

A Simple Framework for Contrastive Learning of Visual Representations

University of Freiburg Seminar on Deep Learning for Bio-Medical Data Analysis October 5, 2020

Julia Mertesdorf

Julia Mertesdorf

Deep Learning for Bio-Medical Data Analysis

5.10.2020

Motivation: Self-supervised Learning

- DL requires large-scale data
- Avoid expensive & time-consuming data annotations
- Exploit large amounts of available unlabeled data
- **Goal**: Learn good & generic visual feature representations from unlabeled data
- Self-supervised learning: automatically generate labels from data

Self-Supervised Learning

- Generative approaches: The Autoencoder
- Goal: Reconstruct the original input (label = input image)
- Bottleneck prevents simply copying the input

DL Lecture Freiburg (WS 19/20)

- Drawbacks:
 - Computationally expensive
 - Too much focus on details instead of high-level semantic features

Julia Mertesdorf

FREIBURG

Self-Supervised Learning

- Discriminative approaches: Manually designed pretext tasks
- Common tasks
 - Rotation angle prediction: Classification with 4 classes

- Colorize greyscale image: Predict color channels
- Jigsaw puzzle: Predict relative ordering of image patches
- Pretext tasks should ensure that semantic features are learned
- Drawback: Limited generality of the learned representations

Julia Mertesdorf

Contrastive Learning: Idea

- Learn features that make 2 images similar / dissimilar
- High-level features instead of pixel-level details
- Formally: Learn an encoder f such that:

 $\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$

- Representations are learned by contrasting positive & negative data samples
- → Learn more diverse & generic features

Margin triplet loss

- Triplets of training data samples: Anchor sample (A), Positive sample (P) & Negative sample (N)
- Idea: pull A & P closer together. Push A & N away from each other

 $L_{triplet} = max(0, \ d(A, P) - d(A, N) + m)$

- Points with distance > *m* do not contribute to loss
- Problem: requires good triplet sampling strategy
 → High impact on performance

Julia Mertesdorf

- Generalization of the triplet loss
- Pull positive pair closer together in representation space
- Push all negative samples away simultaneously

$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{\exp\left(f(x)^{T} f\left(x^{+}\right)\right)}{\exp\left(f(x)^{T} f\left(x^{+}\right)\right) + \sum_{j=1}^{N-1} \exp\left(f(x)^{T} f\left(x_{j}\right)\right)} \right]$$

$$\underbrace{\left(x_{3} \leftrightarrow x_{1} \leftrightarrow x_{1} \leftrightarrow x_{2} \leftrightarrow x_{1} \leftrightarrow x_{1} \leftrightarrow x_{2} \leftrightarrow x_{1} \leftrightarrow x_{1} \leftrightarrow x_{1} \leftrightarrow x_{2} \leftrightarrow x_{1} \leftrightarrow x_$$

- Contrastive power increases with more negatives
- Advantage: resolves problem of negative mining

Julia Mertesdorf

- Idea: Dictionary lookup problem
- Each data sample is its own class
- Encode features for each image
- Store representations in a memory bank
- Find best matching representation ("key") to a given encoded image ("query")
- Drawbacks:
 - Outdated representations
 - High memory costs

He, K. et al. (2020)

- Positive keys: data augmentation of current query
- Uses a queue instead of a memory bank
- Only query encoder is trained
- Key encoder parameters are updated by a momentum update:

$$\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$$

- Advantages:
 - Memory-efficient
 - Consistent representations

He, K. et al. (2020)

Maximize agreement between differently augmented views of the same data sample via a contrastive loss

UNI FREIBURG

- 1. Stochastic data augmentation module
- ightarrow Two randomly transformed views $ilde{m{x}}_i$ & $ilde{m{x}}_j$

1. Random Cropping & Resize

2. Random Color Distortions

3. Random Gaussian Blur

Chen, T. et al. (2020)

UNI FREIBURG

Positive & negative samples

Negative pairs

Silva, T. (2020)

2. Feature encoder network $f(\cdot)$ (default: ResNet-50)

ightarrow Representation vectors $oldsymbol{h}_i$ & $oldsymbol{h}_j$

UNI FREIBURG

3. Small nonlinear projection head $g(\cdot)$ (2-layer MLP)

ightarrow Representation vectors $oldsymbol{z}_i$ & $oldsymbol{z}_j$

UNI FREIBURG

4. Contrastive loss function & prediction task

ightarrow For a given $ilde{m{x}}_i$, identify $ilde{m{x}}_j$ in the set $\{ ilde{m{x}}_k\}_{k
eq i}$

UNI FREIBURG

- