y) y

(l−1)
i (x + u, y + v)

)

(3.17)

Figure 3.6 illustrates the error Backpropagation with convolution maps and the

relation of the different variables, i, j, u, v, x and y. The bias b
(l)
j of convolution

54

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

y
(l−1)
i (1, 1)

map i
convolution map j

kernel

w
(l)
ji

u

v

x

y

local gradient δ
(l)
j (1, 1)

Figure 3.6: Error Backpropagation with convolution maps

y
(l−1)
i (1, 1)

map i
sub-sampling map j

w
(l)
ji

m

n

x

y

local gradient δ
(l)
j (1, 1)

Figure 3.7: Error Backpropagation with sub-sampling maps

map j in layer l is simply updated by adding the following term:

∆b
(l)
j = −λ

∑

(x,y)

δ
(l)
j (x, y) (3.18)

With sub-sampling maps the calculation is slightly different. There is only

one weight w
(l)
ji for each connection from map i to sub-sampling map j. Note

that usually, there is simply a one-to-one connection from convolution to sub-

sampling maps, thus i = j. For the general case of a weight w
(l)
ji from map i in

layer l− 1 to a sub-sampling map j in layer l with the sub-sampling factors (or
window-size) sx and sy, we have:

∆w
(l)
ji = −λ

∑

(x,y)

δ
(l)
j (x, y)

sx∑

m=1

sy∑

n=1

y
(l−1)
i (xsx + m , ysy + n) (3.19)

Figure 3.7 illustrates the relation of the respective variables. The bias update
formula is the same as for convolution maps (Eq. 3.18).

The calculation of the local gradient δ
(l)
j of a map j in layer l depends on

the type of succeeding layer l + 1. If the layer l + 1 is a neuron layer, we have:

δ
(l)
j (x, y) =

K∑

k=1

∑

(x,y)

δ
(l+1)
k w

(l+1)
kj (x, y) , (3.20)

which is an generalization of Eq. 3.16 taking into account not only the connection
of single neurons with neurons but also the connection of a map with neurons
(x, y > 1). K is the number of neurons in layer l + 1.

55

3.3. TRAINING CONVOLUTIONAL NEURAL NETWORKS

If the succeeding layer is a convolution layer, we have:

δ
(l)
j (x, y) =

∑

k∈Kc

∑

(u,v)

δ
(l+1)
k (x, y) · w

(l+1)
kj (u, v) , (3.21)

where Kc denotes the set of maps in layer l + 1 connected to the convolution
map j in layer l. It has to be taken into account that the convolution mask
cannot cross the border of layer l. Thus, the respective terms are not included
in the above sum.

In the case of layer l +1 being a sub-sampling layer, the local gradient is the
following:

δ
(l)
j (x, y) =

∑

k∈Ks

δ
(l+1)
k (⌊x/sx⌋, ⌊y/sy⌋) · w

(l+1)
kj (3.22)

where sx, sy are the sub-sampling factors, Ks denotes the set of maps in layer
l+1 connected to the sub-sampling map j in layer l and ⌊·⌋ is the floor function.

Algorithm 8 summarizes the online Backpropagation algorithm for CNNs
composed of several alternating convolution and sub-sampling layers followed
by one or more neuron layers.

3.3.2 Other training algorithms proposed in the literature

Although, Error Backpropagation is the most commonly used training algorithm
for CNNs, some alternatives have been proposed in the literature. In principle,
most of the learning algorithms for MLPs can be used for CNNs too if one
takes into account weight sharing. However, in practice, the standard online
Backpropagation algorithms outperforms these methods in most applications.
Nevertheless, we will outline here some of the alternatives presented in the
literature and briefly explain how they have been applied to CNNs.

Extending the Neocognitron learning algorithm where each layer is trained
separately, Neubauer [170] presented a hybrid supervised-unsupervised approach
where the features to recognize do not have to be defined manually. Here,
the parameters of the first hidden layer are trained by randomly extracting
image regions of the size of the receptive field from the training images and
then performing a PCA on these image patches or training a 3-layer auto-
encoding NN [208, 45]. The same procedure is repeated for each following hidden
layer where the training image patches are first propagated until the previously
trained layer, and then the respective output patches of this layer are used as
an input for PCA or auto-encoding. This type of learning algorithm can be
preferable when it is not clear which features should be extracted for a given
task, for example face recognition. After having trained all the hidden layer,
the weights of the final neuron layer are determined by a supervised algorithm,
e.g. LMS fitting.

Li et al . [142] used an extension of the standard Backpropagation algorithm,
called Delta-Bar-Delta algorithm, to train a CNN for text detection in images.
It adjusts the learning rate for each weight separately according to the evolution
of respective gradients. Thus, at the beginning all learning rates λi of weights
wi are initialized to some small value, and at each iteration they are updated

56

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

Algorithm 8 The online Backpropagation algorithm for Convolutional Neural
Networks
1: Initialize all weights of the CNN to some small random value
2: Set the learning rates λ(l) to small positive values
3: n = 1
4: repeat

5: for p = 1 to P do

6: propagate pattern xp through the network
7: for k = 1 to K do

8: δ
(L)
k = (ok − tk)

9: end for

10: for layers l = L− 1 to 1 do

11: for maps j = 1 to J do

12: for all positions (x, y) do

13: if layer l + 1 is a neuron layer then

14: δ
(l)
j (x, y) =

(
∑K

k=1

∑

(x,y) δ
(l+1)
k w

(l+1)
kj (x, y)

)

φ′(V
(l)
k)

15: else if layer l + 1 is a convolution layer then

16: δ
(l)
j (x, y) =

(
∑

k∈Kc

∑

(u,v) δ
(l+1)
k (x, y) · w

(l+1)
kj (u, v)

)

φ′(V
(l)
k)

17: else if layer l + 1 is a sub-sampling layer then

18: δ
(l)
j (x, y) =

(
∑

k∈Ks
δ
(l+1)
k (⌊x/sx⌋, ⌊y/sy⌋) · w

(l+1)
kj

)

φ′(V
(l)
k)

19: end if

20: end for

21: end for

22: end for

23: for l = 1 to L do

24: for j = 1 to J do

25: for all weights of map/neuron j do

26: if layer l is a convolution layer then

27: ∆w
(l)
ji (u, v) = −λ(l)

∑

(x,y)

(

δ
(l)
j (x, y) y

(l−1)
i (x + u, y + v)

)

28: else if layer l is a sub-sampling layer then

29: ∆w
(l)
ji = −λ(l)

∑

(x,y) δ
(l)
j (x, y)

∑sx

m=1

∑sy

n=1 y
(l−1)
i (xsx + m , ysy + n)

30: else if layer l is a neuron layer then

31: ∆w
(l)
ji = −λ(l) δ

(l)
j y

(l−1)
i

32: end if

33: update weight: w
(l)
ji ← w

(l)
ji + ∆w

(l)
ji

34: end for

35: if layer l is a convolution or sub-sampling layer then

36: ∆b
(l)
j = −λ(l)

∑

(x,y) δ
(l)
j (x, y)

37: else

38: bias of neurons is already included in the weight vector
39: end if

40: update bias: b
(l)
j ← b

(l)
j + ∆b

(l)
j

41: end for

42: end for

43: n = n + 1
44: end for

45: E = 1
2

∑P
p=1 ||op − tp||

2

46: until E < ǫ or n > maxiter

57

3.3. TRAINING CONVOLUTIONAL NEURAL NETWORKS

as follows:

λi(n) = λi(n− 1) + u if
∂E

∂wi

(n) · δ̄i(n− 1) > 0 (3.23)

λi(n) = λi(n− 1) · d if
∂E

∂wi

(n) · δ̄i(n− 1) < 0 (3.24)

λi(n) = λi(n− 1) otherwise , (3.25)

where δi denotes the exponential averaged gradient w.r.t. weight wi:

δ̄i(n) = (1− φ) ·
∂E

∂wi

(n) + φ · δ̄i(n− 1) , (3.26)

with φ ∈ [0, 1]. u and d are small positive constants, e.g. u = 0.1 and d = 0.9.
The weights are then updated as with the standard Backpropagation algorithm:

wi(n) = wi(n− 1)− λi(n) ·
∂E

∂wi

(n) . (3.27)

Li et al . [142] showed that the Delta-Bar-Delta algorithm converges faster than
Backpropagation with fixed learning rates and momentum term. However, the
performance in terms of the detection rate of the CNN trained with the Delta-
Bar-Delta algorithm is slightly inferior.

Ouellette et al . [178] proposed a learning method based on Genetic Algo-
rithms (GA) and applied it to a CNN used to detect cracks in sewer pipes.
Their motivation for using a GA instead of Backpropagation is the common
assumption that GAs are less sensitive to getting stuck in local minima during
the learning process. The idea of GAs is based on evolutionary concepts, i.e.
a certain number of possible solutions, i.e. weight configurations, forming the
so-called population is simultaneously maintained. Each solution, called chro-
mosome, has to be encoded in a string of symbols, in this case a sequence of
bits representing the integer weight values from 0 to 255 in binary form (from
−127 to 128 for biases). Before training starts, the population is initialized with
random chromosomes. Then, at each iteration, the following steps are repeated
until a global evaluation criteria is satisfied:

1. Fitness evaluation: The fitness of each member is evaluated, i.e. the per-
formance of the CNN on the training set with the respective weight con-
figuration.

2. Selection: A subset of members, the parents, with the highest fitness value
is selected to produce the offspring for the next generation.

3. Crossover: The chromosomes of the selected parents are split into two at
random positions and the resulting partial bit sequences are combined to
form the offspring, i.e. the new weight configurations.

4. Mutation and Creep: 1% of the current population is selected for muta-
tion and creeping. Mutation means that the respective chromosome is
randomly changed within ±1%. Creeping is a similar technique which
scales a chromosome by a random factor between −1 and +1.

Although the authors claim that the proposed algorithm is simpler to im-
plement than Backpropagation they could not notice a significant performance
improvement in terms of accuracy for the given application.

58

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

Figure 3.8: The architecture of LeNet-5

3.4 Extensions and variants

Many variants of the CNN model described in section 3.2.2 exist. Usually,
the number of layers, the number of feature maps and their dimensions and
the connection scheme are adapted to the given problem. Unfortunately, these
parameters have to be determined experimentally as, up to the present, there
is no algorithm to automatically determine the optimal architecture of a CNN
for a given classification task. However, besides the architectural variants, there
have been some major enhancements to the CNN model of LeCun et al . [134].
In the following, we will present the most important ones.

3.4.1 LeNet-5

A more complex CNN has been presented by LeCun et al . [136] and applied to
handwritten character recognition. The authors called this architecture, LeNet-
5. A larger training set has also been used to train this network improving
its overall performance in terms of recognition rate as well as its generalization
capacity. Figure 3.8 illustrates the principal architecture of LeNet-5.

It is composed of 7 layers, not counting the input layer. The input image is of
size 32×32 pixels. As with LeNet-1, the first five layers, C1, S2, C3, S4, C5, are
alternating convolution and sub-sampling layers with a 5× 5 convolution mask
and a sub-sampling factor of 2 respectively. The dimensions of the individual
maps are noted in Fig. 3.8. The connections between the units of the respective
layers is similar to LeNet-1, i.e. a full connection of the first layer to the input
image and one-to-one connections in the sub-sampling layers. However, layer C3
follows a special non-symmetric connection scheme which is described in table
3.1. The convolution maps in C5 have a dimension of only (1, 1) as the size of
the maps in S4 is 5× 5. Further, they are fully connected to each sub-sampling
map leading to a high number of trainable parameters in this layer (i.e. 48,120).

Layer F6 is an additional hidden neuron layer, fully connected to layer C5
and composed of 84 units. The actual novel idea of LeNet-5 lies in the output
layer which consists of fully connected Radial Basis Function (RBF) units, one
for each character to recognize. To compute the outputs of a RBF unit yi, we
have:

y
(6)
i =

∑

j

(xj − w
(6)
ji)2 . (3.28)

Thus, each RBF unit computes the squared Euclidean distance between its 84-

dimensional input vector xj and its weight vector w
(6)
ji . Further, the weight

59

3.4. EXTENSIONS AND VARIANTS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 X X X X X X X X X X
1 X X X X X X X X X X
2 X X X X X X X X X X
3 X X X X X X X X X X
4 X X X X X X X X X X
5 X X X X X X X X X X

Table 3.1: The connection scheme of layer C3 of Lenet-5: a cross indicates
a connection between a particular feature map in S2 (row) and a map in C3
(column)

vectors of layer F6, i.e. the centers of the RBFs, are fixed at the beginning in
such a way that the 84 values are either −1 or +1 and form a 7 × 12 matrix
representing a stylized image of the character. Thus, similar characters, like the
uppercase “O”, lowercase “o”, and zero, will produce a similar output. This
may be helpful for a linguistic post-processor working on the word level which
could eliminate ambiguities due to confusions of similar characters.

An important point to note is the special error function used by LeCun et
al . :

E(W) =
1

P

P∑

p=1

(

y
(6)
pDp

+ log(e−j +
∑

i

e−y
(6)
pi)

)

, (3.29)

where P is the number of training patterns, y
(6)
pi is the activation of output

neuron i when presenting pattern p, and Dp is the desired class of pattern p.
Minimizing E means minimizing the two terms in the above equation. The first

term, y
(6)
pDp

, represents the Euclidean distance of the desired output neuron to
the 84-dimensional RBF center. Using only this term could lead to a trivial
solution where all outputs are always zero. Hence, the second term has been
introduced to also incorporate the outputs of the other neurons, and therefore
it has a discriminative function. It ensures that the RBF centers are kept apart
from each other and inhibits the trivial case where they “collapse” to the zero
solution. The positive constant j prevents the error function from a further
increase for classes that have already large outputs.

3.4.2 Space Displacement Neural Networks

CNNs have a fixed size input layer, also called retina, which can be used to
detect or recognize particular objects in images or any other visual structure
they have been trained to process. For example, a CNN trained to recognize
handwritten characters requires the characters presented to the input to be size-
normalized and more or less centered. However, there are applications where
the size of the input is variable, such as the recognition of words or sentences or
for detection tasks, like face detection, where the input images to process can
be of arbitrary size.

A possible solution to this would be to pre-process the variable-size input
image and segment it into different parts, e.g. the characters of a word or sen-
tence. Unfortunately, there does not exist any reliable technique to perform

60

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

Figure 3.9: A Space Displacement Neural Network

this segmentation in most applications because of the too high variability of the
pattern to recognize or detect. We therefore would have to place the retina at
each location in the input image and propagate the respective values to obtain
the output of the NN for that particular sub-region of the image. However, at
two neighboring positions, there is a large amount of common computation as
the sub-regions to process overlap and the convolution operations are the same
in the overlapping parts. To take advantage of this, we can actually increase the
size of the retina and all the convolution and sub-sampling layers accordingly.
Thus, the convolution and sub-sampling with the respective masks is performed
on the whole input image. Consequently, the output layer has to be repli-
cated over all possible locations, and it effectively becomes a convolution layer.
This trick leads to an architecture called Space Displacement Neural Network
(SDNN). Figure 3.9 illustrates this by means of a CNN for connected character
recognition. The output of the SDNN represents a sequence of outputs of the
respective simple CNN at each possible location. In order to perform the final
recognition or detection, this sequence has to be interpreted further in a sepa-
rate post-processing step because at neighboring positions of a present object
the SDNN might give the same answer due to some translation invariance of the
CNN. Thus, there has to be some sort of grouping yielding exactly one response
for each object to detect or recognize. Further, when the object to recognize
is composed of a sequence of adjacent single entities, as the words in charac-
ter recognition, the output of the SDNN between two such entities (characters)
might be rather arbitrary and has to be discarded.

A classical approach to post-process the output sequence of a SDNN is to use
a HMM. Such hybrid solutions have been proposed for example in the context
of handwritten multi-digit or word recognition [121, 156, 19].

3.4.3 Siamese CNNs

Siamese Neural Networks have first been presented by Bromley et al . [29] using
Time Delay Neural Networks (TDNN) and applying them to the problem of
signature verification, i.e. to verify the authenticity of signatures. This idea
was then adopted by Chopra et al . [39] who used Siamese CNNs and employed
them in the context of face verification. More precisely, the system receives two
face images and has to decide if they belong to the same person or not.

Siamese NNs learn a non-linear similarity metric by repeatedly presenting
pairs of positive and negative examples, i.e. pairs of examples belonging to

61

3.4. EXTENSIONS AND VARIANTS

X1 X2

EW

||GW (X1)−GW (X2)||

W

GW (X1) GW (X2)

CNNCNN

Figure 3.10: Illustration of a Siamese Convolutional Neural Network

the same class or not. The principal idea is to train the NN to map the input
vectors into a non-linear subspace such that a simple distance, e.g. the Euclidean
distance, in this subspace approximates the “semantic” distance in the input
space. That means, two images of the same category are supposed to yield a
small distance in this subspace and two images of a different category a large
distance. Let us call this mapping GW (X) and its parameters (i.e. weights) W.
Thus, the goal is to learn the parameters W of the function GW (X) such that
the similarity metric

EW (X1,X2) = ||GW (X1)−GW (X2)|| (3.30)

is small if X1 and X2 belong to the same class and large if they belong to
different classes. The choice of GW (X) is arbitrary and, in this case, is a CNN.
Note that the parameters W, i.e. the weights, are the same for both inputs,
hence the name “siamese” NN, and therefore the distance metric is symmetric.
Fig. 3.10 illustrates the functional scheme of this learning machine.

To make the system behave in the desired way, we need to define a global
energy function, or loss function, L(W) such that minimizing it decreases the
distance between examples belonging to the same class (genuine pairs) and
increases the distance between examples belonging to different classes (impostor
pairs). A possible energy function would be:

L(W) =
P∑

i=1

(
(1− Y i)LG(EW (X1,X2)i) + Y i LI(EW (X1,X2)i)

)
, (3.31)

where P is the number of image pairs, (X1,X2)i is the i-th image pair and
Y i its label, i.e. 1 for a genuine and 0 for an impostor pair. LG and LI are
the energy functions for genuine and impostor pairs respectively, where LG is
monotonically increasing and LI is monotonically decreasing. Chopra et al .
[39] require some more conditions to be satisfied, e.g. the existence of a margin,
and they formalize some properties of LG and LI in order to ensure a correct
behavior of the siamese CNN. We refer to [39] for more details on this.

The energy function for genuine pairs is usually defined as:

LG = E2
W , (3.32)

62

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1 2 3 4 5 6 7

LG
LI

||GW (X1) − GW (X2)||

Figure 3.11: Example of positive (genuine) and negative (impostor) error func-
tions for Siamese CNNs

i.e. we want the distance to be zero for pairs of examples belonging to the same
category. However, the choice of LI is more difficult. In general, we don’t know
the exact distance of an impostor pair, e.g. the face images of two different
persons. A possible solution is to use:

LI = e−tEW (3.33)

with t being a positive constant. This prevents the projected vectors of two
different classes from being too close. Chopra et al . [39] used the following
global energy function:

L(W) =

P∑

i=1

(

(1 − Y i)
2

Q
(EW (X1,X2)i)

2
+ Y i 2Qe−

2.77
Q

EW (X1,X2)i

)

,

(3.34)
where the constant Q is the upper bound of EW . Figure 3.11 shows the functions
LG and LI for the one-dimensional case.

The architecture of the CNN in [39] is composed of 6 layers:

• C1: a convolution layer with 15 feature maps and kernel size 7× 7

• S2: a sub-sampling layer containing 15 maps; sub-sampling window size:
2× 2

• C3: a convolution layer with 45 feature maps and kernel size 6 × 6; the
connection scheme is similar to the one of LeNet-5 (see table 3.1)

• S4: a sub-sampling layer containing 45 maps; sub-sampling window size:
4× 3

• C5: a fully connected convolution layer with 250 feature maps and kernel
size 5× 5

• F6: a fully connected output layer containing 50 neurons.

The input layer of this CNN has the dimension 46× 56.
Training is performed using a set of positive and negative examples, i.e.

randomly selected genuine pairs and impostor pairs. At each training iteration,
a positive pair and a negative pair is presented to the network. To update

63

3.4. EXTENSIONS AND VARIANTS

the weights, the standard Backpropagation learning algorithm can be used (see
Alg. 8 on page 57). To this end, the two examples of a pair X1 and X2 are
successively input to the network and the error function is evaluated accordingly.
Then, the errors with respect to X1, X2 or both are back-propagated layer by
layer. Finally, the weights of the CNN are updated as detailed in section 3.3.1.

Once the network has been trained, a statistical analysis on the output
vectors of the training images is performed, i.e. the mean feature vectors of
each class and the variance-covariance matrix are computed. In this way, a
multivariate Gaussian model is built for each subject. In order to verify the
identity of a given test person, we can then compare the feature vector produced
by the CNN with the statistical model of the claimed identity. A threshold has
to be set which minimizes falsely accepted and falsely rejected images. For
further details, see [39].

3.4.4 Shunting Inhibitory Convolutional Neural Networks

Shunting Inhibitory Convolutional Neural Networks (SICoNNets) represent a
special type of CNN introduced by Tivive and Bouzerdoum [238] where the
model of the neurons in the feature maps is different from the standard Per-
ceptron model. It makes use of so-called shunting inhibitory neurons, a model
inspired by neuro-physiological studies in the early 1960’s. This model has then
be applied to numerous visual information processing task [91, 27, 25, 28] and
finally implemented in a feed-forward neural network structure by Bouzerdoum
et al . [26]. The activation of shunting inhibitory neurons is governed by a
differential equation, and the steady-state response of a neuron is given by a
following formula which has been generalized by Arulampalam and Bouzerdoum
[3]. Thus, for the activation z of a given neuron, we have:

z =
g
(
∑SR

j=1 CjIj + b
)

a + f
(
∑SR

j=1 DjIj + d
) , (3.35)

where Ij is the j-th input of the neuron, a is the passive decay rate, Cj and Dj

are the excitatory and inhibitory weights of input j, b and d are constant biases,
f and g are activation functions and SR is the number of inputs from the 2D
receptive field. Figure 3.12 illustrates the shunting inhibitory neuron model. In
order to avoid division by zero the denominator of equation 3.35 is constrained
to be positive:

a + f

SR∑

j=1

DjIj + d

 > ǫ , (3.36)

where ǫ is a small positive constant.
The neuron model in the feature extraction layers is the major difference

between a SICoNNet and a “traditional” CNN. SiCoNNets also have feature
maps consisting of shunting inhibitory neurons, and they also implement weight
sharing. Thus, the inputs Ij of a respective neuron of a feature map are coming
from a two-dimensional receptive field in the previous map it is connected to.
The weights Cj and Dj of a given feature map are then shared over all possible
locations of the map. However, there is no explicit sub-sampling layer but it
is integrated into the convolution layers by simply moving the receptive field

64

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

...
...

Σ

Σ

+

+

+

÷

a

b

d

f()

g()

I1

I1

I2

I2

I3

I3

ISR

ISR

C1

C2

C3

CSR

D1

D2

D3

DSR

z

Figure 3.12: The shunting inhibitory neuron model

by steps of two pixels in each direction. In this way, the dimension of the
resulting map is about two times smaller, and convolution and sub-sampling
layers are combined into one layer. Note that here the sub-sampling does not
imply an averaging operation (with trainable parameters) like in the CNN model
of LeCun. The bias terms b and d can either be common for each feature map
or one can have a different bias for each position of the respective feature map,
i.e. each shunting inhibitory neuron.

The output layer is rather different from the preceding feature extraction
layers. It performs an averaging over 2× 2 non-overlapping sub-regions of the
preceding convolution map. The model of the output neurons is the Perceptron
(c.f . section 2.8.2). Thus, the activation of a given neuron is the result of the
activation function applied to the weighted sum of the inputs and the bias. The
output neurons are fully connected to the preceding feature maps.

Figure 3.13 shows the architecture of one of the first SICoNNets proposed
by Tivive and Bouzerdoum [238] and applied to face detection. It has one input
layer of size 20× 20, two hidden convolution layers with receptive fields of size
5 × 5 and a neuron output layer. The authors compared different connection
schemes for the second convolution layer:

1. fully connected: each feature map is connected to every feature map in
the first convolution layer

2. Toeplitz connected: each feature map of the first convolution layer is con-
nected to several maps in the second convolution layer in an overlapping
manner (see Fig. 3.13)

3. binary connected: each feature map of the first convolution layer is con-
nected to two feature maps in the second convolution layer. There is
no overlapping, i.e. each feature map of the second convolution layer is
connected to only one map of the preceding layer.

For training a SICoNNet, in principal, any training algorithm for feed-

65

3.4. EXTENSIONS AND VARIANTS

input layer

output layer

1st convolution/

2nd convolution/
sub-sampling layer

sub-sampling layer

averaging

Figure 3.13: The SICoNNet architecture proposed by Tivive et al . [238]

forward NNs can be used. The trainable parameters of SICoNNets are the
excitatory and inhibitory weights Cj and Dj for each receptive field and the
biases b and d as well as the passive decay rate a for each neuron (or each fea-
ture map). In [238] the RPROP algorithm (c.f . Alg. 5) has been employed for
training the face detection SICoNNet. To this end, a classical error function E
has been defined:

E =
1

2
(y − t)2 , (3.37)

where y is the output of the NN and t is the target output for one particular
pattern. Then, the gradient of E w.r.t. each trainable parameter is calculated
in order to perform Error Backpropagation as described for MLPs in section
2.8.5.

In a later work Tivive and Bouzerdoom [239] implemented 16 different train-
ing methods and compared them in terms of classification rates and convergence
speed on a face/non-face classification problem. They also propose two new hy-
brid training algorithms. The first is based on RPROP, QuickPROP and Super-
SAB and is called QRPROP. The second integrates an additional Least Squares
(LS) optimization for the final layer and is called QRPROPLS. The performance
of these algorithms was tested on three different architectures with different
connections schemes: fully connected, Toeplitz connected and binary connected
as described above. The experimental results show that Toeplitz connected
and binary connected networks slightly outperform fully connected architec-
tures. Good classification rates were obtained with modified Broyden-Fletcher-
Goldfarb-Shanno (BFGS) methods, variants of the Levenberg-Marquardt opti-
mization technique and the QRPROPLS method proposed by the authors. In
terms of convergence speed, the best results were obtained with QRPROPLS
and a hybrid Levenberg-Marquardt/LS algorithm. For details of the training
algorithms refer to [239].

66

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

layer l+1

layer l

Figure 3.14: The connection scheme of the SCNN proposed by Gepperth. Solid
ellipses represent receptive fields. Dotted ellipses represent cells. The dashed
lines are receptive field connections where equal line colors stand for shared
weights. Here the overlap is one pixel/neuron.

3.4.5 Sparse Convolutional Neural Networks

The idea of Sparse Convolutional Neural Networks (SCNN) is to reduce as much
as possible the redundancy in the feature extraction layers. That means differ-
ent feature extractors (e.g. convolution filters) should be as “independent” as
possible and the information they extract should be non-redundant, i.e. sparse,
and in a way complementary.

