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• DL requires large-scale data 

• Avoid expensive & time-consuming data annotations

• Exploit large amounts of available unlabeled data 

• Goal: Learn good & generic visual feature representations from   

unlabeled data

• Self-supervised learning: automatically generate labels from data
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Motivation: Self-supervised Learning
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• Generative approaches: The Autoencoder

• Goal: Reconstruct the original input (label = input image)

• Bottleneck prevents simply copying the input

• Drawbacks: 

 Computationally expensive

 Too much focus on details instead of high-level semantic features
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Self-Supervised Learning

Encode input into lower-

dimensional representation h

Reconstruct original image 

from representation h

DL Lecture Freiburg (WS 19/20)
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• Discriminative approaches: Manually designed pretext tasks

• Common tasks

 Rotation angle prediction: Classification with 4 classes

 Colorize greyscale image: Predict color channels

 Jigsaw puzzle: Predict relative ordering of image patches

• Pretext tasks should ensure that semantic features are learned

• Drawback: Limited generality of the learned representations
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Self-Supervised Learning
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• Learn features that make 2 images similar / dissimilar

• High-level features instead of pixel-level details

• Formally: Learn an encoder f such that: 

• Representations are learned by contrasting positive & negative data

samples

 Learn more diverse & generic features

Contrastive Learning: Idea
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• Triplets of training data samples:                                              

Anchor sample (A), Positive sample (P) & Negative sample (N)

• Idea: pull A & P closer together. Push A & N away from each other

• Points with distance > m do not contribute to loss

• Problem: requires good triplet sampling strategy                               

 High impact on performance 

Margin triplet loss
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• Generalization of the triplet loss

• Pull positive pair closer together in representation space

• Push all negative samples away simultaneously

• Contrastive power increases with more negatives

• Advantage: resolves problem of negative mining

Noise contrastive estimation loss
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• Idea: Dictionary lookup problem

• Each data sample is its own class

• Encode features for each image

• Store representations in a memory bank

• Find best matching representation („key“) 

to a given encoded image („query“)

• Drawbacks: 

 Outdated representations

 High memory costs

Background: Instance Discrimination
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He, K. et al. (2020)
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• Positive keys: data augmentation of

current query

• Uses a queue instead of a memory bank

• Only query encoder is trained

• Key encoder parameters are updated by

a momentum update:

• Advantages: 

 Memory-efficient

 Consistent representations

Background: Momentum Contrast (MoCo)
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He, K. et al. (2020)
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Maximize agreement between differently augmented views of the 

same data sample via a contrastive loss

SimCLR framework: Idea
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1. Stochastic data augmentation module 

 Two randomly transformed views      & 

SimCLR framework components
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1. Random    

Cropping & Resize

2. Random       

Color Distortions

3. Random 

Gaussian Blur
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Positive pairs                                 Negative pairs

Positive & negative samples
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Silva, T. (2020)
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2. Feature encoder network         (default: ResNet-50)

 Representation vectors      & 

SimCLR framework components

13



Julia Mertesdorf Deep Learning for Bio-Medical Data Analysis                              5.10.2020

3. Small nonlinear projection head         (2-layer MLP)

 Representation vectors      & 

SimCLR framework components
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4. Contrastive loss function & prediction task

 For a given     , identify       in the set 

SimCLR framework components

15



Julia Mertesdorf Deep Learning for Bio-Medical Data Analysis                              5.10.2020

• Remove nonlinear projection head 

• Use representation h for downstream tasks

Inference in SimCLR
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• Data augmentations & their compositions

• Learnable nonlinear projection head

• Scaling up architecture, training data & duration

What enables good contrastive representation learning?
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• Systematic study of different data augmentations & compositions

• Considered transformations:

Composition of augmentations is crucial
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Chen, T. et al. (2020)
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• Target transformation is applied to only one branch

• Augmentations applied individually (on diagonal) & in pairs

 No single transformation is sufficient for good representations

 Best composition: Random crop & color distortion

Composition of augmentations is crucial
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Chen, T. et al. (2020)

