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Abstract

This contribution presents an efficient method to estimate the motion parameters of planar
rigid objects in space. The problem is formulated as a model-based estimation problem which is
solved by an iterative minimization strategy based on ordinary grey-scale images. Therefore no a
priori knowledge as corresponding points or the displacement vector fields are required.

The advantages of the algorithm - a so called modified Newton-Raphson algorithm and its
combination with Quasi-Newton methods - are the large region of stability, the high, image-
bandwidth-adaptive convergence rate and the low numerical expense within each iteration step.
Therefore the algorithm may be used for near realtime applications.

Furthermore the algorithm is relatively insensitive to additive noise because whole image
areas are used. The variance of the motion parameters can be reduced further if the problem of
motion estimation is formulated as maximum-likelihood estimation. Under a few assumptions the
maximum-likelihood estimation can be interpreted as a generalized correlation, i.e. the correlation
of the appropriately prefiltered images.

1. Introduction

The problem of motion estimation has become of great interest in several areas of image
processing such as motion compensated image coding, remote sensing, robotics or autonomous
vehicles [Huang 1981, Huang 1983, Nagel 1981, Nagel 1983, Nagel 1985, Musmann et al. 1985,
Bahr 1985]. So far most algorithms for three-dimensional motion estimation use corresponding
points [Roach und Aggarwal 1980, Huang und Tsai 1981, Tsai et al. 1982, Tsai and Huang 1984a,
Tsai and Huang 1984b, Fang and Huang 1984, Longuet-Higgins 1981, Yen and Huang 1983] which
have to be known a priori or they use the displacement vector field [Prazdny 1980, Adiv 1985,
Kanatani 1986]. Both methods have a very high numerical complexity and are very sensitive to
noise.

In this contribution the motion estimation problem is solved using model-based estimation
techniques based on ordinary grey scale images. The advantage of these iterative algorithms is
the combination of good performance features such as a large region of stability and a high,
image-bandwidth-adaptive convergence rate with low numeric expense within each iteration step.

Furthermore the algorithms are relatively insensitive to additive noise because whole areas of the
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images are used. Similar algorithms may be found in {Spoer 1987, Netravali and Salz 1985, Lenz
1986].

The problem of motion estimation may be devided into two subproblems. First the scene
has to be segmented into the different moving objects and the background where also effects
of occlusion have to be taken into consideration. In a second step the motion parameters of
the objects have to be estimated. This contribution deals with this second problem under the
simplifying assumption of only one moving object. To achieve quite general results methods to
estimate the parameters of arbitrary motion and therefore of general coordinate transforms are

developed. Three-dimensional motion of a rigid planar patch is treated as a special example.

The parameter estimation algorithm is based on a simplified signal model. A camera looks

at a rigid moving object in the three-dimensional space. Two grey-scale images I; (x) and I(x)

describe the motion of this object in front of a uniform background where no occlusion effects
occur:

I(x) = S(x) + Nyi(x), I(x) = S(x') + N (x). (1.1)

S(x) und S(x) are the projections of the moving object onto the image plane. Ny(x) and N, (x)
are additive noise terms. Thus equation 1.1 describes the connection between the projection of
the object in position 1 (I;(x)) and the same object in position 2 (£2(x)) (cf. Fig. 1.1).

Generally the connection between the coordinates {x} and {x'} is given by a transform
x' = h(x,T), (1.2)

with the motion vector T. The transform h(x, T) should be unique and invertible in the considered
image region. For simplicity it should also be x’ = h(x,T = 0) = x for T = 0. If the image
formation is described by central projection under the assumption of a rigid planar patch the
coordinate transform is given by

- ta)ztayta i @z+(1+as)y+as

- , 1.3
arz+agy+1 ’ y arz +agy+1 (1.3)

with the motion vector T = a = (a,,4,,4as,a4,as,as, ar,as)’. For parallel projection the coordi-

nate transform may be described as
z'= (14+c)z+cay+es, vV =cz+(1+cs)y+ce, (1.4)

: T
with T = ¢ = (Cl,CZ,C3,C4,Cs,Cﬁ)

The parameters of the coordinate transforms in the image plane are unique. But it is very
hard to answer the question how to get the true three-dimensional motion parameters of the
object. Using the central projection and two successive images there are normally two solutions
[Tsai and Huang 1982]. Often one solution can be excluded using slight a priori knowledge such
as a rough estimate of the object position at the beginning of motion. If three successive images
are used the motion parameters are unique up to a common scale factor of the translation vector
[Tsai and Huang 1984b].
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Fig. 1.1: Moving of an object in the three-dimensional space

and central projection onto the image plane

If parallel projection is used the ambiguity is larger. There are usually four solutions up to the
common scale factor [Lenz 1986]. These ambiguities mainly result from the fact that the parallel
projection cannot describe the magnification of object parts coming closer and the reduction of

those parts moving away.