Gepperth [85] proposed a SCNN which achieves sparsity with a special type
of connectivity and an orthogonalization of the convolution masks. The archi-
tecture he presented does not use sub-sampling layers, but a sub-sampling effect
is obtained by reducing the overlap of the receptive fields in the convolution lay-
ers. Figure 3.4.5 illustrates the connection scheme for the one-dimensional case.
Here, instead of putting the result of each convolution into a separate feature
map (as in LeCun’s model) the outputs of all filters (i.e. the weighted sum with
the convolution masks) at one particular image location are grouped into a so-
called cell leading to only one feature map in each layer containing a certain
number of cells, one for each receptive field location in the preceding layer. A
sigmoidal activation function φ(x) = x

1+|x| and a trainable bias has been used

for each neuron.
In order to reduce the redundancy in the convolution filters, the filter pa-

rameters in each cell are orthogonalized after every training epoch. To this
end, a matrix W is formed where each column represents the parameters (i.e.
weights) of one particular convolution mask. The orthogonalization of W is
then performed in an iterative manner (see [107] for details):

W0 = W/||W|| (3.38)

Wt+1 = 1.5Wt − 0.5WtW
T
t Wt . (3.39)

In the work presented by Gepperth [85], the error function to minimize is the
classical mean squared error of the network outputs w.r.t. the desired outputs.
The author experimented with different numbers of layers and varying overlaps.
The final layer contained a single neuron and the SCNN has been trained for a
visual classification task.

Ranzato et al . [193] also proposed a CNN-based approach which learns in
an unsupervised manner sparse and also shift-invariant feature extractors. The
authors proposed an encoder-decoder framework and applied it to object recog-
nition. The encoder uses a specific type of CNN with alternating convolution
and max-pooling layers where each pair of layers is trained separately. A max-
pooling layer is a sub-sampling layer where each map is connected to a convolu-

67

3.4. EXTENSIONS AND VARIANTS

0

1

0

1

encoder decoder

convolution max−poolinginput upsampling reconstruction output
layerlayer layerlayer

sparse
code Z

Figure 3.15: The sparse, shift-invariant CNN model proposed by Ranzato et al .

tion map in the preceding layer, and each unit in a max-pooling map computes
the maximum value within a small neighborhood in the respective convolution
map. Figure 3.15 illustrates this architecture with only one convolution and
max-pooling layer. To achieve shift-invariance, the transformation parameters
U are retained at the output of the encoder and used to reconstruct the input
image in the decoder from the shift-invariant representation Z.

Learning was performed in an EM-like fashion alternating the minimization
of the optimal code Z∗ w.r.t. a global energy function and the minimization of
the weight parameters of the encoder and decoder, WC and WD, w.r.t. the
desired output image Y and the optimal code Z∗ respectively (see [193] for
details).

In order to have the encoder produce sparse codes, an additional non-linear
logistic function has been used between the encoder and the decoder. This
function transforms zi(k), i.e. the i-th component of the k-th training example
into a sparse code z̄i(k):

z̄i(k) =
eβzi(k)

ζi(k)
, with ζi(k) = eβzi(k) +

1− η

η
ζi(k − 1) , (3.40)

where η ∈ [0, 1] controls the sparseness of the code and β > 0 determines the
gain of the logistic function. In a way, this function memorizes the history of
the activation of a unit, and it can produce a large value close to 1 only if the
unit has undergone a long enough quiescent period.

Ranzato et al . [193] also extended the simple encoder to a hierarchical two-
level feature extractor by using an additional convolution and a max-pooling
layer trained separately on the sparse features extracted at the first level. In
this way, more complex features can be extracted in an unsupervised way.

68

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

3.5 Some Applications

CNNs have been employed in numerous visual pattern recognition systems from
different contexts. To give a short overview, we will list here some of the appli-
cation published in the literature.

As mentioned in the beginning of this chapter, Fukushima was the first to
apply a CNN, the so-called Neocognitron, to the problem of handwritten digit
recognition [74] and later to handwritten isolated character recognition [78]. A
more complex CNN architecture has then been used by Fukushima and Wake
[77] to segment and recognize handwritten connected characters.

LeCun et al . [134] also proposed a CNN for handwritten digit recognition,
the so-called LeNet-1 (see section 3.2.2). A later version, the LeNet-5 (see
section 3.4.1) [136], has been designed to also recognize letters and special char-
acters, and the authors further propose an integration into a graph framework
recognizing the handwritten amounts on bank checks. Neubauer [170] applied
a Neocognitron and a modified version to the problem of handwritten digit
recognition and compared the results with those of an MLP a SOM and an
auto-associative NN. He also conducted experiments on a face recognition task.
Recently, Saidane and Garcia [211] applied CNNs to the problem of scene text
recognition where the characters to recognize usually show considerable vari-
ations in shape, color and background. In another work [212] they further
propose a robust method for text binarization employing a specific CNN archi-
tecture that is trained to directly output the binarized image of the raw input
text image.

Face analysis is another problem that many researchers tackled with CNN-
based approaches. Lawrence et al . [132] for example use a SOM for dimension-
ality reduction and then apply a CNN for classification. Further, Fasel [65, 64]
uses a CNN architecture with receptive fields of different sizes and applied it
to face and facial expression recognition and a combination of both. Osadchy
et al . [175] presented a combined face detector and pose estimator based on
a CNN architecture. And Matsugu et al . [157, 158] presented a CNN variant
with a spiking neuron model and apply it to face detection and facial expression
recognition. The face analysis systems presented by Tivive and Bouzerdoum use
shunting inhibitory CNNs (SICoNNets). They applied different architectures to
face detection [238] and also eye detection [240]. Finally, Chopra et al . [39]
proposed a siamese CNN for a face verification problem (see section 3.4.3).

Many other works used CNNs for visual object detection applications in
very different contexts. For example, text detection [142], logo detection in
TV programs [55], hand detection and tracking [173], lung nodule detection in
radiographs [147] or crack detection in sewer pipes [178].

Moreover, LeCun et al . [135] introduced a CNN-based system for view-inva-
riant object recognition, e.g. planes or cars, on cluttered background. Finally, an
original application of CNNs has been presented by LeCun et al . [137], namely
a camera-based steering system for an autonomous mobile robot avoiding ob-
stacles in an off-road environment.

The large number of applications in which CNNs have been successfully
employed illustrates the flexibility and performance of this approach especially
in visual pattern recognition problems.

69

3.6. CONCLUSION

3.6 Conclusion

In this chapter, we presented a feature extraction and classification technique,
called Convolutional Neural Network, which is based on a specific type of Neural
Network, the Neocognitron, introduced by Fukushima [74]. The characteristics
of CNNs are receptive fields that extract local features and the concept of “sim-
ple” and “complex” cells which, in a hierarchical layer-wise connection scheme,
can be used to construct complex, non-linear feature extractors. Further, the
principle of weight sharing drastically reduces the number of free parameters in
the CNN and therefore improves convergence, reduces computation time and
increases its generalization capacity. The use of sub-sampling can further im-
prove the performance of CNNs making the feature extractors invariant to small
shifts and distortions.

An important breakthrough concerning the technique of CNNs has been
achieved when LeCun et al . [134] presented their CNN architecture and trained
it with the Backpropagation algorithm. Following this approach, the features to
extract are not chosen “manually” but learned automatically by the algorithm
minimizing a given global error function. A further advantage with this model
is that the CNN has not to be trained layer-by-layer but all the parameters are
updated at each training iteration allowing an online application, which can be
important when not all of the training data is available at the beginning.

We also presented some extensions and variants of CNNs and briefly describe
how they are trained and applied in different contexts. In a trade-off between
simplicity and performance, we chose to adopt and modify the CNN model
of LeCun et al . [134] for all the face analysis applications in this work. To-
gether with the online Backpropagation training algorithm, it represents a very
powerful machine learning technique being able to learn very complex non-linear
feature extractors and classifier which can be applied to almost any visual detec-
tion and recognition problem. Moreover, the automatic construction of feature
extractors and the simultaneous learning of a classifier are clearly an advantage
of this technique when applied to face analysis tasks. Obviously, it is rather
difficult to “manually” determine which visual features are important in face
images as the faces’ appearance varies considerably under different conditions.

In the following chapter, we will focus on the problem of face detection
in images and different normalization methods in terms of illumination, pose
and global alignment. The localization and normalization steps are crucial for
further processing of face images, notably for face recognition because the per-
formance of state-of-the-art face recognition systems depends heavily on the
precision of these preceding steps.

70

Chapter 4

Face detection and

normalization

4.1 Introduction

Face detection or face localization denotes the problem of finding one or several
sub-regions in images, each subregion containing a face, i.e. determining the
position and scale of the respective face regions and sometimes also their rotation
angle in the image plane. Face detection algorithms mostly represent their
results as bounding boxes covering the regions of the image which are supposed
to contain faces, i.e. one bounding box per face. Note that most of the face
analysis tasks, e.g. face recognition, facial expression recognition, facial feature
detection, require the localization of the face as an initial step.

Face detection can imply a pre-processing step conditioning the input image
and performing a kind of normalization, e.g. converting the image to gray-scale,
equalizing the intensity histogram of the image or image regions. Usually, this
pre-processing is considered to be part of the face detection algorithm.

Additionally, there can be a post-processing step further normalizing the
result of the face detection procedure, e.g. the bounding boxes. Possible opera-
tions are illumination normalization, pose normalization or estimation, or face
alignment, that means the global alignment of the bounding boxes w.r.t. the face
images they cover. We will explain these procedures in more detail in sections
4.3-4.5, and in the following we will refer to them as face normalization. Face
normalization is an important step in many face analysis applications because
it eliminates visual information irrelevant to the respective task. For example,
in face recognition, varying illumination conditions can cause face images of the
same person to appear considerably different while the face images of two dif-
ferent persons under the same illumination conditions might look very similar.
Thus, without a preceding illumination normalization the overall classification
might be rather difficult.

In the following sections, we will first outline the state-of-the-art in face
detection and describe in more detail one method based on CNNs that has
been used throughout this work, the Convolutional Face Finder [81]. Then,
we will present a brief overview of current illumination normalization and pose
estimation techniques, and finally we will focus on the process of face alignment

71

4.2. FACE DETECTION

and present a novel system for global affine alignment of face images using
CNNs.

4.2 Face detection

4.2.1 Introduction

In this section we will first give an overview of current face detection techniques
presented in the literature and then describe one approach in more detail: the
Convolutional Face Finder proposed by Garcia and Delakis [81]. This system
is based on CNNs and outperforms other state-on-the-art face detection meth-
ods. Face detection algorithms are mostly compared in terms of their detection
rate (i.e. number of correctly detected faces) vs. their false alarm rate (i.e.
number of non-face regions erroneously detected as faces) measured on public
face databases, for example the CMU face database [206]. Clearly, one seeks a
method that maximizes the detection rate while minimizing the false alarm rate.
Usually, the latter is a rather difficult task as the subset of non-face images of
a given size is considerably larger and more complex than the subset of images
representing faces.

4.2.2 State-of-the-art

Many approaches to face detection have been proposed in the literature. Hjelmås
et al . [98] and Yang et al . [266] presented surveys on the most important of them.
They can be roughly divided into two categories: template-based and feature-
based methods. In template-based approaches, the input image is scanned at
each possible location by extracting a subregion of varying scale from it and
classifying it as face or non-face.

Sung and Poggio [231] presented such an approach using Neural Networks.
They first modeled the distribution of face and non-face images (of size 19× 19
pixels) using a clustering algorithm and then calculate for every training example
the distance to each cluster center forming 24 element feature vectors. Then,
they trained a Neural Network with these feature vectors to distinguish between
faces and non-faces. Osuna et al . [176] proposed a similar approach but using
Support Vector Machines (SVM) instead of a Neural Network.

Colmenarez and Huang [40] proposed a system based on Kullback rela-
tive information (Kullback divergence) to measure the difference between joint-
histograms computed for each pair of pixels in the face images of the training
set, for the classes of faces and non-faces. With the two trained probability mod-
els one is then able to localize faces by scanning the input image at different
scales and determining the sub-regions where a pre-defined likelihood measure
is above a certain threshold.

Rowley et al . [207] used a Neural Network architecture with a specific con-
nection of the hidden layer and applied it directly on the pixels of 20 × 20
sub-windows to be classified as face or non-face. In order to reduce the number
of false alarms they trained several Neural Networks and used an arbitration
strategy for the final classification. Further, they accelerated their face detec-
tion system by a two-stage approach using a simple Neural Network to filter

72

CHAPTER 4. FACE DETECTION AND NORMALIZATION

out possible face candidates in the first stage and refine the classification in the
second stage.

Roth et al . [202] proposed a face detector based on a learning architec-
ture called SNoW (Sparse Network of Winnows), which consists of two linear
threshold units, representing the classes of faces and non-faces, that operate on
an input space of Boolean features. Features like intensity mean, intensity and
variance were first extracted from a series of sub-windows from the face window
and then discretized into a predefined number of classes to give boolean features
in a 135,424-dimensional feature space. The system was trained with a simple
learning rule, which increases and decreases weights in cases of misclassification,
in order to classify face and non-face boolean features.

Schneiderman and Kanade [218] presented a face detection method based
on a locally sampled three-level wavelet decomposition. Several sets of wavelet
coefficients were extracted from chosen sub-bands of the wavelet tree. The
coefficients were re-quantized to three levels and probabilistic density functions
were built using histograms. Then, they applied Bayes’ rule for the classification
between face and non-face patterns.

Heisele et al . [97] proposed an approach based on a Support Vector Machine.
They trained the SVM to classify the whole input pattern as face or non-face
using a set of training images of size 19×19 pixels. The features they extracted
are the histogram-normalized image, gradients computed by a Sobel filter and
the outputs of the convolution with some specific Haar wavelets filters. Then,
they compared this method with a feature detection-based approach (see section
5.2).

Fröba and Küllbeck [72] described a detection algorithm calculating orien-
tation maps of the input image at different scales. The resulting maps were
scanned using an orientation map template of the face.

An efficient method called “Boosted Cascade Detector” has been proposed
by Viola and Jones [250]. They made use of simple classifiers summing pixel
values from adjacent regions of the candidate image patch. Then they combined
many of these weak classifiers and weighted them in a certain way to finally
obtain a strong classifier being able to distinguish the patch between face or
non-face. The selection and weighting of these weak classifiers was performed
by the “Adaboost” algorithm, explained in more detail in section 2.5.

S. Li et al . [143] extended the idea of Viola and Jones and proposed a multi-
view face detection method. They applied different levels of detectors, more
or less specialized to specific poses. In a coarse-to-fine approach, the range of
detectable poses is more and more restricted. If all detectors at a particular
level fail the candidate region is rejected.

Other techniques are based on standard multivariate statistical analysis.
Yang et al . [265], for example, presented two methods which seek to represent
the manifold of human faces as a set of subclasses. In the first method, a mix-
ture of factor analyzers was used to perform clustering and local dimensionality
reduction within each obtained cluster. The second method uses Kohonen’s self-
organizing maps for clustering, Fisher’s linear discriminant to find an optimal
projection for pattern classification and a Gaussian distribution to model the
class-conditional density function of the projected samples for each class. Max-
imum likelihood estimates were used for the parameters of the class-conditional
density functions and the decision rule.

Féraud et al . [67] proposed a Neural Network approach, based on constrained

73

4.2. FACE DETECTION

generative models (CGM), which are auto-associative fully connected MLPs
with three large layers of weights, trained to perform a nonlinear dimension-
ality reduction similar to PCA. Classification is obtained by considering the
reconstruction errors of the CGMs. The best results were reported using a com-
bination of CGMs via a conditional mixture and an MLP filtering out unlikely
candidates. As the computational cost of this method is high, some pre-filtering
operations are required, such as skin color and motion segmentation. Like in the
previous neural based approaches, every tested sub-window was preprocessed
using the approach of Sung and Poggio [231].

More recently, Garcia and Delakis [81] presented a face detection method
using Convolutional Neural Networks (CNN). Here, specialized filters and clas-
sifiers were automatically and conjointly learned by the Neural Network using
face and non-face examples and a specific bootstrapping algorithm. Being par-
ticularly robust w.r.t. noise and partial occlusions and producing very few false
alarms, this technique, so far, shows the best performance on difficult public face
databases such as the CMU database [206]. In section 4.2.3 we will describe this
method in more detail.

Finally, Osadchy et al . [175] also presented a face detection system based on
CNNs. They employed an network architecture similar to LeNet-5 (see section
3.4.1) and trained it to map face images with known head pose onto points
in a low-dimensional manifold parameterized by pose and non-face image onto
points far away from that manifold. Once the CNN has been trained, it can
classify image sub-regions as face or non-face by applying the mapping to them
and calculating the distance between the projected vector and the analytical
manifold. The advantage of this method is that it performs an implicit pose
estimation at the same time as face localization. Additionally, an synergistic
effect of the integration of both has been shown. Another advantage is the
relatively large range of pose handled by the system, i.e. [−90, +90] degrees
of left/right rotation (yaw) and [-45,+45] degrees of up/down rotation (roll).
However, the performance of the method in terms of detection rate and false
alarm rate measured on the CMU data set is inferior to the system proposed by
Garcia et al . [81].

Table 4.1 summarizes the performance in terms of detection rate of some
of the previously mentioned methods. It can be observed that the method
by Garcia and Delakis compares favorably with the others, especially for low
numbers of false alarms. This shows that this approach separates the face and
non-face spaces in a robust and balanced way. For larger number of false alarms,
its results are equivalent to the ones reported for the other methods. It suggests
that all these detectors reach very similar maximal detection limits.

The previously listed methods are all template-based approaches as they try
to match a global face model onto sub-regions of the image to process. Feature
based approaches [141, 42, 268, 116, 83, 94], however, search for particular facial
features in the input image and, most often, reduce the number of candidates
by probabilistic models of feature constellations. The detection of single fea-
tures can make these methods more robust to out-of-plane rotation, or partial
occlusions of the face. However, in contrast to template-based methods, they
are unsuitable for the detection of low-resolution faces, e.g. 20 × 20 pixels. In
chapter 5, we will outline some facial feature detection methods that have been
employed for face detection.

Unfortunately, most of the feature-based face detection approaches proposed

74

CHAPTER 4. FACE DETECTION AND NORMALIZATION

Table 4.1: Detection rate vs. false alarm rate of selected face detection methods
on the CMU test set.

False alarms

Face detector 0 10 31 65 167

Rowley et al . [207] - 83.2% 86.0% - 90.1%
Schneiderman et al . [218] - - - 94.4%
Li et al . [143] - 83.6% 90.2% - -
Viola and Jones [250] - 76.1% 88.4% 92.0% 93.9%
Osadchy et al . [175] - - - 83.0% 88.0%
Garcia et al . [81] 88.8% 90.5% 91.5% 92.3% 93.1%

in the literature use different evaluation methods and/or databases which makes
their comparison in terms of performance and precision impossible.

In the following section, we will describe in more detail the Convolutional
Face Finder (CFF) presented by Garcia and Delakis [81] because it achieves good
performance in terms of detection rate and because it is based on Convolutional
Neural Networks.

4.2.3 Convolutional Face Finder

Introduction

The CNN-based face detection system proposed by Garcia and Delakis [81]
and dubbed Convolutional Face Finder (CFF) can be classified as a template
matching technique as it verifies the presence or absence of a face at each possible
location in the face image employing a sliding-window approach. The CFF has
been proven to be one of the best performing face detection methods up to the
present regarding its high detection rate and low false alarm rate on difficult
real-world images. Therefore, we will use this system throughout the rest of this
work and further improve it by an additional face alignment system explained
in section 4.5.

Architecture

The architecture of the CFF is essentially a CNN with 7 layers including the
input layer. It is based on the CNN model of LeCun et al . [134] but has a
different number of feature maps and neurons and notably a different connection
scheme between the layers. Figure 4.1 shows the basic architecture of the CFF.
There are two alternating convolutional and sub-sampling layers C1, S1 and C2,
S2 followed by two neuron layers N1 and N2. The size of the input layer, i.e.
the retina, is 32× 36 pixels.

Layer C1 is composed of four feature maps of size 28× 32 pixels. Each unit
in each feature map is connected to a 5× 5 neighborhood into the input retina
of size 32× 36. Each feature map unit computes a weighted sum of its input by
25 (5×5) trainable coefficients, i.e. the convolution kernel, and adds a trainable

75

4.2. FACE DETECTION

convolution

convolution

subsampling

input

C1 C2S1 S2 N1 N2

Figure 4.1: The architecture of the Convolutional Face Finder

bias.

Layer S1 is composed of four feature maps of size 14 × 16 pixels, each con-
nected to one feature map in C1. The receptive field of each unit is a 2 × 2
area in the previous layer’s corresponding feature map. Each unit computes
the average of its four inputs, multiplies it by a trainable coefficient, adds a
trainable bias, and the result passes through a hyperbolic tangent function, i.e.
the activation function of the unit.

Layer C2 contains 14 feature maps performing 3 × 3 convolutions. Here,
outputs of different feature maps are fused in order to help in combining different
features, thus in extracting more complex information. Each of the four sub-
sampled feature maps of S1 provides inputs to two different feature maps of
C2. This results in the first eight feature maps of C2. Each of the other six
feature maps of C2 takes its input from one of the possible pairs of different
feature maps of S1. Table 4.2 illustrated the connection scheme of layer C2.
Consequently, layer C2 has 14 feature maps of size 12× 14.

Layers N1 and N2 contain classical neural units. These layers act as a
classifier, whereas the previous ones act as feature extractors. In layer N1, each
of the 14 neurons is fully connected to all units of only one corresponding feature
map of S2. The single neuron of layer N2 is fully connected to all neurons of
layer N1. The units in layers N1 and N2 perform the classical dot product
between their input vector and their weight vector to which a bias is added. A
subsequent application of the hyperbolic tangent function produces an output
between −1.0 and +1.0. The output of neuron N2 is used to classify the input
image as a non-face, if its value is negative, or as a face, if its value is positive.

76

CHAPTER 4. FACE DETECTION AND NORMALIZATION

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 X X X X X
1 X X X X X
2 X X X X X
3 X X X X X

Table 4.2: The connection scheme of layer C2 of the Convolutional Face Finder:
a cross indicates a connection between a particular feature map in S1 (row) and
a convolution map in C2 (column)

Figure 4.2: Some patterns used for training. The first three rows show some
highly variable face patterns. The last row contains some examples of non-face
patterns produced by the bootstrapping procedure (Courtesy of C. Garcia).

Training

In order to train the CNN, the authors used a set of about 3,700 manually
cropped, highly variable face images extracted from various sources of the In-
ternet and from scanned newspapers. The collected images are chosen to effec-
tively capture the variability and the richness of natural data in order to train
the system for operating in uncontrolled environments. No intensity normal-
ization such as histogram equalization is performed on the cropped faces. In
order to create more examples and to enhance the tolerance to small in-plane
rotations and variations in intensity, a series of transformations are applied to
the initial set of face examples, e.g. small rotations, mirroring and smoothing.
The set of initial negative (i.e. non-face) examples is built by randomly cropping
regions out of images that do not contain any faces. Then, this set is gradu-
ally augmented by a so-called bootstrapping procedure which, every 60 training
iterations, applies the Neural Network on scenery images not containing any
face and collects the false alarms that give a response above a certain threshold.
This threshold is decreased at each step. Thus, the frontier between positive
and negative examples is gradually refined. Figure 4.2 shows some example
images of faces and non-faces used for training. The training algorithm is the
standard online Backpropagation with momentum which was slightly adapted
to cope with weight sharing (c.f . Alg. 8 on page 57). For further details on the
training procedure refer to [81].

The face localization procedure

Figure 4.3 depicts the different steps of face localization with the CFF in a
gray-scale image containing three faces. In order to detect faces of different

77

4.2. FACE DETECTION

Figure 4.3: The face localization procedure. (1) creation of a multi-scale pyra-
mid from the original image. (2) convolution of each image of the pyramid by
the CFF. (3) projection of face candidates to the original scale and fusion of
overlapping face candidates. (4) application of the CFF in a fine pyramid cen-
tered at each face candidate position. (5) classification of each face candidate
according to the volume of positive answers in the corresponding fine pyramid
(Courtesy of C. Garcia).

sizes, the input image is repeatedly sub-sampled by a factor of 1.2, resulting in
a pyramid of images (step 1). Each image of the pyramid is then entirely filtered
by the CFF (step 2). In fact, this corresponds to a Space Displacement Neural
Network (SDNN) applied at several scales (see section 3.4.2). For each image
of the pyramid an image containing the network results is obtained. Because of
the successive convolutions and sub-sampling operations, this image is approx-
imately four times smaller than the original one. This fast procedure may be
seen as corresponding to the application of the network retina at every location
of the input image with a step of four pixels in both axis directions, without
computational redundancy.

After processing by this detection pipeline, face candidates (pixels with pos-
itive values in the result image) in each scale are mapped back to the input
image scale (step 3). They are then grouped according to their proximity in
image and scale spaces. Each group of face candidates is fused in a represen-
tative face whose center and size are computed as the centroids of the centers
and sizes of the grouped faces, weighted by their individual network responses.
After applying this grouping algorithm, the set of remaining representative face
candidates serve as a basis for the next stage of the algorithm performing fine
face localization and, eventually, false alarm dismissal.

That means, a local search procedure is performed in an area around each
face candidate center in image scale-space (step 4). A reduced search space
centered at the face candidate position is defined in image scale-space for precise
localization of the face candidate. It corresponds to a small pyramid centered

78

CHAPTER 4. FACE DETECTION AND NORMALIZATION

at the face candidate center position covering ten equally distant scales varying
from 0.8 to 1.5 times the scale of the face candidate. For every scale, the
presence of a face is evaluated on a rescaled grid of 16x16 pixels around the
corresponding face candidate center position. In order to discriminate true
faces from false alarms, the authors took into account both number and values
of positive answers. Therefore, they considered the volume of positive answers
(the sum of positive answer values) in the local pyramid in order to take the
classification decision. Based on the experiments described in the following
section, a face candidate is classified as face if its corresponding volume is greater
than a given threshold ThrV ol (step 5). The bottom-right image of Fig. 4.3
shows the positions and sizes of the faces detected after local search. One can
notice that the false alarm (up right in the image), previously detected in step
4, with a low volume after local search, has been removed using the volume
threshold criterion.

Experimental results

The authors evaluated their method on three different test sets: the first one
is the CMU test set [207] consisting of 130 images and containing 23 images of
the MIT test set [231]. CMU-125 and MIT-20 are subsets of CMU and MIT
respectively, excluding hand-drawn and cartoon faces. The second set is called
Web test set and contains 215 images randomly chosen from submissions to
an interactive online demonstration of the face detection system. Finally, the
third test set is referred to as Cinema and consists of 162 images extracted from
various movies and showing faces under very difficult conditions.