ImageNet      

Top-1 Accuracy



Julia Mertesdorf Deep Learning for Bio-Medical Data Analysis                              5.10.2020

• Problem: most random crops from an image share a similar color

distribution

 Color histograms suffice to distinguish images

 Potential shortcut for neural networks to solve task

Effect of color distortion
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Chen, T. et al. (2020)

Image 1

Image 2
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• Previous approaches define prediction tasks by changing the

architecture

• SimCLR: Simple random cropping creates predictive tasks:

 Decouples predictive task from other components (e.g. architecture)

Data augmentation defines predictive tasks
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Global-to-local 

view prediction

Neighboring   

view prediction

Chen, T. et al. (2020)
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• Linear evaluation results for 3 different projection heads:

 z is trained to be invariant to data transformations

 By using a nonlinear projection, more information can be maintained in h

Nonlinear projection head improves representation
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Chen, T. et al. (2020)

No projection Linear projection Nonlinear projection

50% 60% (+ 10%) 63  (+ 13%)
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• Assumption: nonlinear projection g removes information about

transformations

• Experiment: Learn to predict the transformation applied during

pretraining, using either h or g(h)

 h contains more information while g(h) loses information

Information loss induced by contrastive loss
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Chen, T. et al. (2020)
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 Increasing encoder depth & width improves performance

 Accuracy gap between supervised & self-supervised models shrinks

with increasing model size

Self-supervised learning benefits more from scaling up
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Chen, T. et al. (2020)

Green:  90 epochs

Blue:    100 epochs

Red:     1000 epochs
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• Impact of batch size for different #training epochs:

 The shorter the training, the more beneficial are larger batch sizes

 Larger batch size = more negative samples  Faster progress

Self-supervised learning benefits more from scaling up
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Chen, T. et al. (2020)
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• Very simple design

• No specialized architecture or memory bank required

• Exchangeable encoder architecture

• Large benefits from scaling up

Summing up: Advantages of SimCLR
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• Linear classifiers trained on top of frozen pretrained models

 SimCLR outperforms previous self-supervised models

 Best SimCLR model reaches accuracy of supervised pretrained ResNet

Results: Linear evaluation performance
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Chen, T. et al. (2020)
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• Evaluation across 12 image datasets

• Two settings: Linear evaluation (frozen network) & Fine-tuning

• Results for ResNet-50 (4x):

 Fine-tuning: SimCLR outperforms supervised on 5 datasets

 No clear advantage of supervised over self-supervised learning

Results: Transfer learning performance
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Chen, T. et al. (2020)
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• Needs much larger encoder architectures to compete with supervised 

models

• Large batch size requires TPU support (default size: 4096)                

 not memory-efficient

• Very sensitive to hyperparameters 

• Global semantic structure of dataset is ignored (Negative pairs with 

similar semantics are pushed apart) 

Limitations of SimCLR
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• MoCo v2: integrates concepts of SimCLR

 Nonlinear projection head

 Stronger data augmentation

 Improves SimCLR accuracy & runs on a regular GPU machine

• SimCLR v2

 Encoder network: Deeper ResNet model

 Deeper nonlinear projection head

 Incorporated memory mechanism from MoCo

• Many new state of the art self-supervised methods

 Fast progress & advances!

Outlook
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• Simple often works better

• Composition of data augmentations is crucial

• Introducing a nonlinear projection before the contrastive loss 

improves the representation quality

• Contrastive learning benefits more from scaling-up than supervised 

learning

• Closing gap between supervised & self-supervised learning in 

computer vision

Take home messages
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Thank you for your attention!
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Appendix
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• Normalized temperature-scaled cross entropy loss

• Modification of the InfoNCE loss (similarity-score is scaled by a 

temperature parameter, cosine similarity used as score)

• Loss function for a positive pair of samples (i, j):

• Final loss is computed across all positive pairs in a minibatch

• Loss is applied on normalized embeddings (z has unit length)

• Temperature normalizes similarity score (improves stability);             

with lower value, the importance of the positive pair is increased

NT-Xent loss
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Algorithm pseudo code
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Chen, T. et al. (2020)
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Setup & Hyperparameters for ablation study
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Contrastive loss NT-Xent loss (adaption of NCE loss)

Encoder network ResNet-50

Nonlinear projection head 2-layer MLP (output dim.: 128)

Optimizer LARS with linear learning rate scaling

Learning rate 0.3 *  batch_size / 256

Learning rate scheduler Linear warmup for the first 10 epochs, 
Cosine decay schedule without restarts

Weight decay 10-6

Batch size 4096

Training epochs 100

Augmentations Random crop & resize, Color distortion, 
Gaussian Blur
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Hyperparameters for performance comparison
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Contrastive loss NT-Xent loss (adaption of NCE loss)

Encoder network ResNet-50 in 3 different widths (1x, 2x, 4x)

Nonlinear projection head 2-layer MLP (output dim.: 128)

Optimizer LARS with linear learning rate scaling

Learning rate 0.3 *  batch_size / 256

Learning rate scheduler Linear warmup for the first 10 epochs, 
Cosine decay schedule without restarts

Weight decay 10-6

Batch size 4096

Training epochs 1000

Augmentations Random crop & resize, Color distortion, 
Gaussian Blur
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1. Random crop & resize to 224 x 224

• Crop of random size (uniform from 0.08 to 1.0) & random aspect ratio

(default: 3/4 to 4/3)

• Crop is resized to the original size

• With probability p = 0.5, perform horizontal / left-to-right flip

2. Color distortion

• Composed of color jittering & color dropping with a strength parameter

• Color jittering: random brightness, contrast, saturation, hue (p = 0.8)

• Color drop: convert rgb image to grayscale image (p = 0.2)

3. Gaussian blur

• Blur image with probability p = 0.5 using a Gaussian kernel

• Randomly sample                     , kernel size = 10% of image height / width

Augmentation procedure details
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 SimCLR: stronger color augmentation improves linear evaluation

accuracy

 Supervised: extreme color distortion does not improve & can hurt 

performance

Contrastive learning benefits from stronger augmentation
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Chen, T. et al. (2020)
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Nonlinear head: Better representation separability

41

Chen, T. et al. (2020)

Visualizations of hidden vectors of images from randomly selected 

10 classes

 Classes represented by h are better separated compared to z
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• NT-Logistic & Margin Triplet loss only regard 1 positive & 1 negative 

sample  need negative mining for good performance

• Linear evaluation for models trained with different contrastive losses

(sh = using negative mining)

 Negative mining helps, but NT-Xent loss works still much better

Performance comparison of different contrastive losses
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Chen, T. et al. (2020)
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• Linear classifiers trained on top of frozen pretrained models

• ImageNet Top-1 & Top-5 accuracy

Linear evaluation performance
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Chen, T. et al. (2020)
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• CPC: defines context prediction task by splitting images into patches.  

Uses a context aggregation network

• AMDIM: performs global-to-local / local-to-neighbor prediction. Uses 

modified ResNet with constraints on the receptive fields

• CMC: uses a separated network for each view & a different loss

• MoCo & PIRL: use an explicit memory bank

 Combination of design choices in SimCLR is crucial. Design choices in 

SimCLR are generally simpler

Design choices comparison: SimCLR & previous approaches
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Chen, T. et al. (2020)
* = a memory bank is used

# = images are split into multiple patches
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SimCLR vs. Supervised: ResNet-50 (4x)

 SimCLR outperforms on 5 datasets

SimCLR vs. Supervised: ResNet-50

 SimCLR outperforms on only 1 dataset

 With a narrower architecture, supervised learning has a clear advantage over

self-supervised learning. Accuracy gap decreases for bigger models

Transfer learning performance: ResNet vs. ResNet 4x
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Chen, T. et al. (2020)

Chen, T. et al. (2020)