2. Model-based parameter estimation

In this contribution the main aspect will be the efficient estimation of the parameter vector T
of the coordinate transform h(x, T). Therefore the idea of model-based parameter estimation will
be used and a so called modified Newton-Raphson algorithm and its combinations with Quasi-
Newton methods will be developed. To get an appropriate estimate T of the parameter vector T
the motion is modelled by a model image I,,(x,T). This image results from I;(x) by the same
transform h(x,T) like J;(x) but now with the model parameter vector T. In a second step the
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difference between I,,(x,T) an I)(x) is described by an appropriate error criterion J{e(T} which

is minimized to get the optimal estimate T = T~.

error criterion

| minimizing .
J{C(T)} strategy ]

Nl (X)

Fig. 2.1: Structure of model-based parameter estimation

2.1. The error criterion

The error criterion specifies the quality of the estimate. Therefore knowledge of the signal
and noise statistics should be incorporated. The most general approach is given by a maximum

likelihood estimate. At the moment the simpler error function

He(®)} = L E{(In(x,T) - L(x)7}, (2.1)
2

Le. the variance of the model error is chosen. The expectation value is realized by summing over
the interesting image region. For stationary signals J{e(‘i‘)} equals the negative cross correlation

funktion of I,,(x, T) and I(x) plus an additive constant.

This error criterion has to meet some requirements. First the contents of the images I; (x) and
I>(x) must have a sufficiently high similarity such that the error function has a unique minimum.
Second it is assumed that J{e(T)} is at least twice differentiable at the optimum, i.e. the Hessian
of the error function must exist. For ill conditioned images where the criterion has no dominant

parabolic shape near the optimum appropriate filtering may be used.
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2.2. The minimizing strategy

The minimizing strategy determines the velocity and robustness of the estimate. The region
of stability, the convergence rate and the numerical complexity of the minimizing algorithm are

very important and decide if near realtime applications are possible.

A global search for the optimal parameter vector T* is unrealistic because it results in the
calculation of a multidimensional cross-correlation function in conjunction with a tremendeous
numerical complexity. Instead local, iterative methods are used, especially a so called modified

Newton-Raphson algorithm and its combination with Quasi-Newton methods.

2.2.1. The modified Newton-Raphson algorithm

The modified Newton-Raphson algorithm originally has been developed for one-dimensional
problems such as time delay estimation and stereoscopic range finding [Mesch 1982, Burkhardt
and Moll 1978, Burkhardt and Moll 1979]. Then it was used to estimate simultaneously rotation
and translation in image sequences [Burkhardt and Diehl 1986, Diehl and Burkhardt 1986} before
it has been extended to general transforms h(x, T) [Diehl 1987, Diehl 1988]. The modified Newton-
Raphson algorithm differs from the normal Newton algorithm at one important point. Instead of
using the Hessian H(T) at the actual iteration point T = T} the Hessian is always used at the
optimum T = T*. For pure translation (T = (d;,d;)T) the algorithm is given by the iteration

Trpr = Tu - HTY(T") g(Ta). (2:2)

The special advantage of this algorithm is the possibility to compute the Hessian H(T*) only

once before starting the iteration.

An interpretation will be given in the following if additive noise is neglected. Imagine that the
error criterion equals the negative cross-correlation of Im(x,’f) and I(x). At the optimum when
In(x,T) is identical to I (x) the cross-correlation equals the autocorrelation of I5(x). Therefore
the Hessian can be calculated at the beginning as the curvature of the autocorrelation instead of
the cross-correlation at the unknown optimum. Thus the numerical complexity is quite low. Only
the gradient vector g('fk) has to be updated within the iteration.