Only a few papers, including [265], address the definition of what is a cor-
rectly detected face [98]. In the experiments in [81], a detected face is considered
valid if the face window is not 20% bigger that the real face area and contains
both eyes and mouth. In some papers, reported results of selected methods on
the face databases are difficult to interpret. For a given approach, some results
correspond to the maximal detection rate with a high number of false alarms
and others to a lower detection rate with a smaller number of false alarms.
Indeed, most face detectors can adjust parameters (usually a threshold) influ-
encing detection and false alarm rates. The detection rate is the ratio between
the number of successful detections and the number of labeled faces in the test
set. The false alarm rate is the ratio between the number of false positive detec-
tion and the number of scanned windows. This can be illustrated in terms of a
Receiver Operator Characteristic (ROC) curve to show the detection rate versus
the false alarm rate for various values of the threshold. Figure 4.4 depicts the
ROC curves for the CMU, the Web and the Cinema test sets. Each point on a
curve corresponds to a given threshold ThrV ol applied to the volume of positive
answers in order to classify an image area into face or non-face. Note that quite
high detection rates were obtained with zero false alarms, i.e. 88.8%, 90.5%
and 80.4% for the CMU, the Web and the Cinema test sets respectively. On
the other hand, the maximum detection rates are 93.3% with 197 false alarms,
98.0% with 108 false alarms and 95.3% with 104 false alarms, for the CMU, the
Web and the Cinema test sets respectively. These results are summarized in
Table 4.1 on page 75.

Table 4.3 lists the detection rates for various numbers of false detections
for the CFF (with ThrV ol = 17.0) as well as for other published systems as

79

4.2. FACE DETECTION

Figure 4.4: The ROC curves obtained for the CMU, the Web and the Cinema
test sets. Every point on a curve correspond to a given threshold value ThrV ol
of the volume of positive answers (Courtesy of C. Garcia).

reported in [250, 143]. It can be observed that the CFF method compares
favorably with the others, especially for low numbers of false alarms. This shows
that the approach separates face and non-face space in a robust and balanced
way. For larger number of false alarms, the results of the compared methods
are equivalent.

Finally, Fig. 4.5 shows some examples of the detection results for the CMU
test set.

Implementation on embedded platforms

Roux, Mamalet and Garcia [203] successfully implemented the CFF system on
various embedded platforms like ARM (Xscale, IMX21), DSP (Starcore) and
orange SPVM 3000. To this end, extensive memory and computational opti-
mizations have been conducted on the original implementation. For example, all
parameters and calculations have been transformed from floating point to fixed
point arithmetic without any loss of precision and effectiveness of the overall
face detection.

Further optimizations exploiting the parallel computation of embedded pro-
cessors have been performed. For example, consider the convolution of the input
image by a mask of 5 × 5 coefficients. Instead of processing the image at each
location of the receptive field and loading the 25 coefficients into memory at
each time, the whole image is scanned 25 times with a different coefficient and
four load/store operations are performed in parallel leading to an overall gain
of these operations of about 25%.

Also, the amount of used memory has been considerably reduced by conserv-
ing intermediate results in the layers C1 to S2 when computing the activation
of adjacent neurons in layer N1.

Finally, an overall speed-up factor of 55 compared to the original imple-
mentation has been achieved on the Xscale platform using these optimization
techniques. Table 4.4 shows the processing speed on different platforms.

80

CHAPTER 4. FACE DETECTION AND NORMALIZATION

Face Detector CMU CMU-125 MIT MIT-20

Colmenarez et al . [40] 93.9%/8122
Féraud et al . [67] 86.0%/8
Yang et al . [265] 93.6%/74 91.5%/1
Osuna et al . [176] 74.2%/20
Roth et al . [202] 94.8%/78 94.1%/3
Rowley et al . [207] 86.2%/23 84.5%/8
Schneiderman et al . [218] 94.4%/65
Sung et al . [231] 79.9%/5
Viola et al . [250, 251] 88.4%/31 77.8%/5
Li et al . [143] 90.2%/31
Osadchy et al . [176] 83.0%/65

CFF [81] 90.3%/8 90.5%/8 90.1%/7 90.2%/5

Table 4.3: Face detection results in terms of percentage of good detection /
number of false alarms, for the CMU and MIT test sets

Figure 4.5: Some face detection results of the CFF obtained with the CMU test
set (Courtesy of C. Garcia).

Xscale PXA27x Starcore SC140 Pentium IV
@ 624MHz @ 275MHz @ 3.2GHz

Floating point version 0.3 fps - 10 fps
Optimized version 16.5 fps 35 fps 180 fps

Table 4.4: Execution speed of the CFF on different platforms (in frames per
second) on QCIF images (176× 144 pixels)

81

4.3. ILLUMINATION NORMALIZATION

Conclusion

In this section, we described a face detection method based on a CNN, the Con-
volutional Face Finder of Garcia and Delakis [81], and showed the effectiveness
and efficiency of the overall system compared to state-of-the-art face detection
algorithms. Since the results in terms of detection rate, false alarm rate and
execution time are superior to other existing methods, the CFF system will be
used throughout the rest of this work.

We will now describe different post-processing techniques once the image
region containing a given face is determined. In general this type of normaliza-
tion is supposed to facilitate further facial analysis, e.g. face recognition, and
is thus considered an important step in many face image-related applications.
Illumination normalization and pose estimation are two of the most common
such operations that can be performed after a face has been detected. We will
briefly outline some existing approaches to these problems in the following.

4.3 Illumination Normalization

Illumination normalization is concerned with the problem of transforming a
face image taken under some lighting condition into an image having a different
(“normal”) illumination without compromising the appearance of facial char-
acteristics and thus the ability to detect facial features and/or to recognize the
face. A normal illumination means, for example, a light source in front of the
face or some ambient lighting. An inherent problem is the removal of shadows
that the face casts on itself. This is a very complicated task as the appearance
of faces under varying illumination follows a highly non-linear function. Note
that here, we are only considering the normalization of luminance but not color
since most of the face analysis methods operate on gray-scale images.

There exist also some techniques that can’t actually be considered as normal-
izing illumination but rather make the input image less sensitive to illumination
changes.

For example, one straightforward approach based on physiological evidence
is to use a logarithmic transformation of the image intensities. However, the
effectiveness of this technique depends on the face analysis approach utilized
and thus has to be determined experimentally.

Another approach that many solutions adopt is to use first or second order
derivatives of the input image in one or several directions. Edge maps are a
classic example of this type of approach. This achieves a certain invariance to
changes in the ambient light but not to changes in the direction of the light
source as it is often the case in natural images.

One of the most common illumination normalization methods used in many
of the face analysis methods proposed in this work is histogram equalization.
Here, the histogram of pixel intensity values of an image is mapped onto the
full range of gray values. Albeit very straightforward to calculate, this trans-
formation only compensates for variations of the overall brightness of the image
and cannot cope with illumination from point light sources of different directions
as well as shadows.

An approach specific to faces is the mapping of a linear function onto the face
image [207]. Here, an oval mask is put on the image containing the face in order

82

CHAPTER 4. FACE DETECTION AND NORMALIZATION

to ignore background pixels, a linear function is then fit to the intensity values
of the image and subtracted out. Finally, histogram equalization is applied.
This technique copes with some extreme lighting conditions, notably from the
side.

Shashua et al . [225] proposed an illumination invariant image representation
called the quotient image. Using a database, called the bootstrap set, contain-
ing several faces, each under three different lighting condition, they present an
analytical method to calculate the quotient image of any novel face under any
illumination.

Belhumeur and Kriegman [15] showed that the set of images of an object in
a fixed pose under varying illumination forms a convex cone in the image space.
Georghiades et al . [84] model this space by low-dimensional linear subspaces.
Basri and Jacobs [13] show that it can be approximated by a 9-dimensional
linear subspace.

A well-known approach introduced by Horn et al . [99, 110, 100] is called
Shape From Shading (SFS) where faces are considered to be Lambertian sur-
faces and the surface normals and/or albedos are estimated by using several face
images taken from the same viewpoint under different illumination. Having es-
timated the shape of the face, it can then be re-rendered under any illumination.
However, this is an ill-posed problem and most of the existing works overcome
this by imposing certain constraints. For example, Zhou et al . [273] imply rank
and symmetry constraints into the model in order to separate illumination from
the observed appearance of a face. The approach proposed by Sim and Kanade
[228] incorporates statistical prior knowledge about faces into the model, and
it is then able to render a new face under novel illumination using only one
example image.

4.4 Pose Estimation

As mentioned in chapter 1, varying head pose is one of the most important
sources of variation in face images and makes further processing, like recogni-
tion, very difficult because the appearance of a face image under varying pose
undergoes a highly non-linear transformation. Thus, the estimation and/or nor-
malization, i.e. correction, of pose is a crucial issue in face analysis applications.

Head pose is mostly parameterized by three rotation angles corresponding
to a orthogonal coordinate system aligned with the image plane. We define the
image plane to be parallel with the x/y-axes, and we will denote the axes and
the rotations around these axes as follows:

• x-axis: pitch (corresponds to an up/down movement of the head)

• y-axis: yaw (corresponds to a left/right movement of the head)

• z-axis: roll (corresponds to a tilting head movement)

Figure 4.6 illustrates the defined axes w.r.t. a frontal head. We also distinguish
between in-plane rotations (roll) and in-depth rotations (yaw, pitch). The latter
can be normalized by rotating the input image such that the face is in an upright
position. This type of correction is linear and part of what we call face alignment
in this work and which is described in detail in the following section. In this
section, we will outline some pose estimation methods for the more complicated

83

4.4. POSE ESTIMATION

x

y

z

Figure 4.6: The three rotation axes defined with respect to a frontal head

case of in-depth rotation, i.e. yaw and pitch. Note that some of these methods
require the face image to be well-aligned, i.e. centered, in an upright position
and in a predefined scale. Further, some of the approaches described in the
following only account for yaw, others for both, yaw and pitch. Also, the possible
ranges of the parameters differ between the methods, e.g. [−90, +90] degrees
for yaw. And finally, the precision can vary drastically between the different
approaches, i.e. some are only trained to distinguish between semi-profiles and
frontal face images and others determine the rotation angle with a precision of
some degrees. Despite these big differences, we will give an overview on the
existing pose estimation methods while focusing on the algorithmic properties
rather than the technical details.

Pose estimation can be integrated into face detection or recognition methods
[181, 231, 171, 218, 143, 104]. In this case, the terms view-based face detection or
view-based face recognition are often used. That means, the total range of poses
is divided into a finite number of sub-ranges for each of which a view-specific
face detector (or recognizer) is trained. The trained systems are then applied
in parallel, and a final decision function determines the classification result and,
implicitly, the respective pose.

There are also systems which perform a pose estimation on each possible
location of the input image before the actual face detection, i.e. before deciding
if the processed image patch at a particular location is a face or not. For
example, Li et al . [144] first applied a Sobel filter on the respective sub-regions,
then they performed a PCA to reduce the dimension of the vectors and finally
used two SVMs to estimate yaw and pitch of the face candidate. The image
patch is then sent to a view-specific face detector which classifies it as face or
non-face.

Jones and Viola [118] also performed pose estimation before the actual face
detection. They employed Haar-like wavelets and decision trees to determine the
pose of a face candidate and then sent the image region to an Adaboost-based
face detector similar to [250].

Other methods employ a Shape From Shading (SFS) approach introduced
by Horn et al . [99, 110, 100] (see section 4.3), i.e. they determine a 3D mesh
model of the face and then re-synthesize a face image under frontal, normalized

84

CHAPTER 4. FACE DETECTION AND NORMALIZATION

pose. However, unless specific constraints are enforced on the algorithm, several
images of the same face under different illumination are needed, which makes
this approach rather impractical in common face analysis applications.

A different approach based on linear object classes has been proposed by
Vetter et al . [248]. It is rather a pose normalization than a simple pose pa-
rameter estimation method. The authors assumed that the 3D shape of an
object (and 2D projections of 3D objects) of a given view can be represented
by a linear combination of prototypical objects (of the same view). It follows
that a rotated view of the object is a linear combination of the rotated views
of the prototype objects. In this way, one can synthesize rotated views of face
images from a single example view. In [21], this algorithm has been used in a
multi-view face recognition system to create virtual views from a single input
image. Lando and Edelman [129] used a comparable example-based technique
for the same purpose.

The above mentioned methods are rather special cases of pose normaliza-
tion techniques as they are either an integral part of a face detection/recognition
system or need several input face images, or they synthesize a face in a given
(normalized) pose instead of estimating the underlying pose parameters. How-
ever, the methods outlined in the following are pure pose estimation techniques
as they process face images and estimate the parameters of the corresponding
pose of the face. These approaches can be divided into two main categories:
feature-based and template-based (or appearance-based) methods.

Feature-based methods localize specific facial features and then compare
them with some probabilistic or geometric model in order to determine the
head pose. The method of Azarbayejani et al . [4], for example, detects feature
points having a large Hessian w.r.t. image intensity assuming that these points
correspond to eye corners, pupils, nostrils etc. The authors applied their al-
gorithm on videos and tracked the detected points using an Extended Kalman
Filter (EKF).

Lee et al . [139] used a deformable 3D model composed of an edge model, a
color region model and a wireframe model in order to synthesize images of faces
in arbitrary poses. An iterative energy minimization approach has been em-
ployed to match the generic model to a given test face image and thus estimate
the corresponding head pose.

Chen et al . [38] proposed a method segmenting the two separate regions of
the face and the hair respectively and then estimate the x, y and z rotation of
the head using geometrical features of the two regions, such as area, center and
axis of least inertia.

Approaches based on Bunch Graph Matching (BGM) have been proposed by
Krüger et al . [127] and Elagin et al . [61]. Here, the local appearance of the faces
has been described with Gabor jets, i.e. set of Gabor wavelet filter responses,
which are organized in a two-dimensional graph that is fit to the face image by
minimizing a global energy function.

In a later work, Krüger et al . [126] presented a pose estimation approach
similar to BGMs using Gabor Wavelet Networks (GWN). Unlike the separate
representation of the graph and the wavelets in BGMs, GWNs are able to si-
multaneously encode the local appearance of the face image and geometrical
properties of local features. They used a Linear Local Map (LLM) [198], a
linear approximation method related to Self-Organizing Maps and Generalized
Radial Basis Functions, for a final classification step.

85

4.5. FACE ALIGNMENT

Lanitis et al . [131] presented a pose estimation method based on Active
Shape Models where a statistical model of the shape of a face using landmark
points is iteratively fit to the face image (see section 2.3).

In contrast to feature-based approaches, template-based methods do not
localize specific facial features but treat the face image as a whole. Schiele et
al . [217], for example, presented a method where the face region is segmented
from the background and the hair regions by a skin-color-based segmentation
algorithm. The pose was then estimated by a MLP that classifies the resulting
pattern. MLPs have also been used by Zhao et al . [270] and Brown et al . [31].

Huang et al . [105] use SVMs for left/right/frontal pose classification. In
their approach, one SVM for each pose was trained on the raw face images and
with two different kernels, a polynomial and a RBF kernel.

Rae et al . [192] proposed a method that filters the face images with Gabor
wavelets placed on a circular grid on the input image and then classifies the
respective head pose by a LLM.

McKenna et al . [159] also presented a method based on Gabor Wavelet
filters. The head pose was classified by comparing the resulting filtered image
with a certain number of template images, each corresponding to a certain yaw
and pitch.

Baluja [10] classified five different head poses by different probabilistic mod-
els, e.g. a Naive-Bayes model, which was built using labeled and unlabeled bina-
rized face images. Another approach, presented by Ba et al . [5], uses Gaussian
Mixture Models (GMM) to represent the different head poses.

Niyogi and Freeman [172] employed a template matching technique based on
a vector quantization method called Tree-Structured Vector Quantizer (TSVQ),
i.e. the training examples (the templates) together with their respective pose
were organized in a tree-like structure using PCA and clustering.

Other methods are based on the concept of Pose Eigenspace (PES) [87]
which is a linear sub-space spanned by the first three eigenvectors of the face
images’ covariance matrix. These three directions are assumed to account for
the majority of appearance variations due to changing pose. Further, a face
image with varying pose represents a continuous manifold in this sub-space.
The method proposed by Motwani [166] builds a PES with wavelet filtered face
images and classifies face pose by calculating the Euclidean distance between
the projected vectors of given test image and the training images respectively.
Wei et al . [256] also used a PES-based approach using Gabor wavelet filters and
a Mahalanobis distance measure.

Finally, a different approach based on Dynamic Space Warping (DSW) has
been proposed by Yegnanarayana et al . [267]. Here, a face image under a given
pose is horizontally warped to best match a frontal face and the respective
warping path is analyzed in order to estimate the yaw pose angle.

4.5 Face Alignment

4.5.1 Introduction

Face alignment or face registration designates a normalization procedure where
the bounding boxes coming from a face detector are transformed in such a
way that the faces are well aligned with them. “Well aligned” means most

86

CHAPTER 4. FACE DETECTION AND NORMALIZATION

translation

scale
rotation

Figure 4.7: The face alignment process

often: centered and in a predefined scale and orientation. Figure 4.7 illustrates
this procedure. Thus, the transformation is in most cases affine and the face
images cropped along the boundaries of the resulting rectangles have specific
facial features, such as eyes, nose, mouth, approximately at predefined relative
positions in the image.

This step is crucial for further effective face analysis, e.g. face recognition.
Shan et al . [224] and Rentzeperis et al . [196] showed that slight mis-alignments,
i.e. x and y translation, rotation or scale changes, cause a considerable perfor-
mance drop of most of the current face recognition methods.

There have been different approaches to overcome the mis-alignment prob-
lem in face recognition. Shan et al . [224], for example, added virtual examples
with small transformations to the training set of the face recognition system
and, thus, made it more robust. Martinez [153] additionally modeled the distri-
bution in the feature space under varying translation by a mixture of Gaussians.
However, these approaches can only cope with relatively small variations.

4.5.2 State-of-the-art

Existing approaches can be divided into two main groups: approaches based on
facial feature detection and global matching approaches, most of the published
methods belonging to the first group.

Berg et al . [20], for example, used a SVM-based feature detector to detect
eye and mouth corners and the nose and then applied an affine transformation
to align the face images such that eye and mouth centers are at predefined
positions. Wiskott et al . [260] used a technique called Elastic Bunch Graph
Matching (EBGM) where they mapped a deformable grid onto a face image by
using local sets of Gabor filtered features. Numerous other methods [8, 60, 103,
143] align faces by means of approaches derived from the Active Appearance
Models introduced by Cootes et al . [41] (see section 2.3).

Approaches belonging to the second group are less common. Moghaddam
et al . [165], for example, used a maximum likelihood-based template matching
method to eliminate translation and scale variations. In a second step, however,
they detected four facial features to correct rotation as well. Jia et al . [117]
employed a tensor-based model to super-resolve face images of low resolution,
and at the same time find the best alignment by minimizing the correlation
between the low-resolution image and the super-resolved one. Rowley et al . [207]
proposed a face detection method including a Multi-Layer Perceptron (MLP) to
estimate in-plane face rotation of arbitrary angle. They perform the alignment

87

4.5. FACE ALIGNMENT

on each candidate face location and then decide if the respective image region
represents a face.

Note that some of the pose estimation methods described in the previous
section also determine the in-plane rotation angle, and thus, to some extend, also
these approaches can be employed for face alignment. Moreover, many facial
feature detection algorithm (see section 5.2) can be used for this purpose. For
example, by localizing the eyes one can correct the in-plane rotation of the face.
By detecting a third feature point, e.g. the mouth, an affine transformation can
be defined which maps these feature points onto predefined positions and thus
globally aligns the face with the image borders.

4.5.3 Face Alignment with Convolutional Neural Networks

Introduction

In this section, we will propose a novel face alignment technique [82, 58] based
on Convolutional Neural Networks (c.f . chapter 3). The method we propose
is similar to the one of Rowley et al . [207], but it not only corrects in-plane
rotation but also x/y translation and scale variations. It is further capable of
treating non-frontal face images and employs an iterative estimation approach.
After training of the CNN, it receives a mis-aligned face image and directly and
simultaneously responds with the respective parameters of the transformation
that the input image has undergone.

Network Architecture

The proposed neural architecture is a specific type of Neural Network consisting
of seven layers, where the first layer is the input layer, the four following layers
are convolutional and sub-sampling layers, and the last two layers are stan-
dard feed-forward neuron layers. The aim of the system is to learn a function
that transforms an input pattern representing a mis-aligned face image into the
four transformation parameters corresponding to the mis-alignment, i.e. x/y
translation, rotation angle and scale factor. Figure 4.8 gives an overview of the
architecture which is similar to LeNet-1 introduced by LeCun et al . [134] (c.f .
section 3.2.2) or the Convolutional Face Finder (CFF) proposed by Garcia et
al . [81] (c.f . section 4.2.3) .

The retina l1 receives a cropped face image of 46×56 pixels, containing gray
values normalized between −1 and +1. No further pre-processing like contrast
enhancement, noise reduction or any other kind of filtering is performed.

The second layer l2 consists of four feature maps with a receptive field size
of 7 × 7. Each feature map performs a convolution of the input image with a
different trainable kernel and adds a bias. A linear activation function is then
applied to the result.

Layer l3 sub-samples its input feature maps into maps of reduced size by
locally averaging neighboring units. The size of the sub-sampling window is
2 × 2 and a sigmoid activation function is used here. The goal of this layer is
to make the system less sensitive to small shifts, distortions and variations in
scale and rotation of the input at the cost of some precision.

Layer l4 is another convolutional layer and consists of three feature maps,
each connected to two maps of the preceding layer l3. In this layer, 5 × 5

88

CHAPTER 4. FACE DETECTION AND NORMALIZATION

Translation Y

Scale factor

Translation X

Rotation angle

convolution 7x7

convolution 5x5

subsampling
subsampling

l1: 1x46x56

l2: 4x40x50

l3: 4x20x25

l4: 3x16x21

l5: 3x8x10

l6: 40

l7: 4

Figure 4.8: The Neural Network architecture of the proposed face alignment
system

convolution kernels are used, and each feature map has two different convolution
kernels, one for each input map. The results of the two convolutions as well as
the bias are simply added up. The maps of layer l4 extract higher-level features
by combining the lower-level information in l2.

Layer l5 is again a sub-sampling layer that works the same way as l3, i.e. it
reduces the size of the feature maps again by a factor of two.

Whereas the previous layers act principally as feature extraction layers, lay-
ers l6 and l7 combine the extracted local features into a global model. They
are neuron layers that are fully connected to their respective preceding layers
and use a sigmoid activation function. l7 is the output layer containing exactly
four neurons, representing x and y translation, rotation angle and scale fac-
tor, normalized between −1 and +1 w.r.t. their minimum and maximum values
pmini and pmaxi, e.g. ±30 degrees for the rotation angle. After activation
of the network, these neurons contain the estimated normalized transformation
parameters y7i (i = 1..4) of the mis-aligned face image presented at l1. Each
final transformation parameter pi is then calculated by linearly rescaling the
corresponding y7i value from [-1,+1] to the interval of the respective minimal
and maximal allowed values pmini and pmaxi:

pi =
pmaxi − pmini

2
(y7i + 1) + pmini , ∀i = 1..4 . (4.1)

89

4.5. FACE ALIGNMENT

Figure 4.9: Examples of training images created by manually mis-aligning the
face (top left: the well-aligned face image)

Training Process

We constructed a training set of about 30,000 face images extracted from several
public face databases with annotated eye, nose and mouth positions. Using the
annotated facial features, we are able to crop well-aligned face images where the
eyes and the mouth are roughly at predefined positions while keeping a constant
aspect ratio. By applying transformations on the well aligned face images, we
produced a set of artificially mis-aligned face images, that we cropped from
the original images and resized to the dimensions of the retina (46× 56). The
transformations were applied by varying translation between −6 and +6 pixels,
rotation between −30 and +30 degrees and the scale factor between 0.9 and 1.1.
Thus, we defined the minimal and maximal parameter values as follows:

pmin1 = pmin2 = −6

pmax1 = pmax2 = +6

pmin3 = −30

pmax3 = +30

pmin4 = 0.9

pmax4 = 1.1

Figure 4.9 shows some training examples for one given face image. The respec-
tive transformation parameters pi were stored for each training example and
used to define the corresponding desired outputs ti of the Neural Network by
normalizing them between −1 and +1:

ti =
2× (pi − pmini)

pmaxi − pmini

− 1 , i = 1..4 . (4.2)

Training was performed using the well-known Backpropagation algorithm
which has been adapted in order to account for weight sharing in the convolu-
tional layers (l2 and l4) (see Alg. 8 on page 57). The objective function is simply
the Mean Squared Error (MSE) between the computed outputs and the desired
outputs of the four neurons in l7 for all N training examples:

E =
1

4N

N∑

k=1

4∑

i=1

(y7i − ti)
2

. (4.3)

At each iteration, a set of 1,000 face images is selected at random. Then, each
face image example of this set and its known transformation parameters are

90

CHAPTER 4. FACE DETECTION AND NORMALIZATION

Face Detection

Alignment estimation
by CNN

Translation Y = +4
Rotation angle = −14
Scale factor = 0.95

Translation X = − 2

Adjust by 10% using
the inverse parameters

30 iterations ?

Face extraction
and rescaling

Save final
parameters

no

yes

Figure 4.10: The overall face alignment procedure of the proposed system

presented, one at a time, to the Neural Network and the weights are updated
accordingly (online training). Classically, in order to avoid overfitting, after
each training iteration, a validation phase is performed using a separate vali-
dation set. A minimal error on the validation set is supposed to give the best
generalization and the corresponding weight configuration is stored.

Alignment Process

We now explain how the Neural Network is used to align face images with bound-
ing boxes obtained from a face detector. The overall procedure is illustrated in
figure 4.10. Face detection is performed using the Convolutional Face Finder
of Garcia and Delakis [81] (c.f . section 4.2.3) which produces upright bounding
boxes. The detected faces are then extracted according to the bounding box
and resized to 46× 56 pixels. For each detected face, the alignment process is
performed by presenting the mis-aligned cropped face image to the trained Neu-
ral Network which in turn gives an estimation of the underlying transformation.

91

4.5. FACE ALIGNMENT

A correction of the bounding box can then simply be achieved by applying the
inverse transformation parameters (−pi for translation and rotation and 1/pi

for scale). However, in order to improve the correction, this step is performed
several (e.g. 30) times in an iterative manner, where, at each iteration, only a
certain proportion (e.g. 10%) of the correction is applied to the bounding box.
At each step, the face image is re-cropped using the new bounding box and a
new estimation of the parameters is calculated with this modified image. The
transformation with respect to the initial bounding box is obtained by simply
accumulating the respective parameters at each iteration. Using this iterative
approach the system finally converges to a more precise solution than when
using a full one-step correction.

The alignment precision can be further improved by successively executing
the procedure described above two times with two different Neural Networks,
the first one trained as presented above for coarse alignment and the second one
for fine alignment. For training the fine alignment Neural Network, we built
a set of face images with less variation, i.e. [−2, +2] for x and y translations,
[−10, +10] for rotation and [0.95, 1.05] for scale variation. The parameters pmini

and pmaxi (i = 1..4) change accordingly in the preceding formulas.

