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This paper presents a new, iterative algorithm for the simultaneous estimation of rotation and translation
parameters of moving planar objects in grey-scale image sequences. The algorithm combines several ad-
vantages such as large stability region, high image-bandwidth-adaptive convergence rate of at least second
order near the optimum and a minimum of numeric expense within each iteration step. Furthermore an
extension to estimate affine transform parameters and tests of the algorithm using real image data are

presented.

1. INTRODUCTION

A well known problem in image processing and scene
analysis is the estimation of motion parameters like rotation
and translation in image sequences. Applications are found
in several areas such as motion compensated image coding,
remote sensing by satellites, robotics and biology [1,2,3].
A lot of different algorithms to estimate pure translatoric
displacements have been published e.g. [3,4], but only a
few papers [5,6,7,8] deal with rotation and translation or
give an efficient parameter estimation algorithm based on
ordinary grey-scale images without using special features as
corresponding points.

In this paper a new fast converging algorithm to esti-
mate rotation and translation simultaneously in grey-scale
images is discussed. The estimation problem is formulated
as a model adjustment identification problem which is solved
by a special minimization algorithm. Also an extension to
affine transforms is given.

2. THE ALGORITHM

Two grey-scale images I1(z,y) and Ix(z,y) are assumed
to represent a moving rigid planar object S(z,y) in front of
a uniform background where no occlusion effects occur:

I (x) = $(x) = §(z,¥)
b(x) = S(zcos$ — ysind — dy, zsin ¢ + ycos ¢ — da).

I(x) results from S(x) and therefore from I;(x) by
rotation ¢ and translation dy,dp. .

To get an appropriate estimate T = (¢,d),d2)T of the
true motion parameters T = (¢,d1,d2)T a model adaptive
tdentification siructureis used. The motion is modelled by

In(%,1) = S(zcosd — ysing — dy, zsin § + ycos ¢ — dy).

As model error criterion J{¢(T)} we use the expecta-
tion E of the squared model error

J{e(D)} = B{e?} = E{(In(x, T) - (x))*}.

For stationary stochastic signals J{e(T)} equals twice
the negative cross-correlation function of I, (x, T) and I>(x)
plus an additive constant. J{e(1)} is assumed to be at least
twice differentiable with respect to 1.

A global search for an optimal parameter vector T =
is unrealistic and results in the calculation of the three-
dimensional cross-correlation function R(¢,d;,d2) in con-
junction with a tremendeous numerical complexity.

We use instead an sterative minimizing strategy chang-
ing the model parameter vector T well directed until J {e(T)}
reaches its minimum. The proposed algorithm is an exten-
sion of a one-dimensional modified Newton-Raphson algo-
rithm [9] which was developed for time-delay-estimation to
estimate parameter vectors based on two-dimensional sig-
nals. The main structure of the algorithm is given by the
iteration:

PEH = BK _ H-1(1 = B = T) - g(15).

The new estimate TK+1 of iteration step K +1 is given
by the estimate T'X of iteration step K and an innovation
given by the multiplication of the inverse of the Hessian
H(T = T* = T) with the gradient vector g(TK). Note that
the Hessian as the second derivatives of the error criterion
is always taken af the optimum T =T* =T and not at
the actual iteration point TX+! as in the original Newton-
Raphson-algorithm. Using the Hessian at the optimum has
several advantages which will be discussed in the sequel.

First we will show how to calculate the Hessian at
the optimum before starting the iteration without actually
knowing the optimum, using the special motion structure of
our model. Therefore we distinguish between pure transla-
tion and translation in combination with rotation.
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Expressing the Hessian at the optimum by the deriva-
tives of the images we get

82J{e(1*)} _ o g | ¥m(x, 1) 81, (x, T*)
atat, aT: a, [

noting that at the optimum T = T* = T the image differ-
ence ¢(T) vanishes.

For pure translation without rotation the last equation
can be simplified furthermore if we express the derivatives
with respect to the translation parameters by derivatives
with respect to the coordinates noting the fact that at the
optimum I, (x, 1) = L(x):

82J{e(1*)} _ 3L (x) 0 L(x)
3d,'3d,' —2E{ 329:( 3227,' }’

using the abbreviation x = (z = =1,y = 72)7.