If these results are extended to the general transform h(x,T) a few small changes have to be
made. Especially a moving coordinate system {xx} and an additional motion vector T have to be
introduced [Diehl 1987, Diehl 1988]. This vector connects the coordinate system {x;} of iteration
step k with the coordinate system {xx4} of iteration step k + 1:

xx =h(x,T})

N N _ ~ (2.3)
X1 =h(xk, Tes1) = h(h(x,Ty), Trs1) = h(x,Tpy,) -

Thus the coordinate system {xj4,} results directly from {x} by the vector 'i‘kH or indirectly
from {xx} by Ty41. This is only possible if the set of transforms h(x, T) is closed.

Now the model image Im(x,i‘k+1) is generated indirectly :

In(%,Trs1) = Li(xas1) = Li(h(h(x, Ti), Tiy1)) (2.4)
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and the error criterion has to be minimized with respect to T. Then the new iteration is given by
T = — H 1 E(TS) (2.5)
for the innovation at step k + 1 and
Trpr = £ (Th, Try1) (2.6)

connecting i‘k+1 and ’i‘k to the whole motion vector 'fk+1.

The Hessian H at the optimum is given by

G- & {(aﬁg;m*))T 6I31)(cx) (afgix)y ahng,T)}

if additive noise is neglected. This expression does not explicitely depend on the actual motion

(2.7)

T=0

vector. Therefore the Hessian actually can be calculated before starting the iteration. The gradient

vector is given by

&(Th) = B { (In(x,T4) - B(x))

(c'ﬂz(x))T(axk)“l (afk+1_) T (2.8)
dx dx 8T ki1 ’

Tr4+1=0

which has to be updated within each iteration step.

To get a better idea of the algorithm the formulas for a planar rigid patch using central
projection are given in detail. With

ox' z y 1 0 0 0 -z -—zy
0 0 0 z 2 )0 (2:9)

T y 1 —-zy -y
and
oI (x") dLi(x) O8IL(x) oLi(x) dL(x)
A = z, Y, ) z,
T |1_e Oz oz 0z Jy
. (210)
86 (x) 9I6Li(x) _azl(x)zz_an(x)z _all(x)z _,Bfl(x)y2>
oy V' oy ' o oy VT Tar YT oy
the Hessian can be calculated according to
i g d(0h&) an (x')\” (2.11)
- 8T oT o '

The gradient vector may be written in the simplified form

g(Tx) = BYNE 2(Ty) (2.12)




303

with the simple weighting matrix BMN¥® which is independent of the image content and the
coordinates. The vector z(T}) is given by

(Im(x,’l‘ - I(x)) 23 22
(o (, B) = 1250)) 252 2y
(Im(x,T) - I(x)) 255
(o (x, B) — 1)) 252y
oI(x
2(T) = E EZZ; Iz(x; 6_;:& . (2.13)
(In(x,T) - L(x)) 20 2y
(I, T) - Iz(x)) oh(x) ,
(In(x, T) - B(x)) 222y
| (In(,B) - () 252

To compute this vector the image difference between I,,(x,T) and I (x) has to be built and has
to be multiplied by the weighted partial derivatives. Further details ar given in [Diehl 1988)].

The transform
Tri1 = f(Tk, Ths1), (2.14)

which connects ’I‘k and 'I‘k_H is given by

(01 a, aa) (01 a, 53) P (2.15)
—~ —~ —~ =\ ~ - —~ as as as .
a4 as ag k+1 a4 as ag k+1

k
and
a, 4
(67) aﬁ)k+1 = (67, 68; 1)k+l 64 a5 . (216)
21\7 ag &
Thus using these formulas and
T = — H ' g(Th) (2.17)

the modified Newton-Raphson algorithm is described completely.

The advantages of the modified Newton-Raphson algorithm are manifold. Because the Hessian
1s always used at the optimum the advantages of the gradient algorithm and those of the normal
Newton algorithm are combined. The modified Newton-Raphson algorithm has the large region
of stability like the gradient algorithm. Like the normal Newton algorithm it has good signal
adaptive properties. The Hessian which can be interpreted as the curvature of the autocorrelation

function of the images adjusts to the image bandwidth. Therefore the convergence rate of the
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Euclidean error norm H’fk — T*|| is at least of second order, independently of the chosen signals.
Another important advantage is the low numerical complexity because of the ability to calculate
the Hessian before starting the iteration. Therefore only the gradient vector has to be updated.

Nevertheless there are a few problems. If there is significant noise the Hessian calculated ac-
cording to eq. 2.7 does not exactly represent the second derivatives of the error function. Therefore
the convergence rate may be worse. Furthermore it is sometimes disadvantageous that the set of
transforms h(x, T') has to be closed. Quasi-Newton algorithms and especially their combination
with the modified Newton-Raphson algorithm can succesfully deal with these problems.

2.2.2. Quasi-Newton methods

Quasi-Newton methods [Gill et al. 1981] try to build up the Hessian at the actual iteration
point Ts only using values of the gradient vector which have already been calculated. Thus the
curvature of the error criterion is approximated only by first derivatives. The iteration scheme is
given by

Tt = Tk — C71 g(Ty) . (2.18)

The Quasi-Newton matrix Cj converges to the true Hessian at the optimum if for example the
BFGS-update [Gill et al. 1981] is used:

1 ~ ~ 1
Cit1 = Cr + —=—g(Tw)g(Te)T + Yyt . 2.19
o(T0)Te ) yTse VY (2.19)

Sk = ’i‘kH — T4 describes the difference of two succesive estimates and Yi = g(i‘k+1) — g("f‘k)
the change in the gradient. The gradient vector is given by

g(Tw) = E (Im(x,'i‘) - Iz(x)) (?%Si)y (%’f)_l (%)) ' - (2.20)
T=T

k

which again can be simplified for the case of central projection to
&(Tk) = BY z(T}) (2.21)

with z(i‘k) of equation 2.13. The weighting matrix B9 is similar to BMNR_ Tt is important to
note that only the gradient vector has to be calculated whithin each iteration step. Therefore the
numerical complexity - characterized by the number of operations on each pixel - is as low as for
the gradient or modified Newton-Raphson algorithm. Because the Hessian is approximated the
convergence rate only is superlinear. Furthermore the region of stability is quite low.

2.2.3. A combined algorithm

A very efficient algorithm can be realized if the modified Newton-Raphson and the Quasi-

Newton algorithm are combined. The iteration is given by

;-i‘k+1 =Ty — M, ! g(i‘k) . (2.22)




305

Here a matrix M is used as a combination of the Hessian H at the optimum and a Quasi-Newton

matrix MBFGS

1 ~
My = o (H + MZF%%) . (2.23)

The matrix Mfﬂcs results from M, of the preceeding iteration step k& by the BFGS-Quasi-
Newton update. If the estimate T is far away from the true value T* and therefore the Quasi-
Newton method would diverge MPF®S = 0 is used. Thus the algorithm keeps stable and the
innovation is twice the innovation of the modified Newton-Raphson algorithm, which improves the
far away convergency. Near the optimum MfﬁGs converges to the Hessian H of the optim{lm such
that the combined algorithm turns into the modified Newton-Raphson algorithm. An additional
improvement can be reached if at the beginning only the translation parameters a3 and ag are
estimated under the assumption that the other parameters are zero. More deatails are given in

[Diehl 1988].

Fig. 2.2: Picture of a woman digitized by 512 x 512 pixel

2.3. Tests using real image data

The algorithm has been tested with real image data. Therefore different images I;(x) have
been transformed in the computer by a definite eight parametric motion vector T = a to generate
I(x). Using two corresponding images I; (x) and I;(x) the motion vector T was estimated. Fig.
2.2, 2.3 and 2.4 show a typical experiment. The motion vector connecting Ij(x) and I;(x) was
T = (0.166,-1736,-5.0,0.2409,—0.0152, — 7.0, —0.00577,0.0)7. This describes a rotation of 10°
around the camera main axis, an inclination of 30° around the y-axis and a translation assuming
that the object is very close to the camera. Fig 2.4 illustrates how a;, a;, az and a7 of the
estimation vector T converge to the the true vector T using the combined algorithm. Further
results are given in [Diehl 1988].
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Fig. 2.3: Picture of a woman with I;(x), I;(x) and the difference image before starting the iteration
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Fig. 2:4: The estimation values a;, @, @3 and @7 using the combined method
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3. The maximum-likelihood estimation of the motion parameters
3.1. The maximum-likelihood estimation as generalized correlation