Experimental Results

To evaluate the proposed approach, we used two different annotated test sets:
the public face database BioID [22] containing 1,520 images and a private set
of about 200 images downloaded from the Internet (see Appendix A). The
latter, referred to as Internet test set, contains face images of varying size, with
large variations in illumination, pose, facial expressions and containing noise and
partial occlusions. As described in the previous section, for each face localized by
the face detector [81], we perform the alignment on the respective bounding box
and calculate the precision error e which is defined as the mean of the distances
between its corners ai and the respective corners of the desired bounding box
di normalized with respect to the width W of the desired bounding box:

e =
1

4W

4
X

i=1

‖ai − di‖ (4.4)

Figure 4.11 shows, for the two test sets, the proportion of correctly aligned
faces varying the allowed error e.

For example, if we allow an error of 10% of the bounding box width, 80%
and 94% of the faces of the Internet and BioID test sets respectively are well
aligned. Further, for about 70% of the aligned BioID faces, e is below 5%.

We also compared our approach to a different technique that localizes the
eye centers, the nose tip and the mouth center. This method is also based
on CNNs and described in section 5.3. The face images with localized facial
features are aligned using the same formula as used for creating the training set
of the Neural Network presented in this paper. Figure 4.12 shows the respective
results for the Internet test set.

To show the robustness of the proposed method, we added Gaussian noise
with varying standard deviation σ to the pixels of the input images before
performing face alignment. Figure 4.13 shows the error e versus σ, averaged
over the whole set for both of the test sets. Note that e remains below 14% for

92

CHAPTER 4. FACE DETECTION AND NORMALIZATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
at

e
of

 c
or

re
ct

 a
lig

nm
en

t

Mean corner distance: e

Internet test set
BioID test set

Figure 4.11: Correct alignment rate vs. allowed mean corner distance of the
proposed approach

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
at

e
of

 c
or

re
ct

 a
lig

nm
en

t

Mean corner distance: e

Feature detection approach
Our approach

Figure 4.12: Precision of the proposed alignment approach and the approach
based on facial feature detection

93

4.5. FACE ALIGNMENT

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140

m
ea

n
e

standard deviation

Internet
BioID

Figure 4.13: Sensitivity analysis: Gaussian noise

the Internet test set and below 10% for the BioID test set while adding a large
amount of noise (i.e. σ up to 150 for pixel values being in [0, 255]).

Another experiment demonstrates the robustness of our approach against
partial occlusions while adding black filled rectangles of varying area to the input
images. Figure 4.14 shows, for two types of occlusions, the error e averaged over
each test set with varying s, representing the occluded proportion with respect
to the whole face rectangle. For a given detected face, let w be the width and
h be the height of the box. The first type of occlusion is a black strip (“scarf”)
of width w at the bottom of the detected face box. The second type is a black
box with aspect ratio w/h at a random position inside the detected box. We
notice that while varying the occluded area up to 40% the alignment error does
not substantially increase, especially for the scarf type. It is, however, more
sensitive to random occlusions (i.e. the second type). Nevertheless, for s < 30%
the error stays below 15% for the Internet test set and below 12% for the BioID
test set.

Figure 4.15 shows some results on the Internet test set. For each example, the
black box represents the desired box, while the white box on the left represents
the face detector output and the one on the right the estimated aligned box.

The method is also very efficient in terms of computational time. It runs at
67 fps on a Pentium IV 3.2GHz and can easily be implemented on embedded
platforms.

94

CHAPTER 4. FACE DETECTION AND NORMALIZATION

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

m
ea

n
e

occluded porportion s

Internet: random rectangle
Internet: scarf

BioID: random rectangle
BioID: scarf

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

m
ea

n
e

occluded porportion s

Internet: random rectangle
Internet: scarf

BioID: random rectangle
BioID: scarf

Figure 4.14: Sensitivity analysis: partial occlusion

4.6 Conclusion

In this chapter, we presented the problem of face detection in images and some of
the most important approaches proposed in the literature to tackle this problem.
Many face detection methods obtain relatively good results on standard public
face databases, like the CMU database. However, we focused on one approach
in particular, the Convolutional Face Finder (CFF) of Garcia and Delakis [81]
as it is a CNN-based method and it attains a high detection rate with a low
false alarm rate, which is a very desirable property in face detection. Its high
performance in terms of computation time and the ability to implement it on
embedded platforms are further advantages of this approach.

We then pointed out that for further face analysis tasks, notably for face
recognition, a preceding normalization step is essential and we described possible
methods employed in this context, such as illumination normalization and head
pose estimation and/or correction. In this regard, we outlined some well-known
approaches published in the literature.

Finally, we proposed a novel face alignment method which can be considered
as a post-processing step of face detection. It is based on CNNs and trained to
simultaneously estimate x/y translation as well as rotation and scale variations
of the slightly mis-aligned bounding rectangles coming from a face detector.
Experimental results show that this approach is precise and very robust when
applied to face images under difficult illumination conditions and varying head
pose. Also, a considerable robustness to pixel-noise and partial occlusions has
been experimentally verified.

The combination of CFF and the face alignment system shows to perform

95

4.6. CONCLUSION

Figure 4.15: Some alignment results on the Internet test set. For each test
image, the black rectangle represents the desired bounding box. The white
rectangle on the respective left image shows the output of the face detector and
the white rectangle on the right image shows the result of the face alignment
system.

96

CHAPTER 4. FACE DETECTION AND NORMALIZATION

very well in real-world contexts of facial image processing applications under
difficult conditions. Further, the efficient implementation, also on embedded
platforms, make them a powerful technique suitable for further facial analysis
such as face recognition.

97

Chapter 5

Facial Feature Detection

5.1 Introduction

Facial feature detection designates the problem of localizing characteristic points
in face images, such as the eyes, the nose tip, the mouth, the corners of the
mouth etc. Depending on the resolution of the face images being processed the
localization can also imply more specific features, e.g. eye corners, eye brow
corners, orbit points, nostrils or points marking the chin. This is sometimes
also referred to as fiducial point detection.

Facial feature detection algorithms differ in several aspects. First of all, they
can be part of a face detection method where the feature detectors scan over a
larger image which may contain a face or not. Then, the presence of all or most
of the facial features at a given location and a plausible constellation of them
indicate the presence of a face at this particular position. Many facial feature
detection algorithms, however, operate on images or image regions containing
only the face which have been localized and extracted beforehand by a face
detection algorithm. A further point where the algorithms differ is the type of
image they are working on. This implies the image resolution as well as external
conditions such as illumination, noise, background but also the range of possible
head poses and facial expressions. Another important aspect is the purpose or
the target application of the respective feature detection algorithm as this might
impose more or less strict precision constraints as well as the type and number
of features to detect. As mentioned above, they can be part of a face detection
system, for example, which in turn can be part of a larger face processing system.
Other possible applications are facial expression recognition or face recognition
requiring a rather precise localization of specific facial features. Finally, it may
be used for advanced Human-Computer Interaction (HCI) applications, e.g.
avatar animation.

The problem of facial feature detection under unconstrained conditions is
still far from being resolved, and the difficulties that remain are essentially the
same as for face analysis tasks in general, notably those outlined in section 1.3,
e.g. the sensitivity to illumination and pose variations, facial expressions and
partial occlusions.

In the following, we will describe some of the most important works in this
field and then present our own approach to facial feature detection using Convo-

98

CHAPTER 5. FACIAL FEATURE DETECTION

lutional Neural Networks. Finally, we will experimentally show the performance
of the proposed method in terms of detection rate and precision as well as the
robustness against the types of noise mentioned above.

5.2 State-of-the-art

Numerous approaches to facial feature detection in still images have been pro-
posed in the last decade. One could classify them into two categories: the first
category applies local processing techniques to the face image, such as filters
or templates, in order to obtain candidate feature positions and then selects
the most likely combination (or the one with the highest score) w.r.t. a global
model. Approaches belonging to the second category iteratively try to match
a grid, a graph or any other form of deformable global model to a face image.
The algorithms of this category are supposed to converge to a solution where
the grid points correspond to the facial features to localize.

Local feature detection approaches

Vincent et al . [249] proposed a system detecting eye and mouth features using
several trained Multi-Layer Perceptrons (MLP) for each feature to detect scan-
ning over the input image. In a coarse-to-fine approach, they first localized the
eye and mouth features and then 12 so-called “micro-features”, five for each eye
and two for the mouth. Finally, a maximum likelihood estimator provides the
most likely combination of features.

Reinders et al . [194] presented a similar approach using a MLP working on
gradient magnitudes and orientations in order to detect the rough eye positions
and then four specialized MLPs to detect micro-features.

Yuille et al . [269] presented a technique based on deformable templates of
the eye and the mouth. The feature localization was performed by fitting the
parameterized templates to image locations where a specific energy function
is minimal. The function was based on edges, peaks and valleys of the image
intensity.

Other works are based on skin-color segmentation [210, 83, 229, 88], contrast
enhancement and thresholding techniques [115] and/or symmetry measures [195,
111, 210] which, in practice, show to be rather sensitive to noise and illumination
changes.

Leung et al . [141] used multi-orientation, multi-scale Gaussian derivative
filters to detect feature position candidates in the input image. The best matches
were retained, and for each pair of detected feature point they estimated small
elliptical regions where the rest of the feature points to detect are likely to occur.
In the following step, a probabilistic model based on mutual feature distances
helped to identify the most likely feature positions.

Yow and Cipolla [268] also used Gaussian derivate filters to detect facial fea-
ture candidates. However, a grouping method based on belief networks was then
applied to the candidate positions in order to obtain the resulting combination
of facial features.

A method based on Eigen-features was presented by Moghaddam et al . [165].
Here, the residual error between the image patch in the search window and the
reconstructed image, the so-called Distance From Feature Space (DFFS), was

99

5.2. STATE-OF-THE-ART

calculated to obtain candidate feature positions. Finally, a maximum likelihood
estimator based on Gaussian probability distributions was applied.

Extensions of this approach have been proposed by Demirel et al . [52] who
used an additional weighting scheme based on a spatial probability distribu-
tion, and Shakunaga et al . [223] who applied an iterative approach using a 3D
structure model.

Lin et al . [145] presented an approach that first segments the pixels belonging
to the face by a region growing algorithm and then localizes facial features (eyes,
eyebrows, nose and mouth) by a Genetic Algorithm-based search method where
the fitness function uses heuristic pixel intensity measures.

A template matching method using the Discrete Cosine Transform (DCT)
has been proposed by Zobel et al . [274]. The localization was further supported
by a probabilistic framework, which they call coupled structure, and a Maximum
A Posteriori (MAP) classifier.

Heisele et al . [97] proposed a template matching approach based on SVMs.
In the first step, they trained one SVM on small image regions for each facial
feature to detect, i.e. eyes, nose and mouth, and in a second step they performed
a SVM classification of the geometrical configuration of the detected features.

Sirohey et al . [229] used empirically determined non-linear filters to detect
the eye corners in skin-color segmented images. False alarms were eliminated
by clustering and pairing the eye corner candidates and then applying some
heuristic geometrical rules.

The approach proposed by Jesorsky et al . [116] consists of two steps. In
order to detect a face and its rough eye positions, they first applied a Sobel
filter to detect edges in the input image and then tried to fit a face edge model
to it using the Hausdorff distance. In the second step, the resulting face location
was refined by a smaller model that was fit to the eyes.

Garcia et al . [83] presented an facial feature and face detection method based
on skin-color segmentation and subsequent filtering of the input image by a set
of specific wavelet filters. Finally, a deformable geometric face template was
applied.

Feris et al . [68] proposed a two-level hierarchical approach using Gabor
Wavelet Networks (GWN). The first-level GWN is trained to localize the face
and the rough feature positions (eye/mouth corners and nostrils). The second-
level GWN then refines the localization.

Hamouz et al . [94] performed a detection of 10 facial features in order to
localize faces. They use a bank of Gabor filters and Gaussian Mixture Models
(GMM) of filter responses for the feature localization. Then, triplets of feature
candidates were combined to form a set of face hypotheses. For each hypothesis,
a respective normalized image patch containing the face candidate was extracted
and classified as face or non-face by two Support Vector Machines (SVM) work-
ing on different image resolutions. Finally, the hypothesis, and thus the feature
locations, producing the highest value of the SVM’s discriminant function was
selected.

The approach presented by Gourier et al . [88] applies a chrominance-based
skin region segmentation and then detects salient facial feature points by means
of first and second order Gaussian derivative filters and a k-means clustering
on the filter responses. The feature positions are then obtained by a connected
component analysis in the image of filter responses and some geometrical heuris-
tics.

100

CHAPTER 5. FACIAL FEATURE DETECTION

Iterative methods using deformable grids

Whereas the approaches of the preceding section could be denoted as “bottom-
up”, the methods outlined in the following can be considered as “top-down”
approaches because a global model, i.e. a deformable grid, is fit to the face image
by some kind of iterative optimization technique operating on local appearances.

The first very well-known method of this type has been presented by Wiskott
et al . [260] and is called Elastic Bunch Graph Matching (EBGM). As this ap-
proach is not only used for feature detection but also for face recognition it will
be described in section 6.2.

More recently, Cootes et al . [41] introduced a technique called Active Ap-
pearance Models (AAM) (see section 2.3). By applying Principal Component
Analysis (PCA) on the training set of faces with manually labeled feature po-
sitions they first constructed a statistical shape model. Then, the face images
were warped to fit the mean shape and a second PCA on the so-called shape-
free patches was performed in order to obtain an independent statistical texture
model. To localize facial features in a new face image, the respective parame-
ters of the shape and texture models are iteratively estimated minimizing the
residual textural error between model and estimation. Note that, in order to
work effectively, methods based on AAMs need a rather good initialization of
feature positions.

Cristinacce and Cootes [49] proposed a method to detect 17 facial feature
points. First, they applied the face detector presented by Viola and Jones [250],
they resized the extracted face image to 100×100 pixels and then computed a so-
called feature response image. This image contains at each location (i.e. pixel)
the result of an Adaboost classifier combining three different feature extractors:
one based on normalized eye and mouth templates, one based on orientation
maps and the third using Boosted Cascade Detectors. Finally, the feature lo-
cations were determined by a non-linear optimization method, which they call
Shape Optimized Search (SOS). It uses a statistical shape model, initially com-
puted by PCA, and a fitting function taking into account both shape and the
response of the feature extractors, i.e. the feature response image.

In another work [50], Cristinacce et al . proposed a feature detection tech-
nique using Boosted Cascade Detectors [250] and also a statistical model. They
first localized the face and facial features with the Boosted Cascade Detectors
trained on appropriate image patches. Then, they modeled the pairwise condi-
tional distribution of feature positions using histograms, a technique which they
call “Pairwise Reinforcement of Feature Responses” (PRFR). Finally, an AAM
variant due to Scott et al . [221] was used to refine the feature positions. They
showed that this method outperforms their previous work [49] as well as purely
AAM-based methods [41].

Evaluation

The comparison of the performance of feature detection approaches outlined the
previous sections is rather difficult as the authors used different and often private
face databases to evaluate their methods. Moreover, not all methods detect
the same facial features and/or the same number of features. Nevertheless,
an overview of the performance of some facial feature detection methods is
presented in table 5.1. The allowed error in the last column represents the error

101

5.2. STATE-OF-THE-ART

threshold normalized w.r.t. the inter-ocular distance. A question mark signifies
that the allowed error has not been reported in the paper. In this case, the
detection rate does not tell very much about the precision of the respective
methods.

Author Database Facial Features

Detec-

tion

rate

Allowed

error

Leung [141] private eyes,nose (5 pts.) 86% ?

Reinders [194] private right eye (4 pts.) 96% 10%

Shakunaga [223] private
eyes,nose,mouth

96% ?
ears (8 pts.)

Jesorsky [116]
BIOID [22]

eyes (2 pts.)
80% 10%

XM2VTS [160] 92% 10%

Sirohey [229] Aberdeen [185] eyes (4 pts.) 90% ?

Feris [68] Yale[16],FERET[183]
eyes (4 pts.) 95% ≈ 5%

nostrils (2 pts.) 95% ≈ 5%
mouth (2 pts.) 88% ≈ 5%

Cristinacce [49] BIOID [22]
eyes,nose,mouth 85% 10%

(17 pts.) 96% 15%

Gourier [88] private
eyes (2 pts.) 97% ?

mouths (1 pt.) 88.8% ?

Hamouz [94]
BIOID [22]

eyes,nose,mouth
(10 pts.)

76% 5%
XM2VTS [160] 88% 5%

BANCA [7] 81.4% 5%

Table 5.1: Overview of detection rates of some published facial feature detection
methods

For an allowed error of about 5%, the approach proposed by Feris et al .
[68] shows good results on set of images from the Yale [16] and FERET [183]
databases. And for an allowed error of 10%, Jesorsky et al . [116] obtain ac-
ceptable results on the BioID [22] and the XM2VTS [160] databases. Reinders
et al . [194] also report a good detection rate. However, their method only de-
tects eye features, and unfortunately they used a private database. Finally, very
good results have been obtained by the approach proposed by Cristinacce and
Cootes [49], i.e. 96% with 15% allowed error and 85% with 10% allowed error,
considering the rather difficult database BioID they used. Refer to Appendix A
for excerpts from some of these databases.

Up to the present, most of the published approaches have been evaluated
on face databases containing images taken under rather constrained conditions.
In contrast to these methods, we will propose a novel system based on Con-
volutional Neural Networks that is able to precisely and robustly detect facial
features under less constrained conditions.

102

CHAPTER 5. FACIAL FEATURE DETECTION

5.3 Facial Feature Detection with Convolutional

Neural Networks

5.3.1 Introduction

We propose a hierarchical neural-based facial feature detection scheme which
is designed to precisely locate fine facial features in faces of variable size and
appearance, rotated up to ±30 degrees in the image plane and turned up to
±60 degrees, in complex still gray-scale images [53, 54, 82, 59]. Using still
gray-scale images makes the approach more generic but also more challenging
as skin color or motion clue cannot be used to aid detection. The system we
present is able to detect facial features in very complex images taken under a
wide variety of poses, in low resolution images, with partial occlusions, noise and
extreme lighting variations. The proposed approach is divided into three stages;
in the first stage, faces contained in the image are automatically located. The
second stage consists in finding the approximate positions of local facial features
within the detected face regions. In a final stage, these feature positions and
their surrounding image regions are used to locate finer facial features.

The face detector as well as the coarse and fine feature detectors are based
on a specific architecture of convolutional and hetero-associative neural layers.
They consist of several different neural network components forming a pipeline
of specialized image transformations, learned automatically from a training set
of faces with annotated facial features. All components of a feature detector
are sequentially connected and can thus be trained by simply presenting the
input image and desired output, i.e. feature positions. Global constraints or
models are automatically learned and used implicitly in the detection process.
After training, the facial feature detection system acts like a pipeline of simple
convolution and sub-sampling modules that treat the raw input face image as
a whole and build facial feature maps where facial feature positions are easily
retrieved.

5.3.2 Architecture of the Facial Feature Detection System

The proposed system consists of a number of independent detection components
operating in a hierarchical way and on different parts of the image (see Fig. 5.1).
The first component performs automatic face detection using the “Convolutional
Face Finder” (CFF) proposed by Garcia and Delakis [81] (see section 4.2.3)
which detects faces and finds the respective detected face bounding boxes in the
input images.

The proposed Facial Feature Detector (FFD) processes the previously ex-
tracted face regions and locates four facial features: the eye centers, the tip of
the nose and the center of the mouth. Then, the eye and mouth regions are
processed by a specialized Eye Feature Detector (EFD) and a Mouth Feature
Detector (MFD) which locate finer facial features; the EFD is designed to detect
the eye corners and the pupil, and the MFD is designed to detect the left and
right corner of the mouth and the center points on the outer edges of the upper
and lower lip.

103

5.3. FACIAL FEATURE DETECTION WITH CONVOLUTIONAL

NEURAL NETWORKS

FFD

Extraction and Rescaling

Extraction and Rescaling

MFDEFDEFD

CFF

Figure 5.1: Principal stages of the feature detection process of the proposed
approach

104

CHAPTER 5. FACIAL FEATURE DETECTION

Figure 5.2: Some input images and corresponding desired output feature maps
(right eye, left eye, nose tip and mouth center). For illustration purposes, the
last column shows the superposition of the desired outputs and the image at
the bottom shows an enlarged area of one of the desired feature maps

The Initial Facial Feature Detector

The architecture of the initial Facial Feature Detector (FFD) is a specific type of
Convolutional Neural Network (CNN) (c.f . chapter 3) consisting of six layers,
where the first layer is the input layer, the three following layers are convo-
lutional and sub-sampling layers, and the last two layers are standard feed-
forward neuron layers. The aim of the system is to learn a non-linear function
that transforms a raw input face image into desired output feature maps where
facial features are highlighted (see Fig. 5.2).

Figure 5.3 gives an overview of the FFD architecture. The retina l1 receives a
cropped face image of 46×56 pixels, containing gray values normalized between
−1 and +1. No further pre-processing such as contrast enhancement, noise
reduction or any other kind of filtering is performed by the retina. The second
layer l2 consists of four feature maps each having a 7× 7 trainable kernel and
a linear activation function. Layer l3 is a sub-sampling layer with window size
2 × 2 and sigmoid activation function. Layer l4 is another convolutional layer
and consists of only one feature map with a 5× 5 kernel and sigmoid activation
function.

While the previous layers act principally as feature extraction layers, layers
l5 and l6 use the local information to form a global model. Layer l5 is composed
of sigmoidal neurons fully connected to layer l4 and is dedicated to learning
models (or constellations) of features and to activate the targeted positions
in the output feature maps. This part of the network was inspired by Auto-
Associative Neural Networks (AANN) (c.f . section 2.8.4) which are trained to
reproduce an input (pattern) by means of a hidden layer containing much less
neurons than the input dimension. It has been shown that AANNs effectively
perform a dimensionality reduction similar to the one produced by a Principal
Component Analysis (PCA). In our case, we do not want to reproduce the input
but rather to associate the output of the feature map in l4 with the desired
output in l6. In that way, we only allow certain constellations of features in
layer l6 to be activated. This global processing step makes the system less

105

5.3. FACIAL FEATURE DETECTION WITH CONVOLUTIONAL

NEURAL NETWORKS

subsampling
convolution 7x7 convolution 5x5

nose

left eye

right eye

mouth

feature extraction

model association

l1: 46x56

l2: 40x50

l3: 20x25

l4: 16x21

l5: 100 l6: 46x56

Figure 5.3: Architecture of the facial feature detector FFD

sensitive to partial occlusions and noise, e.g. if one eye is not visible, its position
is inferred by the positions of other visible local features by activating the most
likely constellation. Indeed, each of the four feature maps is activated via a
set of learned weights which receive a global description of the face produced
in layer l4. Layer l5 contains 100 neurons, and the output layer l6 is composed
of four feature maps, one for each feature that is to be detected. These maps
have the same dimensions as the image at the input layer, i.e. 46 × 56, and
are fully connected to the preceding neurons. Sigmoid activation functions are
used for both layers. In sections 5.3.3 and 5.3.4, we will describe the training
methodology and the way in which this neural architecture can be efficiently
applied for automatic facial feature detection.

Finer Facial Feature Detectors

As previously mentioned, we designed two types of specialized feature detectors:
the Eye Feature Detector (EFD) and the Mouth Feature Detector (MFD). The
EFD is trained to detect the eye corners and pupils in eye images and the
MFD to detect mouth corners and upper/lower lip boundaries in mouth images.
Figures 5.4 and 5.5 show examples of images with desired facial feature points,
the desired output feature maps and the superposed desired output maps.

The architecture of the previously described FFD and the EFD/MFD archi-
tectures differ only in the number of feature maps and neurons in the respective
layers. The number of layers, the type of neurons in the respective layers and
the connection scheme are the same for all feature detectors. The components
of the EFD and the MFD are as follows:

106

CHAPTER 5. FACIAL FEATURE DETECTION

Figure 5.4: Example of an EFD input image with desired facial feature points,
desired output maps and superposed desired output maps.

Figure 5.5: Example of a MFD input image with desired facial feature points,
desired output maps and superposed desired output maps.

• EFD: l1:53x40, l2:4x47x34, l3:4x23x17, l4:19x13, l5:50, l6:3x53x40

• MFD: l1:57x39, l2:5x51x33, l3:5x25x16, l4:21x12, l5:120, l6:4x57x39

The different parameters governing the proposed architectures, i.e. the num-
ber of layers, the number of planes and their connectivity, as well as the size
of the receptive fields, have been chosen experimentally. Practically, different
architectures have been iteratively built, trained, and tested over large training
sets. We retained the architecture that performed efficiently in terms of good
detection rates while still containing an acceptable number of free parameters.

5.3.3 Training the Facial Feature Detectors

Each of the different parts of the system, i.e. CFF, FFD, EFD and MFD, is
trained separately with a specific training set. CFF training is described in
section 4.5.3. For eye feature detection, a single EFD is trained to treat left eye
images; right eye features can then be detected by simply mirroring the input
eye image horizontally. FFD, EFD and MFD are all trained using the same
procedure.

The FFD training data set we used consists of face images extracted from
the following databases: FERET [183] (744 images), PIE [227] (1,216 images),
the Yale face database [16] (165 images), the Stirling face database [185] (185
images) as well as some face images downloaded from the Internet (167 images)
(see Appendix A). In total, it comprises about 2,000 face images used for
training and 500 face images used for validation, each of them centered and
normalized in scale. The EFD and MFD training data consists of eye and
mouth images extracted from Yale (EFD: 290 images; MFD: 290 images), AR
[154] (EFD: 670 images; MFD: 375 images) and also images downloaded from the
Internet (EFD: 172 images; MFD: 88 images), which results in a total number
of 1,132 eye images and 753 mouth images. In order to make the system more
robust to translation, rotation and scale, we created virtual samples of the
extracted images by applying small translations (−2 and +2 pixels), rotation
(from −20 to +20 degrees with steps of 5 degrees) and scaling (by a factor of
0.9 and 1.1). Figure 5.6 shows one of the training images and the respective
transformed images. At the start of the training phase, the respective desired
output maps are built to contain the value +1 at the feature positions and
−1 everywhere else. However, in order to improve convergence and robustness,
we want these output values to decrease smoothly in the neighborhood of each

107

5.3. FACIAL FEATURE DETECTION WITH CONVOLUTIONAL

NEURAL NETWORKS

Figure 5.6: Virtual face images created by applying various geometric transfor-
mations

feature position. Therefore, the desired output maps are created using two-
dimensional Gaussian functions centered at the feature position and normalized
between −1 and +1. Thus, for a particular desired feature map o having its
desired feature at position (µx, µy), the function is as follows:

o(x, y) = 2e
− 1

2

(
(x−µx)2

σ2
x

+
(y−µy)2

σ2
y

)

− 1

In our experiments, we set the variances σ2
x and σ2

y to 2. For illustration pur-
poses, Fig. 5.2 shows an enlarged part of a desired feature map around the
respective feature position.

