Self-Supervised Learning by Cross-Modal Audio-Video Clustering

Jonas Grimm

October 5, 2020

Introduction

Challenges in supervised video model learning:

- High cost of scaling up the size of manually-labeled video data sets
- Unclear definition of suitable label spaces for action recognition

Aim: Pretrain spatiotemporal models for action recognition on unlabeled data

Single-Modality Deep Clustering

[Caron et al., 2018]

• First step: Cluster deep features from an encoder

Single-Modality Deep Clustering

[Caron et al., 2018]

- First step: Cluster deep features from an encoder
- Second step: Update encoder using cluster assignments as labels

- Visual and audio modalities are highly correlated yet they contain different information
- Correlations allow predictions from one input space to the other
- Intrinsic differences make cross-model prediction an enriching self-supervised task

Single-Modality Deep Clustering on Videos

[Alwassel et al., 2019]

Experimental Setup

- Four pretraining datasets: Kinetics (action recognition), AudioSet (audio classification), IG-Kinetics (videos from social media), IG-Random (videos from social media)
- Three downstream datasets: UCF101 (action recognition), HMBD51 (action recognition), ESC50 (sound classification)
- Two baselines: training model from scratch on downstream task, supervised pretraining on large labeled dataset
- Encoders: R(2+1)D network as visual encoder, ResNet as audio encoder (spectrogram image as input)

Spectrogram

https://de.wikipedia.org/wiki/Spektrogramm#/media/Datei: Spectrogram_-minato-.png

XDC performes best

Pretraining data set: Kinetics

Method	UCF101	HMDB51	ESC50
Scratch	54.5	24.1	54.3
Superv	90.9	58.0	82.3
SDC	61.8	31.4	66.5
MDC	68.4	37.1	70.3
CDC	<u>72.9</u>	<u>37.5</u>	<u>74.8</u>
XDC	74.2	39.0	78.0

- Exploiting multi-modalities increases performance compared to single-modality clustering
- Self-supervision purely by the signal from the other modality yields strongest results

Analyzing number of k-means clusters

Pretraining	Downstream			k		
Dataset	Dataset	64	128	256	512	1024
Kinetics	UCF101	73.8	73.1	74.2	74.0	72.6
(240K videos)	HMDB51	36.5	39.0	<u>38.3</u>	37.7	37.7
(240K videos)	ESC50	78.0	<u>76.3</u>	75.0	74.5	71.5
AudioSet-240K	UCF101	77.4	77.2	76.7	77.1	75.3
	HMDB51	41.3	42.6	<u>41.6</u>	40.6	40.7
(240K videos)	ESC50	78.5	<u>77.8</u>	77.3	76.8	73.5
AudioSet	UCF101	84.1	84.3	84.9	84.4	84.2
	HMDB51	47.4	47.6	48.8	<u>48.5</u>	48.4
(2M videos)	ESC50	84.8	85.8	<u>85.0</u>	84.5	83.0

- Best value for k not sensitive to number of semantic labels in downstream data set
- ullet Best value for k increases with increasing pretraining data set size

Analyzing pretraining data type and size

Pretraining			Downstream Dataset		
Method	Dataset	Size	UCF101	HMDB51	ESC50
Scratch	None	0	54.5	24.1	54.3
Superv	ImageNet	1.2M	79.9	44.5	NA
Superv	Kinetics	240K	<u>90.9</u>	58.0	82.3
Superv	AudioSet-240K	240K	76.6	40.8	78.3
Superv	AudioSet	2M	84.0	53.5	90.3
XDC	Kinetics	240K	74.2	39.0	78.0
XDC	AudioSet-240K	240K	77.4	42.6	78.5
XDC	AudioSet	2M	84.9	48.8	85.8
XDC	IG-Random	65M	88.8	<u>61.2</u>	<u>86.3</u>
XDC	IG-Kinetics	65M	91.5	63.1	84.8

- XDC outperforms supervised pretraining when trained on large data set
- Supervised pretraining is influenced by taxonomy more than by size
- XDC is less sensitive to the data type

Comparing full finetuning vs learning linear classifier

Method	Pretraining	UCF101		HMBD51		ESC50	
Method	Dataset	fc	all	fc	all	fc	all
Random	None	6.0	54.5	7.5	24.1	61.3	54.3
Superv	ImageNet	74.5	79.9	42.8	44.5	NA	NA
Superv	Kinetics	89.7	<u>90.9</u>	61.5	58.0	79.5	82.3
Superv	AudioSet	80.2	84.0	51.6	53.5	88.5	90.3
XDC	IG-Random	80.7	88.8	49.9	61.2	<u>84.5</u>	86.3
XDC	IG-Kinetics	<u>85.3</u>	91.5	<u>56.0</u>	63.1	84.3	84.8