Thus the Hessian does not explicitely depend on the
translation parameters d;,d2 and can be calculated before
starting the iteration. A concrete interpretation of this fact
is that at the optimum the cross-correlation function of

I.(x,T) and Ir(x) becomes identical with the autocorre-
lation function of I(x). Therefore we can a priori calcu-
late the curvature of the autocorrelation function of I(x)
instead of the cross-correlation function at the unknown op-
timum.

However, if we have rotation and translation simultane-
ously the calculation of the Hessian is not as straightforward
as in the case with pure translation. Because of the fact that
rotation and translation are not independent and therefore
do not commute the true rotation angle has to be known
if we now want to express the derivatives with respect to
the parameter vector by derivatives with respect to the co-
ordinates. For instance now we get at the optimum with

$=¢=¢

ln(x,1*) _ 0L(x) dl(x) .
a::l =- gxx cos ¢+ ~—§-;—c—-sm¢.

Thus if there is rotation and translation the partial deriva-
tives at the optimum and therefore the Hessian explicitely
depend on the unknown parameter ¢. For the motion model
under consideration the Hessian can therefore not be calcu-
lated before starting the iteration.

Nevertheless as will be shown in the following the Hes-
sian of a slightly modsfied structure can be calculated be-
forehand and the advantages of the algorithm can Kp
served. We introduce a running coordinate system {x
{zX,yK} and TK+ = (§K+1, JK+1 JE+1)T gg an add1-
tional motion vector describing the estimate at the K+ 1-th
iteration on the basis of the coordinate system {xX} of the
K-th iteration.

Thus the relation between the model 1mage La(x, T )

of the K-th iteration step and I (x, it ) of the K +1-th
iteration step is described as
Inl T V) = Inx, T, T4 H) = S(xKH)
= §(zK cos gK+1 — yK gin gK+1 — gK+1_ )
= §(zcos pKH! — ysin K+ — dK+1 ),

Thus the innovation TX+1 is glven n the transformed coor-
dinates {xX} and only mdxrect‘l! in the coordinates {x}; i.e.
the new model image In(x, T ) 18 related to the model
image I, (x, T K) by the motion vector TK+1. Therefore i in-
stead of differentiating the error criterion with respect to T

now the error criterion has to be differentiated with respect
to T. The slightly modified algorithm is given by

PR+ = AKHAPK 4 PR+ = AKHAPK _ -1, 5(1F)

with the new Hessian H, the new gradient vector g and the
weighting matrix

1 0 0.
AKX =10 cosgX —singkK

0 singX cosgX

\ylllfich describes the connection between TK+!, PK+! and
T".

Using this indirect generation of the model image the
Hessian H at the optimum can be calculated off-line with-
out knowing the true motion vector. Assuming that the
optimum is reached at iteration step N; ie. I,(x,T" ) =
I(x). The estimate TN+ of iteration step N +1 has to be
THN+1 = 0. This leads to the following derivatives:

Ol (x, ", TN+ __95(x)
adf+1 FN+1=0 T
3L (x, TV, N +1) __98(xY) y  0S(x¥) y
PN+t TN+1=0 3N Y 9y

If we use these expressions to calculate the Hessian we get
for imstance

92 {e(1*)} _ {Q%@ (ﬁ%’jly - %’_‘)—z) }

3dNF1agN+1 z

Introducing the parameter vector T and thus relat-
ing the new model image to the old one, the Hessian at
the optimum can be expressed only by the derivatives of
S(x) = I)(x) with respect to the original coordinates {x}
and is independent of the true motion vector. A concrete
interpretation of this fact is that calculating the derivatives
at T =0 can be interpreted as infinitesimal rotation and
translation which in this case do commute. The preceeding
formula uses the fact that the expectation value is inde-
pendent of an arbitrary coordinate system. Therefore all
derivatives are given in terms of the original image S(x).
This is consistent if we have stochastic stationary signals or
if we use spatial averaging instead of the expectation oper-
ation for isolated objects in front of a uniform background.

Finally with the abbreviation /3¢ = y-8/0z—z-3/ 8¥
and the operator 3 = (81,8,,83)T = (3/3¢ 3/83;, 0/3y)
the elements of the Hessian H and the vector § can be writ-
ten as:

ﬁ.‘j =2 E{a{h(x)a,'h(x)}
Gi(TK)=-2 Z B 7 E{(Im(x, TK) - I(x))0; (%)}

=1




Simultaneous estimation of rotation and translation

Because of the fact that under the preceeding assumptions
the expectation value is independent of the used coordinate
gystem it is possible to express the derivatives in the gradient
vector as derivatives of image I>(x) and not as derivatives
of the model image I,,(x, T). Thus we have to differentiate
I(x) only once instead of differentiating I (x,T) within
each iteration step.