The training phase was performed using the standard Backpropagation algo-
rithm with momentum which has been adapted in order to account for weight
sharing in the convolution layers l2 and l4 (see Alg. 8 on page 57). At each
iteration, every image of the training set is presented to the system and the
weights are updated accordingly (online training). Classically, in order to avoid
over-fitting, after each training iteration, a validation phase is performed using
the validation set. In fact, a minimal error on the validation set is supposed
to provide best generalization and the corresponding weight configuration is
stored. We considered two alternative error criteria to minimize:

• the mean-squared error (MSE) between the values of the output maps
yk(i, j) and the respective values of the desired output maps ok(i, j), i.e.
the error is calculated neuron by neuron:

EMSE =
1

FNM

√
√
√
√

F∑

k=1

N∑

i=1

M∑

j=1

(yk(i, j)− ok(i, j))2 , (5.1)

where F is the number of output feature maps and N×M their dimension.

• a kind of distance between the detected output feature positions (iyk, jyk)
and the respective desired output feature positions (iok, jok):

Edist =
1

F

√
√
√
√

F∑

k=1

((iyk − iok)2 + (jyk − jok)2) , (5.2)

where

(iyk, jyk) = argmax
i,j

yk(i, j) and (5.3)

(iok, jok) = argmax
i,j

ok(i, j) (5.4)

108

CHAPTER 5. FACIAL FEATURE DETECTION

In our experiments, using Edist provided the best results in terms of precision
on the test sets.

5.3.4 Facial Feature Detection Procedure

Figure 5.1 illustrates the principal stages of the proposed feature detection sys-
tem. In the first step, the CFF detects faces in the input image and outputs the
respective face bounding boxes. The extracted faces are resized to the retina
size of the FFD and processed by the trained FFD. The eye positions, the nose
tip and the mouth center in the resized face image can be inferred directly by
simply searching for the global maximum in each of the four output maps. As
the face bounding boxes may be imprecise, the last steps are repeated for slightly
translated and scaled face image regions. In our experiments, we achieved good
results with translations by −4,−2, 0, +2, +4 pixels and scale factors of 0.9, 1.0
and 1.1. Then, for each face image region, the sum of the maxima of the output
maps is taken as a confidence measure, and the solution having the maximal
sum is selected. Having located eye and mouth positions, the eye and mouth
regions of the original image are extracted, resized and passed on to the trained
EFD and MFD. Eye and mouth features are then detected by EFD and MFD
in the same way as FFD detects the four initial facial features. Finally, the
detected feature positions are mapped onto the original image.

5.3.5 Experimental Results

In order to measure the performance of the proposed facial feature detector
system, we first conducted several tests on FFD separately using pre-cropped
face images, and later on for the whole feature detection system, i.e. CFF, FFD,
EFD, MFD. To this end, we created several test sets with annotated images
that are neither contained in the training nor in the validation set. The test
face images for FFD were extracted from PIE (1,226 images), FERET (1,058
images) and from images from the Internet (384 images) (see Appendix A). As
for the training and validation sets, the test sets were augmented with small
transformations of the original images, i.e. translation, rotation and scaling.

The test images were presented to the feature detectors, and for each image
the mean Euclidian distance me between the n detected feature positions and
the true feature positions, normalized with respect to the inter-ocular distance
deyes, is computed:

me =
1

n deyes

n∑

k=1

√

(iyk − iok)2 + (jyk − jok)2 , (5.5)

where (iyk, jyk) is the position output by the system, and (iok, jok) is the true
position of feature i. Over all processed images of size 46×56 pixels, deyes varies
between 11.0 and 23.7 pixels. Thus, for example an error of 5% of the inter-
ocular distance represents about 0.5 to 1.2 pixels; an error of 10% represents
1.1 to 2.37 pixels. Note also that the manual feature annotation of the training
data can entail small errors which we neglect in these estimations.

The analysis of the performance of the FFD is presented in Figs. 5.7-5.16.
Figure 5.7 shows the proportion of faces with successfully detected features
varying a maximum me allowed. The FERET test set clearly gave the best

109

5.3. FACIAL FEATURE DETECTION WITH CONVOLUTIONAL

NEURAL NETWORKS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

pr
op

or
tio

n
of

 fa
ce

s
w

ith
 s

uc
ce

sf
ul

ly
 d

et
ec

te
d

fe
at

ur
es

me: normalised mean feature distance

FERET subset
Google images

PIE subset

Figure 5.7: Detection rate versus me of the four features

detection results because there are practically no pose and lighting variations as
opposed to the PIE test set. The detection rate is 99.6% if an error me of 10%
of the inter-ocular distance (around 1.7 pixel) is tolerated for the FERET test
set. The Google test set additionally contains images of low quality, with noise,
extreme lighting and pose variations and partial occlusions. For the PIE and
Google test sets the good detection rate is around 72% if an error me of 10% of
the inter-ocular distance is tolerated and over 92% with me=20% (mean error
of around 3.4 pixels).

Figures 5.8-5.10 show, for FERET, the Google images and the PIE subset
respectively, the proportion of successfully detected features for each of the four
features separately while varying mei. Note that the jagged appearance of
the curves is due to the relatively low resolution of the images, i.e. distance
measures are discretized very roughly. Obviously, the detection of the eyes is
more precise than the detection of the tip of the nose and the mouth. Clearly,
this is due to the fact that the local appearance of the eyes varies less under
different poses and lighting conditions. The detection results of the tip of the
nose are the least reliable. This seems plausible because the PIE test set, for
example, shows considerable variations in pose and lighting and thus a large
variation in the appearance of the nose. The mouth is also subject to strong
variations due to facial expressions (e.g. smile, open/closed mouth).

The sensitivity of the proposed algorithm regarding extreme lighting and
pose variations may be reduced by preprocessing the images before feature de-
tection, using explicit models of face illumination and pose (see sections 4.3 and
4.4). In the proposed approach, however, we considered learning the possible
illumination and pose variations without explicitely modeling them. Finding a
way to couple the Neural Network with some a-priori physics-based illumination

110

CHAPTER 5. FACIAL FEATURE DETECTION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

pr
op

or
tio

n
of

 s
uc

ce
sf

ul
ly

 d
et

ec
te

d
fe

at
ur

es

mei: normalised feature distance

left eye
right eye

mouth
nose

Figure 5.8: Detection rate versus mei of each facial feature (FERET)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

pr
op

or
tio

n
of

 s
uc

ce
sf

ul
ly

 d
et

ec
te

d
fe

at
ur

es

mei: normalised feature distance

left eye
right eye

mouth
nose

Figure 5.9: Detection rate versus mei of each facial feature (Google images)

111

5.3. FACIAL FEATURE DETECTION WITH CONVOLUTIONAL

NEURAL NETWORKS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

pr
op

or
tio

n
of

 s
uc

ce
sf

ul
ly

 d
et

ec
te

d
fe

at
ur

es

mei: normalised feature distance

left eye
right eye

mouth
nose

Figure 5.10: Detection rate versus mei of each facial feature (PIE subset)

models may reduce the degrees of freedom of the model and help classification.
This is an issue which is not treated in this work but might be an interesting
idea to explore in the future.

So far, we simply used the normalized pixel intensities, i.e. the raw images,
as the CNN input. Figure 5.11(a) shows one example image. It is however not
obvious that this is the optimal choice of input features. For that reason, we also
trained two other CNNs with the same training data but receiving pre-processed
face images at their input layer. The first alternative is to use gradient images.
In this case, the input images are processed with a horizontal and a vertical
Sobel filter resulting in two gradient images. Thus, the input layer now contains
two input maps fully connected to the first convolution layer. Figure 5.11(b)
illustrates the respective filtered results of the image shown in 5.11(a). The
second alternative is to process the input face image with Gabor wavelet filters
of selected scales and orientations. Gabor wavelets are hierarchically arranged,
Gaussian modulated sinusoids. There is evidence that this is the way images
are processed in the primary visual cortex (V1) of the human brain [150]. We
chose three different scales and four orientations resulting in 12 Gabor wavelets.
Figure 5.11(c) shows the resulting outputs of the respective wavelet filters for
the image in Fig. 5.11(a). Note that in any case the input images are normalized
to be in the range [−1, +1] before presenting them to the CNN.

We trained two distinct CNNs with the same training data as the previously
described FFD system (see section 5.3.3), i.e. for the task of detecting four
feature points. The architecture of the two CNNs was almost the same as the
one depicted in Fig. 5.3. The only difference was the number of inputs depending
on the type of features used, i.e. two input maps for gradient images and 12
maps for the Gabor wavelet filter responses.

112

CHAPTER 5. FACIAL FEATURE DETECTION

(a) Raw input image

(b) Gradient images

(c) Gabor wavelet filter responses

Figure 5.11: The different types of input features that have been tested

Figures 5.12-5.14 compare the precision of the three trained CNNs by means
of the ROC curves on the FERET database, the Google images and the PIE sub-
set respectively. The ROC curves clearly show that on all tested databases the
CNN trained with the raw input images, i.e. only image intensities, outperforms
those trained with gradient images and Gabor wavelet filter responses. These
results suggest that CNNs trained for this type of face analysis task somehow
make use of the information contained in the absolute image intensities which
is largely or completely suppressed by using gradients or Gabor wavelet filters.

Another negative side-effect of using gradient images and especially Gabor
wavelet filtered input images is the higher number of connections and thus
trainable parameters of the CNN. This increase in complexity not only entails a
higher risk of overfitting the data but also a much slower learning and processing
time of the CNN in addition to the time spent for filtering the input images.
Finally, when using Gabor wavelets one has to “manually” choose appropriate
scales and orientations of the respective filters for a given problem, which is not
a trivial task. Hence, for the rest of this work, we only use the raw images as
the input for the CNNs.

Let us now analyze the sensitivity of the proposed feature detection system
with respect to pixel noise and partial occlusions. To this end, we conducted two
experiments on the FERET test set, the PIE subset and the Google images. In
the first experiment, we added Gaussian noise with varying standard deviation σ
to each pixel of the normalized face images (being in the range [0..255]). Figure
5.15 shows the mean feature error me with σ varying from 0 to 70. Note that
the proposed feature detector is very robust to noise as the error me remains
rather low while adding a considerable amount of noise. For the worst of the
three test sets (PIE subset) me stays below 20% for σ = 50. Example images
with corresponding amounts of added noises are shown at the top of Fig. 5.15.

The second experiment consists in occluding a certain percentage of the face
images by a black zone in the lower part. Figure 5.16 shows the mean feature
error me with an occlusion from 0 to 50%. For occlusions smaller than 40%
the only invisible feature, in most of the cases, is the mouth, and the error me

remains almost constant. Larger occlusions cover both mouth and nose, which
explains the abrupt increase of me in all of the three test sets.

113

5.3. FACIAL FEATURE DETECTION WITH CONVOLUTIONAL

NEURAL NETWORKS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

p
ro

p
o
rt

io
n
 o

f
fa

c
e
s
 w

it
h
 s

u
c
c
e
s
s
fu

lly
 d

e
te

c
te

d
 f
e
a
tu

re
s

me: normalized mean feature distance

Image intensities
Gradients

Gabor wavelet filter responses

Figure 5.12: ROC curves comparing the CNNs trained with different input
features (FERET database)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

p
ro

p
o
rt

io
n
 o

f
fa

c
e
s
 w

it
h
 s

u
c
c
e
s
s
fu

lly
 d

e
te

c
te

d
 f
e
a
tu

re
s

me: normalized mean feature distance

Image intensities
Gradients

Gabor wavelet filter responses

Figure 5.13: ROC curves comparing the CNNs trained with different input
features (Google images)

114

CHAPTER 5. FACIAL FEATURE DETECTION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

p
ro

p
o
rt

io
n
 o

f
fa

c
e
s
 w

it
h
 s

u
c
c
e
s
s
fu

lly
 d

e
te

c
te

d
 f
e
a
tu

re
s

me: normalized mean feature distance

Image intensities
Gradients

Gabor wavelet filter responses

Figure 5.14: ROC curves comparing the CNNs trained with different input
features (PIE subset)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50 60 70

m
e:

 n
or

m
al

is
ed

 m
ea

n
fe

at
ur

e
di

st
an

ce

gaussian noise standard deviation

FERET subset
Google Images

PIE subset

Figure 5.15: Sensitivity analysis: Gaussian noise

115

5.3. FACIAL FEATURE DETECTION WITH CONVOLUTIONAL

NEURAL NETWORKS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

m
e:

 n
or

m
al

is
ed

 m
ea

n
fe

at
ur

es
 d

is
ta

nc
e

percentage of occlusion

FERET subset
Google images

PIE subset

Figure 5.16: Sensitivity analysis: partial occlusion

Finally, we tested the performance of the whole feature detection system
as described in section 5.3.4. Figure 5.17 shows some example images of the
FERET, BioID and the AR face database with the 10 detected feature points.
The databases contain frontal-view face images with different illumination and
facial expressions.

Precision results for the AR and BioID databases are illustrated in Fig. 5.18
and Fig. 5.19 respectively. Note that none of the test images has been used
for training the system. The figures show the detection rates for eye features (6
points) and mouth features (4 points) separately as well as the overall detection
rate, i.e. for all 10 points. Note that the overall precision of eye and mouth
feature positions is higher than the initial feature positions detected by the
FFD. The detection rate of the complete system on the AR face database is
96% and 87% on the BioID database if an error me of 10% of the inter-ocular
distance is tolerated.

If we only consider the precision of the eye pupils, we can compare our
results to some other published methods. Table 5.2 summarizes the detection
rates on the BioID database. The proposed approach clearly outperforms the
methods proposed by Jesorsky et al . [116] and Hamouz et al . [93]. The approach
proposed by Cristinacce et al . [50] performs slightly better for an allowed error
of 10%, but its detection rate is clearly inferior for a smaller allowed error (5%)
and also for an allowed error of 15%.

Figure 5.20 shows some results obtained on various images of the Google
test set. The images are of rather low quality or contain faces in varying poses
and under difficult lighting conditions. Notice that the system is able to cope
with varying head pose, partial face occlusions (black glasses, occluding ob-
jects), extreme illumination and very poor resolution images. The last line in

116

CHAPTER 5. FACIAL FEATURE DETECTION

Figure 5.17: Facial feature detection results on different face databases: top:
FERET, middle: BioID, bottom: AR face database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

pr
op

or
tio

n
of

 im
ag

es
 w

ith
 s

uc
ce

sf
ul

ly
 d

et
ec

te
d

fe
at

ur
es

me: normalised mean feature distance

eyes (6 points)
mouths (4 points)

all (10 points)

Figure 5.18: Overall detection rate for AR

117

5.3. FACIAL FEATURE DETECTION WITH CONVOLUTIONAL

NEURAL NETWORKS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

pr
op

or
tio

n
of

 im
ag

es
 w

ith
 s

uc
ce

sf
ul

ly
 d

et
ec

te
d

fe
at

ur
es

me: normalised mean feature distance

eyes (6 points)
mouths (4 points)

all (10 points)

Figure 5.19: Overall detection rate for BioID

Allowed error w.r.t. deyes

Method 5% 10% 15%

Jesorsky et al . [116] 40% 79% 93%
Cristinacce et al . [50] 60% 96% 97%
Hamouz et al . [93] 50% 66% 70%

proposed approach 79% 92% 98%

Table 5.2: Comparison of eye pupil detection rates of some published methods
on the BioID database

118

CHAPTER 5. FACIAL FEATURE DETECTION

Figure 5.20: Some results of combined face and facial feature detection

119

5.4. CONCLUSION

Fig. 5.20 contains some images with imprecisely detected features. Naturally,
the precision drops with this test set but we still obtained a detection rate of
76% with an allowed error of 10% and 92% with an allowed error of 15% of the
inter-ocular distance.

The FFD detecting four facial feature points has also been implemented on
embedded platforms by Roux et al . [204]. A considerable gain in speed of the
algorithm has been obtained by the authors by reducing the memory usage and
conducting further algorithmic optimizations. The final version processed 68.7
faces/s on a Pentium IV at 3.2 GHz and 12.8 faces/s on a Xscale PXA27x at
624 MHz. For an application with integrated face and facial feature detector
on a Xscale PXA27x, they further report an execution time of 7 frames/s for
QCIF images (176× 144 pixels) containing one face per image.

5.4 Conclusion

In this chapter, we presented the problem of facial feature detection in images,
which is considered a key issue in many facial analysis applications. We first
outlined the state-of-the-art in this field and then proposed a novel approach
to facial feature detection using Convolutional Neural Networks (CNN). The
system is composed of several CNNs having a specific architecture and operating
on different levels in a hierarchical manner. The first level CNN which we called
FFD detects four facial features: the eyes, the nose tip and the mouth center
and then extracts the regions around the eyes and the mouth and passes them
on to specialized feature detectors, the so-called Eye Feature Detector (EFD)
and the Mouth Feature Detector (MFD), which in turn detect 10 more specific
facial features such as the eye or mouth corners.

Each of the single feature detectors is trained with a set of face, eye or mouth
images annotated with the respective feature positions.

Our experimental results show that using the image intensities as input of the
CNN yields to the best results compared to gradient images and Gabor wavelet
filter responses. We then presented the detection rates on different public and
private face databases and experimentally show that the proposed approach
is precise and very robust to pixel noise and partial occlusions. Further, the
system shows to be insensitive to extreme lighting conditions and varying pose.
Comparing the precision results of eye pupil detection on the BioID database,
the proposed approach outperforms other state-of-the-art systems.

120

Chapter 6

Face and Gender

Recognition

6.1 Introduction

Automatic face recognition is a central topic in face analysis-related research,
and it has gained a lot of importance during the last decades due to the vast num-
ber of possible applications (see section 1.2). Let us recall that one can differ-
entiate two types of applications: open-world and closed-world. A closed-world
face recognition system only copes with a limited number of known persons
whereas an open-world application also implements the notion of an unknown
person, corresponding to all persons that have not been explicitely learned by
the system. Moreover, as already mentioned in section 1.2, face recognition
can be employed for authentication or verification purposes. That means, given
an input face image, a face authentication system is supposed to reply with the
identity of the respective person, whereas a face verification system additionally
receives a claimed identity and decides if this identity corresponds to the face
or not. In any case, both of these applications are classification problems, and,
from a technical point of view, they differ only marginally.

In this chapter, we will briefly describe some of the most important ap-
proaches to automatic face recognition. We will then propose a novel face
recognition method based on image reconstruction using Convolutional Neural
Networks. Further, we present experimental results showing the effectiveness of
this approach and its robustness to noise and partial occlusions.

Finally, we will turn to the problem of gender recognition which is similar to
face recognition in that it is also a classification problem. However, in this case,
there are only two classes: male and female. We propose a CNN-based approach
with a topology similar to the Convolutional Face Finder (CFF) described in
section 4.2.3. We then experimentally show that, in terms of classification rate,
this classifier achieves comparable results to previously published gender recog-
nition methods based on Adaboost and SVMs.

121

6.2. STATE-OF-THE-ART IN FACE RECOGNITION

6.2 State-of-the-art in Face Recognition

There are numerous works in the field of automatic face recognition and the
number of publications has been constantly increasing in the last years (see
Gross et al . [90] and Zhao and Chellappa [272] for literature surveys). The
existing approaches can be roughly divided into two groups: global and local
approaches of which the most important ones will be outlined in the following.
Note that the majority of face recognition methods require the face to be local-
ized in the input image beforehand. Some even necessitate a precise alignment
of the face, such that it is in an upright position, centered and in a predefined
scale.

Global Approaches

Global approaches process the face image as a whole mostly applying some type
of statistical projection. The idea is to form a one-dimensional vector from the
input image and project this (high-dimensional) vector into a sub-space of lower
dimension where classification is supposed to be easier. Thus, such a projection
– mostly linear – is supposed to select the most prominent features in order to
discriminate the faces of different persons.

The most well-known of these approaches is the so-called Eigenfaces method
introduced by Turk and Pentland [243]. Here, a PCA (c.f . section 2.2.1) is per-
formed on the set of training face images projecting them into a linear subspace
where the orthogonal eigen-vectors represent best the distribution of face vec-
tors. The classification of new face images is then performed by projecting
them into the linear subspace, forming a vector by selecting the eigen-values
of the most discriminant dimensions and comparing these vectors to the ones
of the training images. Much work has been done on the choice of the eigen-
vectors. For example, Kirby and Sirovich [122] proposed a criterion based on
a so-called energy dimension (see section 2.2.1) where the dimensions with the
largest eigen-values are kept such that the normalized sum of these eigen-values
is beyond a certain threshold (e.g. 90%). Martinez et al . [155] showed that
the recognition rate can be improved by ignoring the first three dimensions,
commonly deemed to account for illumination changes.

Another well-known approach presented by Belhumeur et al . [16] uses the
Linear Discriminant Analysis (LDA) (c.f . section 2.2.2) and is called Fisher-
faces as it maximizes the Fisher’s criterion, i.e. a quotient of inter-class and
intra-class variance. This means, it is not concerned with the best represen-
tation of the input data but rather with its maximum separability. However,
since the dimension of the input vectors (the face images) is much greater than
their number, there is a singularity problem when inverting the matrix of intra-
class variance. To avoid this a PCA on the input vectors can be performed
beforehand.

Numerous variants of these linear projection methods have been proposed
in the literature [205, 236, 165, 233, 271]. Algorithms based on the Independent
Component Analysis (ICA) have also been presented by Bartlett et al . [12].

More recently, Visani et al . [253] introduced an approach based on the Bilin-
ear Discriminant Analysis (BDA) which realizes a two-dimensional linear pro-
jection of the lines and the columns of the face images. Then, they applied
Normalized Radial Basis Function Networks to classify the projected vectors.

122

CHAPTER 6. FACE AND GENDER RECOGNITION

A technique called Discriminative Common Vectors (DCV) is due to Çevi-
kalp et al . [36], which is a variation of the LDA for small sample sizes. For each
individual they calculated a so-called common vector which is the result of a
projection that eliminates features corresponding to the respective intra-class
variation. Then, classification was performed using the common vectors.

There are also some approaches that do not use only one vector subspace
but several. For example, the approach by Pentland et al . [181] computes a
subspace for each orientation and scale of a face in the input image. A new face
is then recognized by projecting the image into all subspaces and selecting the
one where it is the closest to an vector of the face database.

Vasilescu et al . [247] have generalized this technique by using tensors. In
their approach they proposed four-dimensional tensors corresponding to class,
pose, illumination condition and facial expression respectively.

Other projection approaches [242, 262, 237, 261] construct a separate sub-
space for each class, i.e. each person.

A different face recognition approach has been introduced by Cootes et al .
[41] called Active Appearance Models (AAM). As outlined in section 5.2, this
method models independently shape and texture of the face by applying PCA
respectively. The vector of shape and texture coefficients is then used for recog-
nition. Thus, a new face that is to be recognized is fit to the model by an
iterative optimization procedure and the resulting shape and texture parame-
ters are compared to the ones from the training database. Lanitis et al . [131]
applied this method for the first time to face recognition. Also, Edwards et al .
[60] and Kumar et al . [128] presented face recognition methods based on AAMs.

Neural Networks have also been applied to automatic face recognition. For
example, Lawrence et al . [132] proposed a method based on Self-Organizing
Maps (SOM) to cluster the set of training images and thus construct a lower-
dimensional subspace that conserves the topology of the input space. After
projecting a face image onto the SOM, they applied a Convolutional Neural
Network (CNN) in order to classify the signatures, i.e. the low-dimensional
vectors.

Cottrell and Fleming [45] proposed to extract features by a non-linear pro-
jection using an Auto-Associative Neural Network (AANN). To classify the re-
sulting features the applied a trained Multi-Layer Perceptron (MLP).

The approach of Lin et al . [146] uses probabilistic decision-based Neural
Networks combining the advantages of statistical approaches and Neural Net-
works. Further, there are many approaches using Radial Basis Function Net-
works (RBFN) to classify feature vectors previously extracted, for example by a
linear projection. Thomaz et al . [235] and Er et al . [62] proposed such methods.

Support Vector Machines (SVM), introduced by Vapnik [246], have also
been used in the context of face recognition. Philips [184], for example, first
used Bayesian subspaces to reduce the problem to two classes: inter-class and
intra-class variations. Then, SVMs were applied for classification.

Finally, Jonsson et al . [119] presented a face authentication method using
one SVM per person in order to classify the signatures obtained by PCA or by
LDA.

123

6.2. STATE-OF-THE-ART IN FACE RECOGNITION

Local Approaches

Local face recognition approaches rely on a separate processing of different re-
gions in a face image. Mostly, this implies the extraction of local facial features.
Often, local and global processing is combined in order to put the different local
features into relation with each other. The most important of them are outlined
in the following.

Brunelli and Poggio [33] proposed a technique that automatically extracts
a set of 30 geometrical features from face images. In order to recognize a face,
they compared these features pairwise using a Mahalanobis distance.

Another geometric approach has been proposed by Takács [234] who used
binary contour maps extracted from the face images by a Sobel filter. The
similarity between two contours was then computed by using a variant of the
Hausdorff distance. This approach has been extended by Gao et al . [80] by
transforming the contour maps into so-called Line Edge Maps (LEM) containing
a list of line segments. The distance measure, however, was the same as the one
Takács used.

Pentland et al . [181] introduced the approach of “Modular Eigenspaces”
performing a PCA and classification on separate facial regions, i.e. the eyes,
the nose and the overall face image. The mouth region showing much variation
due to facial expressions leaded to a decrease of the recognition rate in their
experiments.

The approach due to Heisele et al . [96] first detects the face region and
10 facial feature points using their previously published face and facial feature
detector [97]. Then, the image regions around the respective facial features are
extracted. Finally, the concatenated line (or row) vectors of these regions were
combined to one large vector that is classified by a SVM.

Face regions were also extracted by a method proposed by Price and Gee
[189]. Here, the authors considered three different image regions: a rectangular
band going from the forehead to the bottom of the nose, one containing the two
eyes and one being the entire image itself. Finally, they applied a variant of
LDA to classify the respective face regions.

Another approach called Local Component Analysis (LCA) is due to Penev
and Atick [180]. They performed several PCAs to extract different local features
and combined them in a sort of deformable grid. A procedure that minimizes
the reconstruction error finds then the optimal set of local grids.

Samaria et al . [214] introduced an approach based on Hidden Markov Models
(HMM). Here, the face images were segmented into a certain number of over-
lapping sub-bands, and these sub-bands were in turn concatenated to a large
one-dimensional vector or compressed by DCT. Then for each class, i.e. each
person, a HMM was created reflecting the probabilistic sequence of sub-bands.
New face images were classified applying the well-known Viterbi algorithm in
order to compare the sequence of respective sub-bands with the trained models.

This approach has also been extended to so-called pseudo-2D HMMs [214,
169] which model horizontal and vertical sequences of image blocks. However,
the blocks are not completely connected to each other, hence the approach is
called pseudo-2D (see section 2.4.4).

Perronnin et al . [182] proposed an approach based on a 2D HMM frame-
work where facial expressions and illumination variations were independently
modeled. In this framework, a grid is placed on the face image where at each

124

CHAPTER 6. FACE AND GENDER RECOGNITION

location the system is assumed to be in some unknown state which depends on
its adjacent states and is modeled by the transition probabilities of the HMM.
This ensures the global consistency of the model. The local transformations,
i.e. grid displacements and intensity variations, are represented by the states of
the HMM. Moreover, at each position an observation is emitted according to the
state-conditional emission probabilities which correspond to the cost of the local
mapping. These mapping costs are modeled by multi-variate Gaussian mixture
models. Finally, this probabilistic model of possible local transformations al-
lows the establishment of a distance measure between a known face image and
a unknown face image and thus face identification.