So far the ad hoc error criterion J{e(T)} of eq. 2.1, i.e. the variance of the model error
was minimized. In this part the results of the maximum-likelihood estimation of the motion
parameters will be given. To deal with this problem a few simplifying assumptions have to be
made. The image S(x) and the additive noise terms N, (x) and N,(x) are assumed to be stationary,
zero mean gaussian processes which are not correlated to each other. Furthermore the coordinate
transform h(x,T) may be a linear transform, e.g. the affine transform x' = Cx + d. Under
these assumptions the likelihood-function p(/;(x), I;(x)|T) may be calculated. The value T which

maximizes this function is called the maximum-likelihood estimate ‘i‘ML.

It can be shown that the maximum-likelihood estimation can be interpreted as a generalized
correlation near the optimum [Diehl 1988]. Similar results are known from time delay estimation
[Knapp and Carter 1976] or pure translation [Beyer 1985]. Thus the estimate T sy is the value
which maximizes the cross-correlation function of the two images fl(x) and Ip(x) which result
from the original images i(x) and I (x) by linear filtering using the impulse response w(x)
calculated from [WML(f)IZ:

R(x) = warn(x) ® h(x), B(x) = wa(x) @ L(x). (3.1)

® denotes convolution. The prefilter is given by

(W (£)]? = Gss:(f)

= Gors (D) Gy (6) + Croma () F G (6) Groa () (3-2)

Gs's:(f) is the power-spectral density of the image content §'(x) of image I;(x) and Gp,n,(f)
the power-spectral density of the noise N,(x). G n;n:(f) denotes the power-spectral density of
Ni(x) which has been moved in direction of I3(x) under the assumption that the matrix C of
the affine transform may be approximately known. If N;(x) and N(x) have the same statistics

G nin; may be replaced by G, n,. Fig. 3.1 shows the structure of the generalized correlation.

The interpretation of the maximum-likelihood estimation as generalized correlation has an
interesting impact. Because the error criterion of eq. 2.1 may be interpreted as a cross-correlation
the algorithms developed in chapter 2 can be used directly for the maximum-likelihood estimation.
Only the original images I (x) und I;(x) have to be replaced by the prefiltered images I (x) and

Iz(X).
3.2. Properties of the maximume-likelihood estimation

The maximume-likelihood estimate has some interesting properties. For high signal-to-noise

ratios
Gss(f) > Gnn(f)

[WarL(f)]? is given by

(W (£)]? = : (3.3)
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N2(x)
5(x)
————#— h(x,T) wasr,(X)
Maz
/ d.X e
Ny(x) _
———p4+—p— h(x, T) warr(x)
Abb. 3.1: The maximum-likelihood estimation as generalized correlation
If white noise, i.e.
GN{N; (f) = va‘ and Gn,N,(f) = vaz (3.4)
is assumed, the prefilter is constant:
Warn(£) % ———— = const (3.5)
ML ~ 0’12v2 n O'ivx = st. .

For this special case the generalized correlation is equal to the correlation of the original images.
Thus the ad hoc error criterion of eq. 2.1 equals the maximume-likelihood criterion if stationary
signals, white noise and a high signal-to-noise ratio are assumed.

Furthermore the maximume-likelihood estimate reaches the Cramer-Rao bound if the noise
terms and the signal are not cross-correlated [van Trees 1976, Diehl 1988]. The Cramer-Rao bound
which is the bound for the lowest variance of the estimation values can be expressed by the Hessian
of the prefilterd signals:

var{T"} = 3{17 E{f)1. (3.6)

3.3. Tests of the maximum-likelihood estimation

The maximume-likelihood estimation has been tested using real image data and different
additive noise. Details are given in [Diehl 1988]. Fig. 3.2 and 3.3 illustrate the standard deviation
of a translation in z-direction. If the signal-to-noise ratio is low and the noise is highly correlated a
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Abb. 3.2: Standard deviation of d; using white noise
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significant reduction of the variance can be reached. For white noise and high signal-to-noise ratios
there is according to eq. 3.5 no difference between the variance using the original or prefiltered

mages.
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