- Performance of most pretrained models decreases if used as fixed feature extractor compared to fully finetuning on downstream data set
- Relative performance of XDC stays generally the same, making XDC useful both as a fixed feature extractor and as pretraining initialization
- Supervised pretraining followed by fc-only finetuning performs well when pretraining and downstream task are very similar
- XDC is taxonomy-independent

XDC video clusters

video cluster #48, purity: 0.37

video cluster #27, purity: 0.36

#	Kinetics concepts
1	playing bass guitar (0.37), playing guitar (0.16), tapping guitar (0.15)
4	swim backstroke (0.21), swim breast s. (0.16), swim butterfly s. (0.10)
5	golf putting (0.18) , golf chipping (0.10) , golf driving (0.05)
9	windsurfing (0.12), jetskiing (0.10), water skiing (0.09)
10	cooking chicken (0.11), barbequing (0.07), frying vegetables (0.06)
63	pull ups (0.01), gymnastics tumbling (0.01), punching bag (0.01)
74	capoeira (0.01), riding elephant (0.01), feeding goats (0.01)

State-of-the-Art Self-Supervised Learning Comparison

	Pretraining		Evaluatio	<u>n</u>
Method	Architecture	Dataset	UCF101	HMDB51
ClipOrder	R(2+1)D-18	UCF101	72.4	30.9
MotionPred	C3D	Kinetics	61.2	33.4
RotNet3D	3D-ResNet18	Kinetics	62.9	33.7
ST-Puzzle	3D-ResNet18	Kinetics	65.8	33.7
DPC	3D-ResNet34	Kinetics	75.7	35.7
AVTS	MC3-18	Kinetics	84.1	52.5
AVTS	R(2+1)D-18	Kinetics	86.2	52.3
XDC	R(2+1)D-18	Kinetics	86.8	52.6
AVTS	MC3-18	AudioSet	87.7	57.3
AVTS	R(2+1)D-18	AudioSet	86.8	52.6
XDC	R(2+1)D-18	AudioSet	93.0	63.7
XDC	R(2+1)D-18	IG-Random	<u>94.6</u>	66.5
XDC	R(2+1)D-18	IG-Kinetics	95.5	68.9
Fully supervised	R(2+1)D-18	ImageNet	82.8	46.7
Fully supervised	R(2+1)D-18	Kinetics	93.1	63.6

State-of-the-Art Self-Supervised Learning Comparison

Method	ESC50
Piczak ConvNet	64.5
SoundNet	74.2
L3-Net	79.3
AVTS	82.3
ConvRBM	86.5
XDC (AudioSet)	84.8
XDC (IG-Random)	<u>85.4</u>

Method	DCASE
RNH	77
Ensemble	78
SoundNet	88
L3-Net	93
AVTS	<u>94</u>
XDC (AudioSet)	95
XDC (IG-Random)	95

Conclusion

- Deep Clustering is a promising self-supervised method
- Exploiting multi-modalities enriches the self-supervised task
- Pure supervision by different modality yields strongest results
- XDC model even outperformed large-scale fully supervised pretraining

Literature

Alwassel, H., Mahajan, D., Torresani, L., Ghanem, B., and Tran, D. (2019).

Self-supervised learning by cross-modal audio-video clustering. arXiv preprint arXiv:1911.12667.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M. (2018). Deep clustering for unsupervised learning of visual features. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 132–149.

XDC audio clusters

audio cluster #125, purity: 0.70

audio cluster #105, purity: 0.33

#	Kinetics concepts
1	play bagpipes (0.70), play harmonica (0.04), play violin (0.03)
2	scuba diving (0.33), snorkeling (0.27), feeding fish (0.11)
4	pass football (0.17), play kickball (0.06), catch/throw softball (0.05)
8	play cello (0.15), play trombone (0.11), play accordion (0.09)
10	moving lawn (0.14), driving tractor (0.09), motorcycling (0.06)
127	abseiling (0.01), grooming horse (0.01), milking cow (0.01)
128	washing feet (0.01), motorcycling (0.01), headbanging (0.01)

Encoder visualization

Avoiding trivial solution

Any method that jointly learns a discriminative classifier and labels is prone to trivial solutions:

- Empty clusters: All inputs assigned to single cluster. Solution: Reassign empty clusters
- Trivial parametrization: Different cluster sizes lead to a imbalanced class distribution. Solution: Sample images on uniform distribution over classes

Despite those challenges, deep clustering achieved impressive results and outperformed previous state-of-the-art methods