A different approach called Elastic Bunch Graph Matching (EBGM) has
been presented by Wiskott et al . [260]. Here, faces are represented by so-called
Face Bunch Graphs (FBG), where each node of the graph is associated with
the possible appearances of a certain facial feature, e.g. the left or right eye.
These appearances are represented by so-called jets, i.e. sets of 40 complex
coefficients being the response of specific Gabor wavelet filters at a particular
image position. The edges of the graph are labeled with the mean distance of
the respective adjacent features. Once the FBGs have been created for each
person using a training set of manually labeled face images, they can be applied
to an unknown face by a specific matching algorithm. This algorithm iteratively
tries to fit a graph to the face image by minimizing a similarity function taking
into account both the geometrical similarity and the similarity of appearance
of the features at each node. The final recognition is performed using another
similarity criterion only based on the Gabor jets.

6.3 Face Recognition with Convolutional Neural

Networks

6.3.1 Introduction

The drawback of most of the global approaches is their sensitivity to illumination
changes. This problem is mainly due to the linear processing, whereas, under
varying lighting conditions, the appearance of a face image undergoes a non-
linear transformation. On the other hand, the drawback of local methods is that
they often require an empirical choice of parameters, e.g. number of scales and
orientations of Gabor filters or the positions where to apply the filters, which
makes their implementation cumbersome and difficult.

We propose an approach [56, 82] that alleviates these problems by using a
special type of Convolutional Neural Network (CNN) that learns to reconstruct
from any face image of a given database a reference face image that is supposed
to represent “best” the respective person and that is chosen beforehand. Figure
6.1 illustrates this in a basic schema with two example persons.

The “bottle-neck” architecture of the Neural Network actually learns a non-
linear projection of the face images into a sub-space of lower dimension and then
reconstructs the respective reference images from this compressed representa-
tion (c.f . section 2.8.4 on Auto-Associative Neural Networks). By using a CNN,
an empirical choice of filter parameters is not necessary. Instead, the Neural
Network learns these filters conjointly with the projection and reconstruction
parameters while minimizing the overall reconstruction error. After training,

125

6.3. FACE RECOGNITION WITH CONVOLUTIONAL NEURAL

NETWORKS

Reconstruction

Projection

Reconstruction

Projection

reference image
person 1

reference image
person 2

Person 1

Person 2

projected vectors

projected vectors

Figure 6.1: The basic schema of our approach showing two different individuals

face images can be classified by calculating distances between the respective
projected vectors in the intermediate layer of the network or the distances be-
tween the respective reconstructed images at the output of the network.

6.3.2 Neural Network Architecture

The proposed neural architecture is a specific type of CNN consisting of six
layers, where the first layer is the input layer, the three following layers are
convolutional and sub-sampling layers, and the last two layers are standard
feed-forward neuron layers. For details on CNNs, we refer to chapter 3 and
in particular section 3.2.2. Our system is trained to transform an input face
image into a reference image which is automatically chosen for each person to
recognize. Figure 6.2 gives an overview of the architecture.

The retina l1 receives a cropped face image of 46 × 56 pixels, containing
gray values normalized between −1 and +1. The second layer l2 consists of four
feature maps which are all connected to the input map and which perform a
convolution with a trainable 7×7 kernel followed by a linear activation function.
The third layer l3 sub-samples its input feature maps by a factor of two and uses
a sigmoid activation function. Layer l4 is another convolutional layer with 5×5
kernels. It contains three feature maps, each connected to two preceding maps
as illustrated in figure 6.2. By combining the results of the low-level feature
detectors, like edges or corners, it extracts higher-level features corresponding
to more characteristic forms or patterns of a face image. Unlike the second
layer, a sigmoid activation function is used here.

While the previous layers act principally as local feature extraction layers,

126

CHAPTER 6. FACE AND GENDER RECOGNITION

input
image

reconstructed
reference image

subsampling
convolution 7x7 convolution 5x5

feature extraction

projection / reconstruction

l1: 46x56

l2: 4x40x50

l3: 4x20x25

l4: 3x16x21

l5: 60 l6: 46x56

Figure 6.2: Architecture of the proposed Neural Network

layers l5 and l6 use the local information to form a global model. Layer l5 is
composed of a reduced number of neurons fully connected to layer l4. This is
the so-called “bottle-neck” of the network where a compact representation of
the input face images is learned.

The architecture of this part of the network is inspired by Auto-Associative
Neural Networks (AANN) (see section 2.8.4) which are trained to reproduce an
input pattern at their outputs while using a hidden layer containing much fewer
neurons (bottle-neck) than the input and output layers. Here, a so-called hetero-
association is performed in the last three layers, because the desired output
in layer l6 is different from the output of layer l4. Moreover, the activation
functions of the neurons in l5 are non-linear leading to a non-linear projection
and dimensionality reduction.

In our proposed architecture, Layer l5 contains 60 neurons with sigmoid
activation function and the output layer l6 is composed of an array of neurons
of size 46× 56 representing a gray-scale image normalized between −1 and +1.
These neurons are fully connected to the preceding neurons and use a linear
activation function.

6.3.3 Training Procedure

The Neural Network is trained using a face database with a fixed number N of
individuals. For each individual, several images with varying pose, illumination
and facial expressions are necessary. Before the actual training the face database
is divided into a training and a test set as will be explained in section 6.3.5.

127

6.3. FACE RECOGNITION WITH CONVOLUTIONAL NEURAL

NETWORKS

The training procedure consists of two successive steps:

1. selection of the reference images and

2. actual training of the Neural Network.

These steps are detailed in the following.

Choosing the Reference Images

Let us denote imij the j-th example image of individual i = 1..N in the face
database (j = 1..Mi). For each individual i a reference image ri among the
face images imij in the training set has to be chosen. The Neural Network is
then trained to respond for any input image imij of a given individual with
the respective reference image ri for that individual. In this way, it will learn
to extract features invariant to the intra-class variations present in the training
images, e.g. pose, illumination or facial expressions.

We experimented with two different strategies for choosing the reference
images. They are both based on a Euclidean distance measure between the
respective image vectors im+

ij , defined as the one-dimensional vectors obtained
by concatenating the rows of the respective images imij . The strategies we
investigated are the following:

1. Choose the most representative image:

The face image of the individual i that is closest to the mean image im+
i

of i is chosen:

ri = argmin
im

+
ij

‖im+
ij − im+

i ‖ ∀ i ∈ 1..N, j ∈ 1..Mi . (6.1)

2. Choose the most distant image:
The face image of the individual i that has the greatest distance to the
face images of all the other individuals is chosen.

ri = argmax
im

+
ij

‖im+
ij − im

+
kl‖

∀ i, k ∈ 1..N, j ∈ 1..Mi, l ∈ 1..Mk, k 6= i . (6.2)

We will call these strategies MEAN and DIST in the following.

Training the Neural Network

In order to construct the training set for the Neural Network the face images
are normalized in the following way. First, each image is cropped in such a
way that the face is centered and that the eyes and the mouth are roughly
at predefined positions while keeping the aspect ratio. Then, each image is
histogram-equalized and resized to the dimensions of the retina l1 (46 × 56).
Training is performed using the Backpropagation algorithm which has been
slightly adapted to account for the shared weights in layers l2 to l4 (see Alg. 8
on page 57). For a given example imij the objective function is the following:

Ei =
1

WH

W
X

x=1

H
X

y=1

(di(x, y) − y6(x, y))2 , (6.3)

128

CHAPTER 6. FACE AND GENDER RECOGNITION

which is the mean squared error (MSE) between the computed outputs y6(x, y)
for training example imij and the desired outputs di(x, y), where di represents
the respective reference image ri normalized between −1 and +1. Before the
actual training, the weights are initialized at random. Then, they are updated
after each presentation of a training example (online training). Training is
stopped after 8000 iterations.

Note that by training the Neural Network, i.e. by minimizing the objec-
tive function, all parameters are learned conjointly: the convolution filters, the
projection and the reconstruction parameters. In other words, the proposed
architecture optimizes the filters and, at the same time, the projection param-
eters in order to reconstruct best the respective reference images. This is a
clear advantage compared to most other projection methods where separate
pre-processing and projection steps necessitate a “manual” integration and pa-
rameter determination.

6.3.4 Recognizing Faces

Once the Neural Network is trained with a certain number of individuals, it
can be applied to new, unknown face images of the same individuals in order to
recognize them. To this end, a given face image is cropped and normalized in the
same way as the training images (cf. section 6.3.3) and presented to the Neural
Network. The Neural Network then tries to reconstruct the reference image
corresponding to the respective individual. Finally, a simple nearest neighbor
classification based on the Euclidean distance between the Neural Network’s
output and all the reference images identifies the individual shown on the input
face image.

More formally,
I = argmin

i

‖y6 − di‖ ∀ i ∈ 1..N , (6.4)

where I is the resulting identity, y6 is the output of the Neural Network and di

is the reference image of individual i, normalized between −1 and +1.
In our experiments, however, we slightly modified this classification algo-

rithm for efficiency reasons. Instead of classifying the outputs of the final layer
l6 we used the outputs of the neuron layer l5 which represent the projected
vectors. We then compare the projected vectors with the ones produced by the
reference images. Thus, the classification formula becomes:

I = argmin
i

‖y5 − vi‖ ∀ i ∈ 1..N , (6.5)

where vi represents the the output of layer l5 when presenting the reference
image ri of the i-th person to the Neural Network.

The two classification formulas led to equivalent results but the second one
is more efficient in terms of computational time. Thus, all the results presented
in this paper were obtained using Eq. 6.5.

6.3.5 Experimental Results

We conducted experiments on two public face databases: the Olivetti Research
Ltd. (ORL) face database [214] and the Yale database [16] (see Appendix A).

The ORL database contains 40 individuals with 10 images per individual
showing slight pose variations, facial expressions and rather limited illumina-
tion changes. The Yale database contains only 15 individuals with 11 images

129

6.3. FACE RECOGNITION WITH CONVOLUTIONAL NEURAL

NETWORKS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14

R
ec

og
ni

tio
n

R
at

e
(in

 %
)

False Accept Rate (in %)

ORL MEAN
ORL DIST

Yale MEAN
Yale DIST

Figure 6.3: ROC curves for the ORL and Yale databases

each. They show virtually no pose variations but much more illumination varia-
tions (e.g. left/right/center light) and facial expressions (smile, sad expression,
open/closed mouth).

In order to assess the different approaches we performed a “leave-one-out”
validation. Thus, the Neural Network was initialized and retrained 30 times
with a random separation into training and test set, where one example per
class is used for testing and the rest for training. Then, the mean of the final
recognition rates on the respective test sets was calculated.

Figure 6.3 shows the Receiver Operator Characteristic (ROC) curves of the
proposed approach with both reference image selection strategies, MEAN and
DIST. The ROC curves illustrate the recognition rates vs . the false accept rate
while varying a distance threshold above which a face image is rejected. In
general, the recognition rate of the ORL database is higher than that of the
Yale database. The recognition rates without rejection are shown in table 6.1.
Further, the MEAN approach performs better than the DIST approach (c.f .
section 6.3.3) for both test sets. Thus, for the following experiments only the
results using the MEAN strategy are presented. Figure 6.4 illustrates some
input face images (top row), the reconstructions (middle row) and the respective
reference images (bottom row).

We also compared the proposed approach with the Eigenfaces and the Fisher-
faces approaches. In our implementation of the Eigenfaces method we performed
a projection onto the most significant eigenvectors such that the corresponding
eigenvalues represent 90% of the total energy, that is 73 eigenvectors for the
ORL database and 35 eigenvectors for the Yale database. The first three direc-
tions, however, were not used for classification as they are considered to account
mainly for lighting variations [16]. As for the preceding experiment, a leave-one-

130

CHAPTER 6. FACE AND GENDER RECOGNITION

(a) ORL (b) Yale

Figure 6.4: Examples of image reconstruction. Top row: input images, middle
row: reconstructed images, bottom row: reference images

ORL Yale

Eigenfaces 89.7% 77.9%
Fisherfaces 87.7% 85.2%
proposed approach: DIST 90.6% 87.1%
proposed approach: MEAN 92.6% 93.3%

Table 6.1: Overview of the recognition rates

out validation with the same training and test sets was performed. Note that
concerning the classification procedure the proposed approach is more efficient
in terms of computation time and memory usage because it only requires the
reference images in order to classify new face image whereas the other two ap-
proaches need the whole dataset. Figures 6.5 and 6.6 show the ROC curves of
the Eigenfaces and Fisherfaces methods together with the proposed approach
for the ORL and Yale database respectively. For both databases the pro-
posed method clearly outperforms the other methods. Table 6.1 summarizes
the recognition rates of the preceding experiments.

We further evaluated the robustness of our approach with respect to noise
and partial occlusions. In the first experiment, we added Gaussian noise with
increasing standard deviation σ to the individual pixels of the images of the test
set. Figure 6.7 shows the respective recognition rates with varying σ.

Note that a σ of 0.5 represents a considerable amount of noise as the gray
values are between −1 and +1 (see illustration at the bottom of Fig. 4.13). The
graphs show that the proposed method is very robust to Gaussian noise. For σ <
0.5 the recognition rate decreases by only 12% for the ORL database and by only
6% for the Yale database, and it remains above 80% for σ < 0.6. The Eigenfaces
approach showed a slightly better performance in this particular experiment, the
recognition rate staying almost constant over the whole interval. This can be
explained by the pure global processing of the PCA. As it is extracting rather
lower frequency features it is less sensitive to high-frequency noise.

The last experiment demonstrates the robustness of the approach with re-
spect to partial occlusion. To this end, the bottom part of the images is masked
by a black band of varying height. Figure 4.14 shows the respective results

131

6.3. FACE RECOGNITION WITH CONVOLUTIONAL NEURAL

NETWORKS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14

R
e
c
o
g
n
it
io

n
 R

a
te

 (
in

 %
)

False Accept Rate (in %)

MEAN
Eigenfaces
Fisherfaces

Figure 6.5: Comparison with the Eigenfaces and Fisherfaces approach: ORL
database

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25

R
e
c
o
g
n
it
io

n
 R

a
te

 (
in

 %
)

False Accept Rate (in %)

MEAN
Eigenfaces
Fisherfaces

Figure 6.6: Comparison with the Eigenfaces and Fisherfaces approach: Yale
database

132

CHAPTER 6. FACE AND GENDER RECOGNITION

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

og
ni

tio
n

R
at

e
(in

 %
)

Standard deviation

MEAN ORL
MEAN Yale

Eigenfaces ORL
Eigenfaces Yale

Figure 6.7: Sensitivity analysis of the proposed face recognition approach: Gaus-
sian noise

as well as some example images at the bottom to illustrate the type of occlu-
sion (0%, 10%, 20%, 30% and 40%). Here, our approach clearly outperforms
the Eigenfaces method. For both databases the recognition rate stays above
80% when the occluded proportion is less than 20% of the image, whereas the
performance of the Eigenfaces method drops considerably.

6.4 Gender Recognition

6.4.1 Introduction

Automatic gender recognition, gender classification, or sometimes sex classifi-
cation of faces, denotes the problem of recognizing the gender, i.e. male or
female, of a person using a face image. Hence, it is a binary classification
problem which, in principle, can be tackled by any discriminative or generative
classification approach, e.g. a Bayes classifier, Neural Networks, Support Vec-
tor Machines. There are many applications for automatic gender classification
using face images, e.g. image and video indexation, or in the context of person
identification, or systems (TV, home computer) that automatically adapt the
presented information to the user sitting in front of a camera.

However, the problem of gender classification by face images is far from being
trivial as the distinctive features between faces of men and women can be rather
subtle. In some cases, even humans are not capable of telling the gender of a
person only by one photograph showing the face of the person. In fact, when

133

6.4. GENDER RECOGNITION

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

R
ec

og
ni

tio
n

R
at

e
(in

 %
)

Occluded proportion (in %)

MEAN ORL
MEAN Yale

Eigenfaces ORL
Eigenfaces Yale

Figure 6.8: Sensitivity analysis of the proposed face recognition approach: par-
tial occlusion

meeting an unknown person, human beings often take into account other aspects
such as hair, voice, gait etc. This suggests that the decision boundary of the two
classes is non-linear and rather complex, and for this reason machine learning
techniques appear to be an appropriate approach as the resulting classifiers show
to be capable of extracting discriminant features from the high-dimensional
input space, i.e. the face images.

In this chapter, we will briefly outline some existing methods for gender
recognition and then propose a CNN-based approach and present some experi-
mental results.

6.4.2 State-of-the-art

One of the first works on automatic gender recognition was the approach pro-
posed by Golomb et al . [86] called SEXNET which was based on a MLP and
achieved an accuracy of 91.9% on a database of 90 images.

Other early works use geometric features instead of image intensity. Brunelli
and Poggio [32], for example, classified 16 point-to-point distances with two
competing RBF Networks, for male and female examples. They used a training
database of 168 images and reported a 79% accuracy on novel faces.

Fellous [66] also used geometric features, in this case 22 horizontal and verti-
cal point-to-point distances. With a subsequent statistical analysis using PCA,
he retained the most discriminative features for gender classification and ob-
tained a 90% accuracy.

A graph-based approach has been presented by Wiskott et al . [259]. The

134

CHAPTER 6. FACE AND GENDER RECOGNITION

nodes of the graph represent wavelet-based local appearances and the edges are
labeled with distance vectors. Using a small number of model graphs for male
and female face images they were able to classify new images by a special graph
matching procedure with a 91.2% classification accuracy.

O’Toole et al . [177] used a PCA-compressed representation of the image
intensities and classified them with a linear Perceptron.

PCA has also been used by Graf et al . [89] who compared it to Local Linear
Embedding (LLE), a non-linear neighborhood-preserving dimensionality reduc-
tion technique. The authors then employ SVMs for the final gender classifica-
tion. Sun et al . [230] additionally selected a subset of PCA features by a Genetic
Algorithm-based method and then compare different classification approaches,
i.e. Bayes classifier, a LDA-based classifier, a Neural Network and a SVM, on
the gender recognition problem. BenAbdelKader and Griffin [18] also applied
PCA on the pixel intensities. For classification they compare a SVM approach
with Fisher’s Linear Discriminant.

A method using ICA for feature extraction has been proposed by Jain and
Huang [113]. The final classification was performed by means of a LDA.

Buchala et al . [34] used a non-linear dimensionality reduction method called
Curvilinear Component Analysis (CCA) and then compared SVMs with MLPs
for gender classification.

Moghaddam and Yang [164] proposed an approach training an SVM classifier
directly on the image pixel intensities. A correct gender classification rate of
96.6% on the FERET database has been reported by the authors.

A different method is due to Gutta et al . [92]. Here, a mixture of experts
combines several classifiers, RBF ensembles, Inductive Decision Trees (IDT) and
SVMs which were employed on different image regions. The authors reported a
classification rate of 96% on the FERET database.

Lanitis et al . [130] presented an approach that transforms the face images
into a shape-free patches using AAMs. The resulting images were then classi-
fied using a Mahalanobis-based distance measure. AAMs have also been used
by Saatci et al . [209] for feature extraction. Here, gender recognition was per-
formed by matching a trained AAM to the unknown face and finally classifying
the resulting model parameters by a SVM. A classification of 97.6% has been
obtained on a set of several databases but the results only contain the cases
where the AAM converged correctly.

Shakhnarovich et al . [222] presented an approach based on Adaboost. They
proposed to use the features from the Boosted Cascade Detector for face de-
tection from Viola and Jones [250] to perform gender classification and report
an accuracy of 79%. Recently, Baluja et al . [11] also proposed an Adaboost-
based method. Here, they used features comparing pixel intensities for their
weak classifiers in the Adaboost procedure and compared it to a SVM-based
approach. A maximum accuracy of over 93% has been achieved by their gender
recognition method on the FERET database.

Finally, the approach presented by Tivive and Bouzerdoum [241] uses Shunt-
ing Inhibitory Convolutional Neural Networks (SICoNNets) (c.f . section 3.4.4).
They obtained an 97.1% accuracy on the FERET database.

135

6.5. CONCLUSION

Figure 6.9: Examples of training images for gender classification. Left: men,
right: women

6.4.3 Gender Recognition with Convolutional Neural Net-

works

We propose a gender recognition method [82] based on a Convolutional Neu-
ral Network (CNN) architecture similar to the one of the Convolutional Face
Finder (CFF) from Garcia and Delakis [81] described in section 4.2.3. The only
significant change compared to the CFF architecture is the size of the feature
maps. The dimension of the retina of the gender recognition CNN is 46 × 56
pixels. The size of feature maps of all of the other layers follows systematically
from the retina dimension and the respective kernel sizes, i.e. 5× 5 kernels for
the first and a 3× 3 kernels for the second convolution layer. The sub-sampling
window size is 2 × 2 as with the CFF. In the final layer there is a single neu-
ron representing the classification result, i.e. the value −1 for male and +1 for
female face images.

The training set was constructed using cropped and histogram-equalized
frontal face images of the FERET database [183] (see Appendix A), where 80%
of the images were used for training and 20% for testing. Figure 6.9 shows
some training examples situated close to the border of the decision boundary.
Training was then performed using the online Backpropagation algorithm for
CNNs (see Alg. 8 on page 57).

The classification rate obtained with this architecture is 94.7% which is com-
parable to the results obtained by [11] who reported a (maximal) classification
rate of 93.5% using a SVM-based and 94.4% using a Adaboost-based approach.
Figure 6.10 shows the respective ROC curve of the test set.

Note that many existing gender classification methods mix the same per-
sons across the training and test set when there are several examples of one
person’s face, which obviously makes the problem easier as the algorithm might
“memorize” specific individuals. In the preceding experiment, we put all ex-
ample images of one particular person in either the training or the test test,
demonstrating more soundly the generalization capacity of the system.

We also conducted an experiment with a mixed training set, i.e. the test
images were randomly selected from the whole database (FERET) such that
example images of one person might be in the training and the test set. As
expected, the recognition rate is higher than with the unmixed datasets: 97.4%
of correct classification have been obtained with this setting, which is also com-
parable to the results obtained by [11] where the best SVM achieves an accuracy
of 97.1% and the best Adaboost classifier: 96.6%.

6.5 Conclusion

In this chapter, we presented a face recognition approach based on a specific
type of CNN which is trained to reconstruct reference images pre-defined for

136

CHAPTER 6. FACE AND GENDER RECOGNITION

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

R
ec

og
ni

tio
n

ra
te

 (
in

 %
)

Proportion of misclassified images (in %)

Figure 6.10: ROC curve of the gender recognition CNN applied to the unmixed
FERET test set

each person of the training set to identify. By reconstructing images the system
actually learns a non-linear mapping onto a low-dimensional sub-space which is
robust to the intra-class variations present in the training set, e.g. illumination
and pose variation or facial expressions. The advantage of this approach is the
tight integration of local and global processing in one neural architecture and
the ability to learn all parameters conjointly without requiring a manual choice
of these parameters, e.g. the filter masks or the projection directions.

We trained this system on several public databases and showed its superior
performance in terms of recognition rate w.r.t. classical face recognition meth-
ods. Further, we experimentally showed its robustness to external influences by
manually adding a considerable amount of pixel noise and partial occlusions.

Finally, we also presented a solution for the gender recognition problem of
faces. We employed a CNN with a architecture similar to the one of the CFF
and trained it on images of the FERET database. We obtained 94.7% of correct
gender classification which is comparable to the results of Adaboost- and SVM-
based methods previously published in the literature.

137

Chapter 7

Conclusion and

Perspectives

7.1 Conclusion

In this work, we described the problem of automatic appearance-based facial
analysis and outlined some of the most common techniques to tackle it. We par-
ticularly focused on an approach called Convolutional Neural Network (CNN)
which is a connectionist model inspired by biological findings in the visual sys-
tem of mammals. Being initially used for handwritten digit recognition it has
meanwhile been successfully applied to many other visual pattern recognition
problems. For example, the CNN-based face detection system proposed by Gar-
cia and Delakis [81] shows to be very robust against most types of noise and
external influences that face images can undergo in real-world settings, and
the results are superior to other state-of-the-art appearance-based classification
methods evaluated on common public databases.

Using CNN models that are, in a way, similar to the ones mentioned above,
we proposed effective approaches to different facial analysis problems. The first
system we presented tackles the problem of face alignment which is a crucial
step in many facial image processing applications, notably face recognition. This
procedure is typically performed after face detection and before face recogni-
tion, and its purpose is to align the bounding rectangles coming from the face
detection system such that specific facial features are roughly at predefined po-
sitions inside the images bounded by the respective rectangles. The proposed
approach is based on a specific CNN architecture that learns the parameters of
this type of affine transformation, i.e. x/y translation, rotation angle and scale
factor, by means of annotated mis-aligned face images. The trained system
is then able to conjointly estimate these four transformation parameters when
presenting a mis-aligned face image at its input without explicitely localizing
specific facial features such as the eyes. We experimentally showed that in an
iterative approach, it is able to precisely and robustly correct the bounding
rectangles coming from a face detector such that they are well-aligned with the
faces inside the respective rectangles. A correct alignment rate of 94% for our
own test set containing difficult images and 80% for the public BioID database
has been obtained while tolerating a mean distance from the desired bounding

138

CHAPTER 7. CONCLUSION AND PERSPECTIVES

rectangle corners of 10% of the rectangle’s width.

Then, we presented a central problem in facial analysis, called facial feature
detection, i.e. the localization of characteristic feature points in face images. We
further proposed a CNN-based approach to this problem which, in a hierarchical
manner, localizes 10 facial feature points in face images taken under difficult
conditions. The system correctly localizes the 10 points of 96% of the faces of
the AR database and 87% of the BioID database tolerating an error of 10% of
the inter-ocular distance. We also measured the precision of eye pupil detection
for the BioID database and showed that our approach outperforms state-of-
the-art systems. Different types of input features to the CNN have been tried,
while normalized image intensities gave the best results compared to gradients
and Gabor wavelet filter responses. Finally, we demonstrated the considerably
high robustness of the proposed approach w.r.t. Gaussian pixel noise and partial
occlusions.

In the subsequent chapter, we described the problems of automatic face
recognition and gender classification. For the former task, we proposed a novel
approach based on a specific CNN architecture which learns a non-linear map-
ping from the image space onto a lower-dimensional sub-space. By learning
to reconstruct reference images for each person to classify the system builds
a sub-space less sensitive to the intra-class variations present in the training
set. The recognition rate obtained in our experiments on the public databases
ORL and Yale is 93%, which is higher than the one obtained with the classical
face recognition methods: Eigenfaces and Fisherfaces. As with the other pro-
posed approaches, we also showed the robustness of the system w.r.t. Gaussian
pixel noise and partial occlusions. Finally, we presented a gender classification
method based on a model similar to the CNN used in the face detection system
of Garcia and Delakis [81]. The system is able to correctly recognize the gender
of 94.7% of the face images of a test set extracted from the FERET database
when images of the same individuals are not mixed across the training and test
set. This result is comparable to recognition rates of state-of-the-art systems
based on SVMs or Adaboost.