The matrix B describes the connection between the
derivatives with respect to T and those with respect to the
original coordinates {x}:

1 df sin $K —AJQ( cos gK  df cos K + g{f sin $K
BK = (0 cos oK —sin p¥
0 sin $K cos K

3. PROPERTIES OF THE ALGORITHM

The algorithm has several advantages such as large sta-
bility region, high image-bandwidth-adaptive conver-
gence rate and a minimum of numeric expense within each
iteration step.

The algorithm has in general a much larger stabslity
range compared to the normal Newton-Raphson-algorithm.
One-dimensionally speaking it is like the gradient algorithm
stable up to the next optimum of the error criterion J{e(T)}.
Like the normal Newton-Raphson-technique the algorithm
has good signal adaptive properties. The Hessian which can
be interpreted as the second derivatives of the autocorrela-
tion function of the images adjusts to the image bandwidth.
Therefore the convergence rate of the Euclidean error norm
e =|| 1K — T || is at least of second order, independently of
the chosen signals.

If we have pure translation or pure rotation the con-
vergence rate is even of third order. The same is true if all
off-diagonal elements of the Hessian are zero

i#]

Hi; =0 for
and additionally

ERE) 48 84S

which means that the error criterion J{e(d;,dz)} for pure
translation is rotationally invariant with respect to dj,ds.
Because of these properties even large parameter vectors can
be identified in a few iterative steps.

Another advantage of the algorithm is the low numeric
complezity within each iteration step because of the ability
to calculate the Hessian once before starting the iteration.
This is attractive for near real-time implementations [10].

4. EXTENSION TO AFFINE TRANSFORMS

The given algorithm can be extended to estimate affine

parameters T = (c1,¢12, ¢21,¢22,d1,d2)7 of the coordinate
transform

G- =) (5)-(3)

)
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As before the two model parameter vectors T and T are
introduced with

xK+ = CK-H PX - aK+1
— BKH (K x - AK) - 3,
With the operator 8 = (z- /32,y 8/dz,z-3/dy,y-3/dy,
~3/08z,-8/8y)T the Hessian H at the optimum can be
written as .
H;; =2 E{B.-I, (x)a,'h(x)}
and the gradient vector as

8 < K
G(t%)=-2 ) BKE {(I,,.(x,T ) - Iz(x))a,-Ig(x)}

=1

with a matrix B which again describes the connection be-
tween the derivatives with respect to T and those with re-
spect to the coordinates {x}. The iteration structure is
changed only slightly. The innovation is given by

41 = -1 (1)

and the new motion vector TX+1 is related to TX and
TK+1 by the transforms

K+ = GK+1 . 8K JK+1 = K41 QK 4 §K41,

With this algorithm for instance it is possible to estimate

the parameter vector of an object which is inclined, rotated
and translated.

5. TESTS WITH REAL IMAGE DATA

The algorithm has been tested with real image data.
Therefore several scenes with well defined rotation and trans-
lation have been digitized and analysed. Image I shows one
typical scene used in the experiments digitized by 512 x 512
pixels with marked regions of interest.

Image I




824 H. Burkhardt and N. Dieh/

The first figure gives the joint identification of rota-
tion and translation with the motion vector T = (20°,4,2)T
given in degrees and pixels. The rotation was always around
the centre of the marked areas of image. I and the smallest.
of these three areas (51 x 51 pixels) was used as region of’
interest to calculate the expectation values. The estimated
values ¢ in degrees and dj,d; in pixels are plotted versus
the iteration number K.

Figure 2

In the second example the parameters of an affine trans-
form are estimated. Therefore the image was inclined by
¥ = 15°, rotated by ¢ = 5°, and translated by 4 pixels in
z and 3 pixels in y direction. The inclination was around
an axis through the centre of rotation. Again the estimated
values 1, ¢ and d;, d; are given versus the iteration number

6. CONCLUSIONS

The paper describes a fast converging algorithm for
the joint estimation of rotation and translation in image se-
quences. Furthermore an extension of the algorithm to esti-
mate affine transform parameters and tests with real image
data are presented.
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