To sum up, one can say that the CNN approach is a very powerful machine
learning technique capable of learning very complex non-linear functions related
to appearance-based pattern recognition. The advantage of CNNs is that they
automatically learn adapted filters that extract non-linear characteristic features
useful for a dedicated classification task. This integrated learning procedure
of all inherent parameters using the Backpropagation paradigm and a global
error function to minimize circumvents the somewhat tedious task of “manual”
parameter determination of feature extractors and classifiers. Additionally, the
possibility to easily implement CNNs on embedded and parallel platforms and
to build dedicated real-time systems is a big advantage of this approach.

However, the drawback of this technique is the “manual” determination of
the topology of the CNNs for a given task as well as the creation of a sufficiently
large and appropriate training database. This leads us to the final section of
this work which addresses some perspectives of future research in this field.

139

7.2. PERSPECTIVES

7.2 Perspectives

7.2.1 Convolutional Neural Networks

As mentioned in the previous section, the architecture of a CNN best suited
for a given task is determined empirically, which is undoubtedly a sub-optimal
choice. It would however be preferable to automatically adapt the complexity
of the model to the complexity of the problem in order to reduce the size of
the CNN and increase its generalization capacity. Many works have been con-
ducted in this area, e.g. with respect to constructive neural networks, growing
and pruning techniques or incremental learning. However most of them are
concerned with standard neural architectures, e.g. MLPs, and do not cope with
more complicated models such as CNNs which have specific types of architec-
tures employing weight sharing.

Another interesting issue would be to investigate the ability of a CNN to
learn from a reduced set of training examples while obtaining equal or almost
equal results than with a larger training set. This implies either a technique to
automatically select from a large set the most significant training examples for
a given task or – if a larger training set is not available – a method to construct
a type of model on the reduced training set and to integrate this model into the
training procedure.

Finally, CNNs which are able to extract features invariant to larger trans-
lations, rotations and changes in scale would be an interesting area of future
research. The works by Ranzato et al . [193] on shift-invariant feature extraction
using a CNN-based encoder-decoder framework (c.f . section 3.4.5) are particu-
larly promising in this regard. In this context, another interesting perspective
could be pursued: the application of CNNs to whole scenery images in order to
extract prominent feature points helping to classify these images or particular
visual objects. This type of CNN could then be considered as a specialized and
learned interest point detector and/or descriptor.

7.2.2 Facial analysis with Convolutional Neural Networks

Many face analysis problems, like face recognition under unconstrained real-
world conditions, are still far from being resolved. Variations in illumination,
head pose and facial expressions represent the biggest difficulties for most of the
current solutions including CNNs. In this work, we haven’t explicitely modeled
these variations but learned them implicitly using training images taken under
different conditions. An interesting direction of future research would thus be
to integrate this type of model into the proposed CNN-based systems and in-
vestigate the its impact on the overall performance. An initial approach could
be to train a CNN to estimate or even to correct the illumination of a face
using annotated training examples. One could also imagine a CNN-based head
pose estimator, the results of which could then be used for further view-specific
processing, e.g. face recognition.

Finally, CNNs are not limited to gray scales but can also process color im-
ages, i.e. by simply presenting three images corresponding to the different color
channels (e.g. red, green and blue) at the input. However, as experimental re-
sults on face detection show, the use of color might have a negative impact on
the robustness of the system especially with respect to different lighting condi-

140

CHAPTER 7. CONCLUSION AND PERSPECTIVES

tions. Nevertheless, the ability of CNNs to process multi-dimensional data is a
very interesting perspective as they could for example be applied to many types
of multi-modal data, e.g. images and sound, images of different views, or video
frames at different time steps etc. One could also imagine to process 3D data
by CNNs, or to fuse 2D and 3D data, e.g. for face recognition.

Many interesting research directions in the domain of automatic facial anal-
ysis are to be explored. Convolutional Neural Networks represent a promising
approach from the computational side but perhaps also novel biological and/or
neuro-scientific results will yield further ideas to improve this model.

141

Appendix A

Excerpts from the used face

databases

A.1 AR

142

APPENDIX A. EXCERPTS FROM THE USED FACE DATABASES

143

A.2. BIOID

A.2 BioID

144

APPENDIX A. EXCERPTS FROM THE USED FACE DATABASES

145

A.3. FERET

A.3 FERET

146

APPENDIX A. EXCERPTS FROM THE USED FACE DATABASES

147

A.4. GOOGLE IMAGES

A.4 Google Images

148

APPENDIX A. EXCERPTS FROM THE USED FACE DATABASES

149

A.5. ORL

A.5 ORL

150

APPENDIX A. EXCERPTS FROM THE USED FACE DATABASES

151

A.6. PIE

A.6 PIE

152

APPENDIX A. EXCERPTS FROM THE USED FACE DATABASES

153

A.7. YALE

A.7 Yale

154

APPENDIX A. EXCERPTS FROM THE USED FACE DATABASES

155

Bibliography

[1] L. B. Almeida, T. Langlois, J. D. Amaral, and A. Plakhov. Parameter
adaptation in stochastic optimization. In D. Saad, editor, On-Line Learn-
ing in Neural Networks, chapter 6. Cambridge University Press, 1999.

[2] S.-I. Amari, A. Cichocki, and H. Yang. A new learning algorithm for blind
source separation. In D. S. Touretzky, M. C. Moser, and M. E. Hasselmo,
editors, Advances in Neural Information Processing Systems, volume 8,
pages 757–763. MIT Press, Cambridge, MA, 1996.

[3] G. Arulampalam and A. Bouzerdoum. A generalized feedforward neural
network architecture for classification and regression. Neural Networks,
16:561–568, 2003.

[4] A. Azarbayejani, T. Starner, B. Horowitz, and A. Pentland. Visually
controlled graphics. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(6):602–605, June 1993.

[5] S. O. Ba and J. M. Odobez. A probabilistic framework for joint head track-
ing and pose estimation. In Proceedings of the 17th International Confer-
ence on Pattern Recognition, volume 4, pages 264–267, August 2004.

[6] F. R. Bach and M. I. Jordan. Kernel independent component analysis.
Journal of Machine Learning Research, 3:1–48, 2002.

[7] E. Bailly-Baillière, S. Bengio, F. Bimbot, M. Hamouz, J. Kittler, J. Marié-
thoz, J. Matas, K. Messer, V. Popovici, F. Porée, B. Ruiz, and J.-P. Thi-
ran. The BANCA database and evaluation protocol. In Proceedings of the
Fourth International Conference on Audio- and Video-Based Biometric
Person Authentication, pages 625–638, 2003.

[8] S. Baker and I. Matthews. Equivalence and efficiency of image alignment
algorithms. In Computer Vision and Pattern Recognition, volume 1, pages
1090–1097, 2001.

[9] P. Baldi and K. Hornik. Neural networks and principal component anal-
ysis: Learning from examples without local minima. IEEE Transactions
on Neural Networks, 2:53–58, 1988.

[10] S. Baluja. Probabilistic modeling for face orientation discrimination:
Learning from labeled and unlabeled data. In Neural Information Pro-
cessing Systems, 1998.

156

BIBLIOGRAPHY

[11] S. Baluja and H. A. Rowley. Boosting sex identification performance.
International Journal of Computer Vision, 71(1):111–119, 2007.

[12] M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski. Face recognition by
independent component analysis. IEEE Transactions on Neural Networks,
13(6):1450–1464, 2002.

[13] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces. In
International Conference on Computer Vision, volume 2, pages 383–390,
2001.

[14] R. Battiti. Accelerated backpropagation learning: Two optimization
methods. Complex Systems, 3:331–342, 1989.

[15] P. Belhumeur, J. Hespanha, and D. Kriegman. What is the set of images
of an object under all possible lighting conditions. International Journal
of Computer Vision, 28(3):245–260, 1998.

[16] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegmann. Eigenfaces
vs Fisherfaces: Recognition using class specific linear projection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 17(7):711–
720, 1997.

[17] A. Bell and T. Sejnowski. An information maximization approach to blind
separation and blind deconvolution. Neural Computation, 7:1129–1159,
1995.

[18] C. BenAbdelKader and P. Griffin. A local region-based approach to gender
classification from face images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2005.

[19] Y. Bengio, Y. LeCun, and D. Henderson. Globally trained handwritten
word recognizer using spatial representation, space displacement neural
networks and hidden markov models. In Advances in Neural Information
Processing Systems, volume 6, pages 937–944. Morgan Kaufmann, 1994.

[20] T. L. Berg, A. C. Berg, J. Edwards, M. Maire, R. White, Yee-Whye Teh,
E. Learned-Miller, and D. A. Forsyth. Names and faces in the news.
In Proceedings of the International Conference on Computer Vision and
Pattern Recognition, volume 2, pages 848–854, 2004.

[21] D. Beymer and T. Poggio. Face recognition from one example view. AI
Memo 1536, MIT AI Lab, 1995.

[22] The BioID face database. http://www.humanscan.com/support/downloads
/facedb.php.

[23] B. E. Boser, I. M. Guyon, and V. Vapnik. A training algorithm for optimal
margin classifiers. In Fifth Annual Workshop on Computational Learning
Theory, pages 144–152, Pittsburgh ACM, 1992.

[24] H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons
and singular value decomposition. Biological Cybernetics, 59:291–294,
1988.

157

BIBLIOGRAPHY

[25] A. Bouzerdoum. The elementary movement detection mechanism in insect
vision. In Philosophical Transactions: Biological Sciences, volume B-339,
pages 375–384, 1993.

[26] A. Bouzerdoum. Classifiation and function approximation using feed-
forward shunting inhibitory artificial neural networks. In Proceedings of
the International Joint Conference on Neural Networks, pages 613–618,
2000.

[27] A. Bouzerdoum and R. B. Pinter. Nonlinear lateral inhibition applied to
motion detection in the fly visual system. In R. B. Pinter and B. Nabet,
editors, Nonlinear Vision, pages 423–450. Boca Raton, 1992.

[28] A. Bouzerdoum and R. B. Pinter. Shunting inhibitory cellular neural
networks: Derivation and stability analysis. IEEE Transactions on Cir-
cuits and Systems I: Fundamental Theory and Applications, 40(3):215–
221, March 1993.

[29] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. Signature
verification using a ”siamese” time delay neural network. International
Journal of Pattern Recognition and Artificial Intelligence, 7(4):669–688,
1993.

[30] D. Broomhead and D. Lowe. Multivariable functional interpolation and
adaptive networks. Complex Systems, 2:312–355, 1988.

[31] L. M. Brown and Y. L. Tian. Comparative study of coarse head pose esti-
mation. IEEE Workshop on Motion and Video Computing, 6, December
2002.

[32] R. Brunelli and T. Poggio. HyperBF networks for gender classification.
In DARPA Image Understanding Workshop, pages 311–314, 1992.

[33] Roberto Brunelli and Tomaso Poggio. Face recognition: Features versus
templates. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 15(10):1042–1052, 1993.

[34] S. Buchala, N. Davey, R. J. Frank, and T. M. Gale. Dimensionality reduc-
tion of face images for gender classification. In Proceedings of the IEEE
Conference on Intelligent Systems, 2004.

[35] J. F. Cardoso. Higher-order contrasts for independent component analysis.
Neural Computation, 11(1):157–192, 1999.

[36] H. Çevikalp, M. Neamtu, M. Wilkes, and A. Barkana. Discriminative com-
mon vectors for face recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(1):4–13, 2005.

[37] L. W. Chan and F. Fallside. An adaptive learning algorithm for back-
propagation networks. Computer Speech and Language, 2:205–218, 1987.

[38] Qian Chen, Haiyuan Wu, T. Fukumoto, and M. Yachida. 3D head pose
estimation without feature tracking. In Proceedings of the Third IEEE In-
ternational Conference on Automatic Face and Gesture Recognition, pages
88–93, April 1998.

158

BIBLIOGRAPHY

[39] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity met-
ric discriminatively, with application to face verification. In Proceedings
of the International Conference on Computer Vision and Pattern Recog-
nition. IEEE Press, 2005.

[40] A. J. Colmenarez and T. S. Huang. Face detection with information-
based maximum discrimination. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 782–787, 1997.

[41] T. Cootes, G. Edwards, and C. Taylor. Active appearance models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–
685, 2001.

[42] T. F. Cootes and C. J. Tayler. Locating faces using statistical feature
detectors. In International Conference on Automatic Face and Gestures
Recognition, pages 204–211, Los Alamitos, California, October 1996. IEEE
Computer Society Press.

[43] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape
models–their training and application. Computer Vision Graphics and
Image Understanding, 61(1):38–59, 1995.

[44] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,
20:1–25, 1995.

[45] G. Cottrell and M. Fleming. Face recognition using unsupervised fea-
ture extraction. In Proceedings of the International Conference on Neural
Networks, pages 322–325, 1990.

[46] G. Cottrell and J. Metcalfe. EMPATH: Face, emotion, and gender recogni-
tion using holons. In R. Lippmann, J. Moody, and D. Touretzky, editors,
Advances in Neural Information Processing Systems 3, pages 564–571.
Morgan Kaufmann, 1991.

[47] G. Cottrell, P. Munro, and D. Zipser. Learning internal representations
from gray-scale images: an example of extensional programming. In Pro-
ceedings of the 9th Annual Conference of the Cognitive Science Society,
pages 462–473, Seattle, WA, 1987.

[48] T. M. Cover. Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Transactions
on Electronic Computers, 14:326–334, 1965.

[49] D. Cristinacce and T. Cootes. A comparison of shape constrained facial
feature detectors. In Proceedings of the 6th International Conference on
Automatic Face and Gesture Recognition, pages 375–380, Seoul, Korea,
2004.

[50] D. Cristinacce, T. Cootes, and I. Scott. A multi-stage approach to facial
feature detection. In Proceedings of the British Machine Vision Confer-
ence, pages 277–286, 2004.

[51] G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags
of keypoints. In ECCV Workshop on Statistical Learning in Computer
Vision, pages 327–334, 2004.

159

BIBLIOGRAPHY

[52] Hasan Demirel, Thomas J. Clarke, and Peter Y. K. Cheung. Adaptive
automatic facial feature segmentation. In Proceedings of the Second In-
ternational Conference on Automatic Face and Gesture Recognition, pages
277–282, 1996.

[53] S. Duffner and C. Garcia. A connexionist approach for robust and pre-
cise facial feature detection in complex scenes. In Fourth International
Symposium on Image and Signal Processing and Analysis (ISPA), pages
316–321, Zagreb, Croatia, September 2005.

[54] S. Duffner and C. Garcia. A hierarchical approach for precise facial feature
detection. In Compression et Représentation des Signaux Audiovisuels
(CORESA), pages 29–34, Rennes, France, November 2005.

[55] S. Duffner and C. Garcia. A neural scheme for robust detection of trans-
parent logos in TV programs. In International Conference on Artifi-
cial Neural Networks (ICANN), volume 2, pages 14–23, Athens, Greece,
September 2006.

[56] S. Duffner and C. Garcia. Face recognition using non-linear image re-
construction. In International Conference on Advanced Video and Signal-
Based Surveillance (AVSS), London, UK, September 2007.

[57] S. Duffner and C. Garcia. An online backpropagation algorithm with
validation error-based adaptive learning rate. In International Conference
on Artificial Neural Networks (ICANN), volume 1, pages 249–258, Porto,
Portugal, September 2007.

[58] S. Duffner and C. Garcia. Robust face alignment using convolutional neu-
ral networks. In Proceedings of the International Conference on Computer
Vision Theory and Applications (VISAPP), Funchal, Portugal, January
2008. accepted.

[59] S. Duffner and C. Garcia. Robust hierarchical detection of facial features
in complex scenes. Pattern Analysis & Applications, 2008. accepted.

[60] G. J. Edwards, C. J. Taylor, and T. F. Cootes. Interpreting face images
using active appearance models. In Proceedings of the IEEE Conference
on Automatic Face and Gesture Recognition, pages 300–305, April 1998.

[61] E. Elagin, J. Steffens, and H. Neven. Automatic pose estimation system for
human faces based on bunch graph matching technology. In Proceedings of
the Third IEEE International Conference on Automatic Face and Gesture
Recognition, pages 136–141, April 1998.

[62] M. J. Er, S. Wu, J. Lu, and H. L. Toh. Face recognition with radial basis
function (RBF) neural networks. IEEE Transactions on Neural Networks,
13:697–709, 2002.

[63] S. E. Fahlman. Faster-learning variations on back-propagation: An empir-
ical study. In D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski, editors,
Connectionist Models Summer School, pages 38–51. Morgan Kaufmann
Publishers, San Mateo, CA, 1988.

160

BIBLIOGRAPHY

[64] B. Fasel. Multiscale facial expression recognition using convolutional neu-
ral networks. In Proceedings of the Third Indian Conference on Computer
Vision, Graphics and Image Processing, Ahmedabad, India, 2002.

[65] B. Fasel. Robust face analysis using convolutional neural networks. In
Proceedings of the 16th International Conference on Pattern Recognition,
volume 2, pages 40–43, Quebec, Canada, 2002.

[66] J.-M. Fellous. Gender discrimination and predication on the basis of facial
metric information. Vision Research, 37:1961–1973, 1997.

[67] R. Féraud, O. Bernier, J.-E. Viallet, and M. Collobert. A fast and accurate
face detector based on neural networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(1):42–53, 2002.

[68] R. S. Feris, J. Gemmell, K. Toyama, and V. Krüger. Hierarchical wavelet
networks for facial feature localization. In Proceedings of the Fifth IEEE
International Conference on Automatic Face and Gesture Recognition,
2002.

[69] R. A. Fisher. The use of multiple measures in taxonomic problems. Annals
of Eugenics, 17:179–188, 1936.

[70] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. In Second International
Conference on Computational Learning Theory, 1995.

[71] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119–139, August 1997.

[72] B. Fröba and C. Küllbeck. Orientation template matching for face local-
ization in complex visual scenes. In International Conference on Image
Processing, pages 251–254, 2000.

[73] K. Fukushima. Cognitron: A self-organizing multilayered neural network.
Biological Cybernetics, 20:121–136, 1975.

[74] K. Fukushima. Neocognitron: A self-organizing neural-network model
for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 36:193–202, 1980.

[75] K. Fukushima. A neural-network model for selective attention in visual
pattern recognition. Biological Cybernetics, 55:5–15, 1986.

[76] K. Fukushima. Analysis of the process of visual pattern recognition by
the neocognitron. Neural Networks, 2:413–421, 1989.

[77] K. Fukushima and T. Imagawa. Recognition and segmentation of con-
nected characters with selective attention. Neural Networks, 6:33–41,
1993.

[78] K. Fukushima and N. Wake. Handwritten alphanumeric character recog-
nition by the neocognitron. IEEE Transactions on Neural Networks,
2(3):335–365, May 1991.

161

BIBLIOGRAPHY

[79] Ken-ichi Funahashi. On the approximate realization of identity mappings
by three-layer neural networks. Technical report, Toyohashi University of
Technology, Department of Information and Computer Sciences, 1990.

[80] Y. Gao and K. H. Leung. Face recognition using line edge map. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(6):764–
779, 2002.

[81] C. Garcia and M. Delakis. Convolutional face finder: A neural architecture
for fast and robust face detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(11):1408–1423, 2004.

[82] C. Garcia and S. Duffner. Facial image processing with convolutional neu-
ral networks. In International Workshop on Advances in Pattern Recog-
nition (IWAPR), pages 97–108, Plymouth, United Kingdom, July 2007.

[83] C. Garcia, G. Simantiris, and G. Tziritas. A feature-based face detector
using wavelet frames. In Intern. Workshop on Very Low Bitrate Video
Coding, pages 71–76, Athens, 2001.

[84] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few
to many: illumination cone models for face recognition under variable
lighting and pose. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(6):643–660, June 2001.

[85] A. Gepperth. Visual object classification by sparse convolutional neural
networks. In Proceedings of the European Symposium on Artificial Neural
Networks, 2006.

[86] B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski. Sexnet: A neural
network identifies sex from human faces. In R. Lippmann, J. Moody, and
D. Touretzky, editors, Advances in Neural Information Processing Systems
3, pages 572–577. Morgan Kaufmann, 1991.

[87] S. Gong, S. McKenna, and J. Collins. An investigation into face pose
distributions. In Proceedings of the 2nd International Workshop on Auto-
matic Face and Gesture Recognition, pages 265–270, 1996.

[88] Nicolas Gourier, Daniela Hall, and James L. Crowley. Facial feature de-
tection robust to pose, illumination and identity. In Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics, 2004.

[89] A. B. A. Graf and F. A. Wichmann. Gender classification of human faces.
Biologically Motivated Computer Vision, pages 491–501, 2002.

[90] R. Gross, J. Shi, and J. Cohn. Quo vadis face recognition? In Third
Workshop on Empirical Evaluation Methods in Computer Vision, Decem-
ber 2001.

[91] S. Grossberg, editor. Neural Networks and Natural Intelligence. MIT
Press, Cambridge, MA, 1988.

[92] S. Gutta, J. R. J. Huang, P. Jonathon, and H. Wechsler. Mixture of
experts for classification of gender, ethnic origin, and pose of human faces.
IEEE Transactions on Neural Networks, 11(4):948–960, July 2000.

162

BIBLIOGRAPHY

[93] M. Hamouz, J. Kittler, J.-K. Kamarainen, P. Paalanen, and H. Kalvi-
ainen. Affine-invariant face detection and localization using GMM-based
feature detectors and enhanced appearance model. In Proceedings of the
Sixth International Conference on Automatic Face and Gesture Recogni-
tion, pages 67–72, 2004.

[94] M. Hamouz, J. Kittler, J.-K. Kamarainen, P. Paalanen, H. Kälviäinen,
and J. Matas. Feature-based affine-invariant localization of faces. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(9):1490–
1495, 2005.

[95] M.E. Harmon and L.C. Baird III. Multi-player residual advantage learning
with general function approximation. Technical report, Wright Labora-
tory, WL/AACF, Wright-Patterson Air Force Base, OH, 1996.

[96] B. Heisele, P. Ho, J. Wu, and T Poggio. Face recognition: component-
based versus global approaches. Computer Vision and Image Understand-
ing, 91(1):6–21, 2003.

[97] B. Heisele, T. Poggio, and M. Pontil. Face detection in still gray images.
AI Memo 1687, Center for Biological and Computational Learning, MIT,
Cambridge, MA, 2000.

[98] E. Hjelmås and B. K. Low. Face detection: A survey. Computer Vision
and Image Understanding, 83:236–274, 2001.

[99] B. K. P Horn. Shape from Shading: A Method for Obtaining the Shape
of a Smooth Opaque Object from One View. PhD thesis, Massachusetts
Institute of Technology, 1970.

[100] B. K. P. Horn and M. J. Brooks. Shape from Shading. MIT Press: Cam-
bridge, MA, 1989.

[101] H. J. Hotelling. Analysis of statistical variables into principal components.
Journal of Educational Psychology, 24:417–441, 1933.

[102] H.-C. Hsin, C.-C. Li, M. Sun, and R.J. Sclabassi. An adaptive training
algorithm for back-propagation neural networks. In International Con-
ference on Systems, Man and Cybernetics, volume 2, pages 1049–1052,
1992.

[103] C. Hu, R. Feris, and M. Turk. Active wavelet networks for face alignment.
In British Machine Vision Conference, UK, 2003.

[104] C. Huang, B. Wu, H. Ai, and S. Lao. Omni-directional face detection
based on real adaboost. In Proceedings of the International Conference
on Image Processing, Singapore, 2004.

[105] J. Huang, X. Shao, and H. Wechsler. Face pose discrimination using
support vector machines (SVM). In Proceedings of the Fourteenth Inter-
national Conference on Pattern Recognition, volume 1, pages 154–156,
August 1998.

163

BIBLIOGRAPHY

[106] D. Hubel and T. Wiesel. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. Journal of Physiology,
160:106–154, 1962.

[107] A. Hyvärinen. Fast and robust fixed-point algorithms for independent
component analysis. IEEE Transactions on Neural Networks, 10:626–634,
1999.

[108] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis.
Wiley, New York, 2001.

[109] A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent
component analysis. Neural Computation, 9(7):1483–1492, 1997.

[110] K. Ikeuchi and B. K. P. Horn. Numerical shape from shading and occlud-
ing boundaries. Artificial Intelligence, 17:141–184, 1981.

[111] N. Intrator, D. Reisfeld, and Y. Yeshurun. Extraction of facial features
for recognition using neural networks. In Proceedings of the International
Workshop on Automatic Face and Gesture Recognition, pages 260–265,
Zurich, 1995.

[112] R. A. Jacobs. Increased rates of convergence through learning rate adap-
tion. Neural Networks, 1:295–307, 1988.

[113] A. Jain and J. Huang. Integrating independent components and linear
discriminant analysis for gender classification. In Proceedings of the Inter-
national Conference on Automatic Face and Gesture Recognition, 2004.

[114] N. Japkowitz, S. Hanson, and A. Gluck. Nonlinear autoassociation is not
equivalent to PCA. Neural Computation, 12(3):531–545, 2000.

[115] S. Jeng, H. Yao, C. Han, M. Chern, and Y. Liu. Facial feature detection
using geometrical face model: An efficient approach. Pattern Recognition,
31(3):273–282, 1998.

[116] O. Jesorsky, K. J. Kirchberg, and R. W. Frischholz. Robust face detection
using the hausdorff distance. In J. Bigun and F. Smeraldi, editors, Third
International Conference on Audio- and Video-Based Biometric Person
Authentication (AVBPA), volume 2091 of Lecture Notes in Computer Sci-
ence, pages 90–95, Halmstad, Sweden, 2001. Springer.

[117] K. Jia, S. Gong, and A. P. Leung. Coupling face registration and super-
resolution. In British Machine Vision Conference, pages 449–458, Edin-
burg, UK, September 2006.

[118] M. Jones and P. Viola. Fast multi-view face detection. Technical Report
TR2003-96, Mitsubishi Electric Research Laboratories, 2003.

[119] K. Jonsson, J. Kittler, Y. Li, and J. Matas. Learning support vectors for
face verification and recognition. In Proceedings of the IEEE Conference
on Automatic Face and Gesture Recognition, pages 208–213, 2000.

[120] C. Jutten and J. Herault. Blind separation of sources. Signal Processing,
24:1–10, 1991.

164

BIBLIOGRAPHY

[121] J. Keeler, D. Rumelhart, and W. Leow. Integrated segmentation and
recognition of hand-printed numerals. Neural Information processing Sys-
tems, 3:557–563, 1991.

[122] M. Kirby and L. Sirovich. Application of the Karhunen-Loeve procedure
for the characterization of human faces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(1):103–108, 1990.

[123] T. Kohonen. Self-organizing formation of topologically correct feature
maps. Biological Cybernetics, 43(1):59–69, 1982.

[124] T. Kohonen. Self-Organizing and Associative Memory. Springer-Verlag,
Berlin, 1989.

[125] M. A. Kramer. Nonlinear principal component analysis using autoasso-
ciative neural networks. AIChE Journal, 37:233–243, 1991.

[126] B. Krüger, S. Bruns, and G. Sommer. Efficient head pose estimation with
gabor wavelet networks. In Proceedings of the 11th British Machine Vision
Conference, volume 1, pages 72–81, September 2000.

[127] N. Krüger, M. Pötzsch, and C. von der Malsburg. Estimation of face
position and pose with labeled graphs. Proceedings of the British Machine
Vision Conference, pages 735–743, 1996.

[128] N. Kumar, V. Abhishek, and G. Gautam. A novel approach for person
authentication and content-based tracking in videos using kernel methods
and active appearance models. In Proceedings of the IEEE Conference on
Systems, Man and Cybernetics, volume 2, pages 1384–1389, 2003.

[129] M. Lando and S. Edelman. Generalization from a single view in face
recognition. In International Workshop on Automatic Face- and Gesture
Recognition, 1995.

[130] A. Lanitis, C. J. Taylor, and T. Cootes. Automatic interpretation and
coding of face images using flexible models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7):743–756, July 1997.

[131] A. Lanitis, C. J. Taylor, and T. F. Cootes. Automatic face identification
system using flexible appearance models. Image and Vision Computing,
13:393–401, 1995.

[132] S. Lawrence, C. Giles, A. Tsoi, and A. Black. Face recognition: A convolu-
tional neural network approach. IEEE Transactions on Neural Networks,
8(1):98–113, 1997.

[133] Y. LeCun. Learning processes in an asymmetric threshold network. In
E. Bienenstock, F. Fogelman-Soulié, and G. Weisbuch, editors, Disordered
systems and biological organization, pages 233–240. Springer-Verlag, Les
Houches, France, 1986.

[134] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R. Howard, W. Hubbard,
and L. Jackel. Handwritten digit recognition with a back-propagation net-
work. In David Touretzky, editor, Advances in Neural Information Pro-
cessing Systems 2, pages 396–404. Morgan Kaufman, Denver, CO, 1990.

165

BIBLIOGRAPHY

[135] Y. LeCun, F.-J. Huang, and L. Bottou. Learning methods for generic
object recognition with invariance to pose and lighting. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. IEEE
Press, 2004.

[136] Y. LeCun, Bottou L., Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[137] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp. Off-road obstacle
avoidance through end-to-end learning. In Advances in Neural Informa-
tion Processing Systems. MIT Press, 2005.

[138] Y. LeCun, P. Simard, and B. Pearlmutter. Automatic learning rate maxi-
mization by on-line estimation of the hessian’s eigenvectors. In S. Hanson,
J. Cowan, and L. Giles, editors, Advances in Neural Information Process-
ing Systems, volume 5. Morgan Kaufmann Publishers, San Mateo, CA,
1993.

[139] Mun Wai Lee and S. Ranganath. Pose-invariant face recognition using a
3D deformable model. Pattern Recognition, 36:1835–1846, 2003.

[140] J. Leonard and M.A. Kramer. Improvement of the backpropagation algo-
rithm for training neural networks. Computers & Chemical Engineering,
14(3):337–341, 1990.

[141] T. K. Leung, M. C. Burl, and P. Perona. Finding faces in cluttered
scenes using random labeled graph matching. In Proceedings of the Fifth
International Conference on Computer Vision, pages 637–644, 1995.

[142] B. Q. Li and B. Li. Building pattern classifiers using convolutional neural
networks. International Joint Conference on Neural Networks, 5:3081–
3085, 1999.

[143] S. Z. Li, L. Zhu, Z. Zhang, A. Blake, H. Zhang, and H. Shum. Statis-
tical learning of multi-view face detection. In Proceedings of the IEEE
Conference on European Conference on Computer Vision, pages 67–81,
2002.

[144] Y. Li, S. Gong, and H. Liddell. Support vector regression and classi-
fication based multi-view face detection and recognition. Proceedings of
the International Conference on Automatic Face and Gesture Recognition,
2000.

[145] Chun-Hung Lin and Ja-Ling Wu. Automatic facial feature extraction by
genetic algorithms. IEEE Transactions on Image Processing, 8(6):834–
845, 1999.

[146] S. H. Lin, S. Y. Kung, and L. J. Lin. Face recognition/detection by prob-
abilistic decision-based neural networks. IEEE Transactions on Neural
Networks, 8:114–132, 1997.

166

BIBLIOGRAPHY

[147] S.-C. B. Lo, S.-L. A. Lou, J.-S. Lin, and M. T. Freedman. Artificial convo-
lutional neural network techniques and applications for lung nodule detec-
tion. IEEE Transactions on Medical Imaging, 14(4):711–718, December
1995.

[148] D. G. Lowe. Object recognition from local scale-invariant features. In
International Conference on Computer Vision, pages 1150–1157, Corfu,
Greece, 1999.

[149] D. G. Luenberger. Introduction to linear and nonlinear programming.
Addison-Wesley, 1973.

[150] B. MacLennan. Gabor representations of spatiotemporal visual images.
Technical Report UT-CS-91-144, Computer Science Department, Univer-
sity of Tennessee, Knoxville, 1991.

[151] G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis. Effective back-
propagation with variable stepsize. Neural Networks, 10:69–82, 1997.

[152] G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis. Improving the
convergence of the backpropagation algorithm using learning rate adap-
tation methods. Neural Computation, 11(7):1769–1796, 1999.

[153] A. M. Martinez. Recognizing imprecisely localized, partially occluded, and
expression variant faces from a single sample per class. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(6):748–763, 2002.

[154] A. M. Martinez and R. Benavente. The AR face database. Technical
Report 24, CVC, June 1998.

[155] A. M. Martinez and A. C. Kak. PCA versus LDA. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(2):228–233, 2001.

[156] O. Matan, C. Burges, Y. LeCun, and J. Denker. Multi-digit recognition
using a space displacement neural network. In J. Moody, S. Hanson, and
R. Lipmann, editors, Advances in Neural Information Processing Systems
4, pages 488–495. Morgan Kaufmann, San Mateo, CA, 1992.

[157] M. Matsugu, K. Mori, and Y. Mitari. Convolutional spiking neural net-
work model for robust face detection. In Proceedings of the 9th Interna-
tional Conference on Neural Information Processing (ICONIP), volume 2,
pages 660–664, 2002.

[158] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda. Facial expression recog-
nition combined with robust face detection in a convolutional neural net-
work. In Proceedings of the International Joint Conference on Neural
Networks, volume 3, pages 2243–2246, July 2003.

[159] S. McKenna and S. Gong. Real time face pose estimation. International
Journal on Real Time Imaging, Special Issue on Real-time Visual Moni-
toring and Inspection, 4:333–347, 1998.

167

BIBLIOGRAPHY

[160] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre. XM2VTSDB:
The extended M2VTS database. In Second International Conference on
Audio and Video-based Biometric Person Authentication, pages 72–77,
1999.

[161] S. Mika, G. Ratsch, J. Weston, B. Schölkopf, and K. Müller. Fisher
discriminant analysis with kernels. In Proceedings of the IEEE Workshop
on Neural Networks for Signal Processing, pages 41–48, 1999.

[162] K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point
detectors. International Journal of Computer Vision, 60(1):63–86, 2004.

[163] M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, Cambridge,
MA, 1969.

[164] B. Moghaddam and M.-S. Yang. Learning gender with support
faces. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(5):707–711, May 2002.

[165] Baback Moghaddam and Alex Pentland. Probabilistic visual learning for
object representation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19(7):696–710, 1997.

[166] M. C. Motwani and Qiang Ji. 3D face pose discrimination using wavelets.
In Proceedings of the International Conference on Image Proceedings, vol-
ume 1, pages 1050–1053, 2001.

[167] M. C. Mozer. The perception of multiple objects: A connectionist ap-
proach. In Connectionism in Perspective. MIT Press-Bradford Books,
Cambridge, MA, 1991.

[168] A. Namphol, M. Arozullah, and S Chin. Higher order data compression
with neural networks. In Proceedings of the IJCNN, pages 155–159, June
1991.

[169] A. V. Nefian. A Hidden Markov Model-Based Approach for Face Detection
and Recognition. PhD thesis, Georgia Institute of Technology, Atlanta,
GA, 1999.

[170] Claus Neubauer. Evaluation of convolutional neural networks. IEEE
Transactions on Neural Networks, 9(4):685–696, July 1998.

[171] J. Ng and S. Gong. Multi-view face detection and pose estimation using a
composite support vector machine across the view sphere. In Proceedings.
International Workshop on Recognition, Analysis, and Tracking of Faces
and Gestures in Real-Time Systems, pages 14–21, 1999.

[172] S. Niyogi and W. T. Freeman. Example-based head tracking. In Pro-
ceedings of the Second International Conference on Automatic Face and
Gesture Recognition, pages 374–378, October 1996.

[173] S. J. Nowlan and J. C. Platt. A convolutional neural network hand tracker.
In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural In-
formation Processing Systems, volume 7, pages 901–908. The MIT Press,
1995.

168

BIBLIOGRAPHY

[174] E. Oja. Data compression, feature extraction, and autoassociation in feed-
forward neural networks. In Proceedings of the International Conference
on Artificial Neural Networks, pages 737–745, Espoo, Finland, June 1991.

[175] M. Osadchy, Y. LeCun, and M. Miller. Synergistic face detection and
pose estimation with energy-based models. Journal of Machine Learning
Research, 8:1197–1215, May 2007.

[176] E. Osuna, R. Freund, and F. Girosi. Training support vector machines:
An application to face detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 130–136, 1997.

[177] A. J. O’Toole, T. Vetter, N. F. Troje, and H. H. Bulthoff. Sex classifica-
tion is better with three-dimensional structure than with image intensity
information. Perception, 26:75–84, 1997.

[178] R. Ouellette, M. Browne, and K. Hirasawa. Genetic algorithm optimiza-
tion of a convolutional neural network for autonomous crack detection. In
Congress on Evolutionary Computation, volume 1, pages 516–521, June
2004.

[179] V.P. Palgianakos, M.N. Vrahatis, and G.D. Magoulas. Nonmonotone
methods for backpropagation training with adaptive learning rate. In In-
ternational Joint Conference on Neural Networks, volume 3, pages 1762–
1767, 1999.

[180] P. S. Penev and J. J. Atick. Local feature analysis: a general statisti-
cal theory for object representation. Network: Computation in Neural
Systems, 7(3):477–500, 1996.

[181] A. D. Pentland, B. Moghaddam, and T. Starner. View-based and modular
eigenspaces for face recognition. In Proceedings of the IEEE Computer
Society Conference on Pattern Recognition, pages 84–91, 1994.

[182] F. Perronnin, J. L. Dugelay, and K. Rose. A probabilistic model of face
mapping with local transformations and its application to person recogni-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(7):1157–1171, 2005.

[183] P. J. Philips, H. Wechsler, J. Huang, and P Rauss. The feret database and
evaluation procedure for face recognition algorithms. Image and Vision
Computing, 16(5):295–306, 1998.

[184] P. J. Phillips. Support vector machines applied to face recognition. In
Proceedings of the 1998 Conference on Advances in Neural Information
Processing Systems, pages 803–809, 1999.

[185] The Psychological Image Collection at Stirling University (PICS).
http://pics.psych.stir.ac.uk.

[186] D. Plaut, S. Nowlan, and G. E. Hinton. Experiments on learning by
back propagation. Technical Report TR CMU-CS-86-126, Department of
Computer Science, Carnegie Mellon University, 1986.

169

BIBLIOGRAPHY

[187] M. Powell. Radial basis functions for multivariable interpolation: A re-
view. In IMA Conference on Algorithms for the Approximation of Func-
tions and Data, 1985.

[188] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, 1992.

[189] J. R. Price and T. F. Gee. Face recognition using direct, weighted lin-
ear discriminant analysis and modular subspaces. Pattern Recognition,
38(2):209–219, January 2005.

[190] L. R. Rabiner. A tutorial on hidden markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–285,
1989.

[191] L. R. Rabiner and Juang B.-H. Fundamentals of Speech Recognition. Pren-
tice Hall, Eaglewood Cliffs, NJ, 1993.

[192] R. Rae and H. Ritter. Recognition of human head orientation based
on artificial neural networks. IEEE Transactions on Neural Networks,
9(2):257–265, March 1998.

[193] Marc’Aurelio Ranzato, Fu-Jie Huang, Y-Lan Boureau, and Yann LeCun.
Unsupervised learning of invariant feature hierarchies with applications
to object recognition. In Proceedings of the International Conference on
Computer Vision and Pattern Recognition. IEEE Press, 2007.

[194] M. J. T. Reinders, R. W. C. Koch, and J. J. Gerbrands. Locating fa-
cial features in image sequences using neural networks. In Proceedings
of the Second International Conference on Automatic Face and Gesture
Recognition, pages 230–235, 1996.

[195] Daniel Reisfeld and Yehezkel Yeshurun. Robust detection of facial features
by generalized symmetry. In Proceedings of the International Conference
on Pattern Recognition, 1992.

[196] E. Rentzeperis, A. Stergiou, A. Pnevmatikakis, and L. Polymenakos. Im-
pact of face registration errors on recognition. In Artificial Intelligence
Applications and Innovations, Peania, Greece, 2006.

[197] M. Riedmiller and H. Braun. A direct adaptive method for faster back-
propagation learning: The RPROP algorithm. In Proceedings of the IEEE
Conference on Neural Networks, pages 586–591, San Francisco, CA, 1993.

[198] H. Ritter, T. Martinez, and K. Schulten. Neuronale Netze. Addison-
Wesley, 1991.

[199] J. Ros, C. Laurent, and G. Lefebvre. A cascade of unsupervised and su-
pervised neural networks for natural image classification. In International
Conference on Image and Video Retrieval, pages 92–101, Tempe, USA,
2006.

[200] F. Rosenblatt. The perceptron: a probabilistic model for information
storage and retrieval in the brain. Psychological Review, 65:386–408, 1958.

170

BIBLIOGRAPHY

[201] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms. Spartan, Washington, DC, 1962.

[202] D. Roth, M.-H. Yang, and N. Ahuja. A SNoW-based face detector. In
Advances in Neural Information Processing Systems 12, pages 855–861.
MIT Press, 2000.

[203] S. Roux, F. Mamalet, and C. Garcia. Embedded convolutional face finder.
In International Conference on Multimedia and Expo, pages 285–288,
2006.

[204] S. Roux, F. Mamalet, C. Garcia, and S. Duffner. An embedded robust
facial feature detector. In International Conference on Machine Learning
and Signal Processing (MLSP), Thessaloniki, Greece, August 2007.

[205] S. Roweis. EM algorithms for PCA and SPCA. In Proceedings of the
International Conference on Advances in Neural Information Processing
Systems (NIPS), volume 10, pages 626–632, 1997.

[206] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detec-
tion. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 203–208, 1996.

[207] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(1):23–38, 1998.

[208] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In Parallel Distributed Processing:
Explorations in the Microstructures of Cognition, volume 1, pages 318–
362. MIT Press, 1986.

[209] Y. Saatci and C. Town. Cascaded classification of gender and facial ex-
pression using active appearance models. In Proceedings of the 7th Inter-
national Conference on Automatic Face and Gesture Recognition, pages
393–398, April 2006.

[210] Eli Saber and A.Murat Tekalp. Frontal-view face detection and facial
feature extraction. Pattern Recognition Letters, 19(8):669–680, 1998.

[211] Z. Saidane and C. Garcia. Automatic scene text recognition using a convo-
lutional neural network. In Proceedings of the Second International Work-
shop on Camera-Based Document Analysis and Recognition (CBDAR),
September 2007.

[212] Z. Saidane and C. Garcia. Robust binarization for video text recognition.
In Proceedings of the 9th International Conference on Document Analysis
and Recognition (ICDAR), volume 2, September 2007.

[213] Ralf Salomon. Improved convergence rate of back-propagation with dy-
namic adaptation of the learning rate. In PPSN, pages 269–273, 1990.

[214] F. Samaria and A. Harter. Parametrisation of a stochastic model for
human face identification. In 2nd IEEE Workshop on Applications of
Computer Vision, pages 138–142, 1994.

171

BIBLIOGRAPHY

[215] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boost-
ing the marging: A new explanation for the effectiveness of voting meth-
ods. The Annals of Statistics, 26(5):1651–1686, October 1998.

[216] Robert E. Schapire and Yoram Singer. Improved boosting algorithms
using confidence-rated predictions. In Proceedings of the Eleventh Annual
Conference on Computational Learning Theory, pages 80–91, 1998.

[217] B. Schiele and A. Waibel. Gaze tracking based on face-color. International
Workshop on Automatic Face and Gesture Recognition, pages 344–348,
1995.

[218] H. Schneiderman and T. Kanade. A statistical model for 3D object de-
tection applied to faces and cars. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, volume 1, pages 746–751,
2000.

[219] B. Schölkopf, A. J. Smola, and K. R. Müller. Kernel principal component
analysis. In B. Schölkopf, C. Burges, and A. J. Smola, editors, Advances
in Kernel Methods - Support Vector Learning, pages 327–352. MIT Press,
1999.

[220] N.N. Schraudolph. Local gain adaptation in stochastic gradient descent. In
Ninth International Conference on Artificial Neural Networks (ICANN),
volume 2, pages 569–574, 1999.

[221] I. M. Scott, T. F. Cootes, and C. J. Tayler. Improving appearance model
matching using local image structure. In 18th International Conference
on Information Processing in Medical Imaging, pages 258–269, July 2003.

[222] Gregory Shakhnarovich, Paul Viola, and Baback Moghaddam. A unified
learning framework for real time face detection and classification. In In-
ternational Conference on Automatic Face and Gesture Recognition, 2002.

[223] T. Shakunaga, K. Ogawa, and S. Oki. Integration of eigentemplate and
structure matching for automatic facial feature detection. In Third IEEE
International Conference on Automatic Face and Gesture Recognition,
pages 94–99, April 1998.

[224] S. Shan, Y. Chang, W. Gao, B. Cao, and P. Yang. Curse of mis-alignment
in face recognition: problem and a novel mis-alignment learning solution.
In Automatic Face and Gesture Recognition, pages 314–320, 2004.

[225] A. Shashua and T. Riklin-Raviv. The quotient image: Class-based re-
rendering and recognition with varying illuminations. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(2):129–139, February
2001.

[226] F. M. Silva and L. B. Almeida. Acceleration techniques for the backprop-
agation algorithm. In Proceedings of the EURASIP Workshop 1990 on
Neural Networks, pages 110–119, London, UK, 1990. Springer-Verlag.

[227] T. Sim, S. Baker, and M. Bsat. The CMU Pose, Illumination and Expres-
sion (PIE) database. Technical Report CMU-RI-TR-01-02, The Robotics
Institute, CMU, January 2001.

172

BIBLIOGRAPHY

[228] T. Sim and Kanade. T. Combining models and exemplars for face recogni-
tion: An illuminating example. In Workshop on Models versus Exemplars
in Computer Vision, 2001.

[229] S. Sirohey and A. Rosenfeld. Eye detection in a face image using linear
and nonlinear filters. Pattern Recognition, 34(7):1367–1391, 2001.

[230] Z. Sun, G. Bebis, X. Yuan, and S. J. Louis. Genetic feature subset selection
for gender classification: A comparison study. In IEEE Workshop on
Applications of Computer Vision, pages 165–170, August 2002.

[231] K. K. Sung and T. Poggio. Example-based learning for view-based hu-
man face detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(1):39–51, 1998.

[232] R. S. Sutton. Adapting bias by gradient descent: an incremental version
of belta-bar-delta. In Proceedings of the Tenth International Conference
on Machine Learning, pages 171–176, Cambridge MA, 1992.

[233] D. L. Swets and J. J. Weng. Using discriminant eigenfeatures for image re-
trieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(8):831–836, 1996.

[234] B. Takács. Comparing face images using the modified hausdorff distance.
Pattern Recognition, 31:1873–1881, 1998.

[235] C. E. Thomaz, R. Q. Feitosa, and A. Veiga. Design of radial basis function
network as classifier in face recognition using eigenfaces. In 5th Brazilian
Symposium on Neural Networks (SBRN), pages 118–123, 1998.

[236] M. E. Tipping and C. M. Bishop. Probabilistic principal component anal-
ysis. Technical Report NCRG-97-010, Aston University, 1997.

[237] M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal
component analysers. Neural Computation, 11(2):443–482, 1999.

[238] F. H. C. Tivive and A. Bouzerdoum. A new class of convolutional neural
network (SICoNNets) and their application to face detection. In Proceed-
ings of the International Joint Conference on Neural Networks, volume 3,
pages 2157–2162, 2003.

[239] F. H. C. Tivive and A. Bouzerdoum. Efficient training algorithms for a
class of shunting inhibitory convolutional neural networks. IEEE Trans-
actions on Neural Networks, 16(3):541–556, May 2005.

[240] F. H. C. Tivive and A. Bouzerdoum. A fast neural-based eye detection
system. In Proceedings of the International Symposium on Intelligent Sig-
nal Processing and Communication Systems (ISPACS), pages 641–644,
December 2005.

[241] F. H. C. Tivive and A. Bouzerdoum. A shunting inhibitory convolutional
neural network for gender classification. In Proceedings of the Interna-
tional Conference on Pattern Recognition, 2006.

173

BIBLIOGRAPHY

[242] L. Torres, L. Lorente, and J. Vila. Automatic face recognition of video se-
quences using self-eigenfaces. In International Symposium on Image/Video
Communication over Fixed and Mobile Networks, 2000.

[243] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In
Computer Vision and Pattern Recognition, pages 586–591, 1991.

[244] S. Usui, S. Nakauchi, and M. Nakano. Internal color representation ac-
quired by a five-layer neural network. In O. Simula, T. Kohonen, K. Maki-
iara, and J. Kangas, editors, Proceedings of the International Conference
on Artificial Neural Networks, pages 867–872, 1991.

[245] V. Vapnik. Estimation of Dependences Based on Empirical Data [in Rus-
sian]. Nauka, Russia (English Translation: Springer Verlag, New York,
1982), 1979.

[246] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
1995.

[247] M. A. O. Vasilescu and D. Terzopoulos. Multilinear subspace analysis
for image ensembles. In Proceedings of the International Conference on
Pattern Recognition, volume 2, pages 511–514, 2002.

[248] T. Vetter and T Poggio. Linear object classes and image synthesis from
a single example image. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):733–741, 1997.

[249] J. M. Vincent, J. B. Waite, and D. J. Myers. Precise location of facial
features by a hierarchical assembly of neural nets. In Second International
Conference on Artificial Neural Networks, pages 69–73, 1991.

[250] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, volume I, pages 511–518, 2001.

[251] P. Viola and M. Jones. Robust real-time object detection. International
Journal of Computer Vision, 2002.

[252] M. Visani, C. Garcia, and J. M. Jolion. Two-dimensional-oriented linear
discriminant analysis for face recognition. In Proceedings of the Interna-
tional Conference on Computer Vision and Graphics, pages 1008–1017,
2004.

[253] M. Visani, C. Garcia, and J. M. Jolion. Normalized radial basis function
networks and bilinear discriminant analysis for face recognition. In IEEE
International Conference on Advanced Video and Signal-Based Surveil-
lance (AVSS), Como, Italy, September 2005.

[254] M. Visani, C. Garcia, and C. Laurent. Comparing robustness of two-
dimensional PCA and eigenfaces for face recognition. In A. Campilho and
M. Kamel, editors, Proceedings of the International Conference on Image
Analysis and Recognition, pages 717–724, 2004.

174

BIBLIOGRAPHY

[255] T.P. Vogl, J.K. Mangis, J.K. Rigler, W.T. Zink, and D.L. Alkon. Ac-
celerating the convergence of the back-propagation method. Biological
Cybernetics, 59:257–263, 1988.

[256] Yucheng Wei, L. Fradet, and Tieniu Tan. Head pose estimation using
gabor eigenspace modeling. In Proceedings of the International Conference
on Image Processing, volume 1, pages 281–284, 2002.

[257] P Werbos. Backpropagation: Past and future. In Proceedings of the
International Conference on Neural Networks, pages 343–353, 1988.

[258] D. J. Willshaw and C. von der Malsburg. How patterned neural con-
nections can be set up by self-organization. In Royal Society of London,
volume 194 of Series B-194, pages 431–445, 1976.

[259] L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Malsburg. Face
recognition and gender determination. In Proceedings of the International
Workshop on Automatic Face and Gesture Recognition, pages 92–97, 1995.

[260] L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Malsburg. Face
recognition by elastic bunch graph matching. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 19(7):775–779, 1997.

[261] L. Wolf and A. Shashua. Learning over sets using kernel principal angles.
Journal of Machine Learning Research, 4:913–931, 2003.

[262] O. Yamaguchi, K. Fukui, and K. I. Maeda. Face recognition using tempo-
ral image sequence. In Proceedings of the IEEE Conference on Face and
Gesture Recognition, pages 318–323, 1998.

[263] J. Yang, D. Zhang, and A. F. Frangi. Two-dimensional PCA: A new
approach to appearance-based face representation and recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(1):131–
137, 2004.

[264] M. H. Yang. Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition
using kernel methods. In Proceedings of the International Conference on
Face and Gesture Recognition, pages 215–220, 2002.

[265] M.-H. Yang, D. Kriegman, and N. Ahuja. Face detection using multimodal
density models. Computer Vision and Image Understanding, 84:264–284,
2001.

[266] M. H. Yang, D. Kriegman, and N. Ahuja. Detecting faces in images: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(1):34–58, 2002.

[267] B. Yegnanarayana, Anil Kumar sao, B. V. K. V. Kumar, and M. Savvides.
Determination of pose angle of face using dynamic space warping. In
Proceedings of the International Conference on Information Technology:
Coding and Computing, volume 1, pages 661–664, April 2004.

[268] K. C. Yow and R. Cipolla. Feature-based human face detection. Image
and Vision Computing, 15(9):713–735, 1997.

175

BIBLIOGRAPHY

[269] A. L. Yuille, P. W. Hallinan, and D. S. Cohen. Feature extraction from
faces using deformable templates. International Journal of Computer Vi-
sion, 8(2):99–111, 1992.

[270] L. Zhao, G. Pingali, and I. Carlbom. Real-time head orientation estima-
tion using neural networks. In Proceedings of the International Conference
on Image Processing, September 2002.

[271] W. Zhao. Robust Image Based 3D Face Recognition. PhD thesis, Univer-
sity of Maryland, 1999.

[272] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition:
A literature survey. ACM Computing Surveys (CSUR), 35(4):399–458,
2003.

[273] S. Zhou, R. Chellappa, and D. Jacobs. Characterization of human faces
under illumination variations using rank, integrability, and symmetry con-
straints. European Conference on Computer Vision, pages 588–601, 2004.

[274] M. Zobel, A. Gebhard, D. Paulus, J. Denzler, and H. Niemann. Robust
facial feature localization by coupled features. In Fourth IEEE Interna-
tional Conference on Automatic Face and Gesture Recognition, pages 2–7,
2000.

176

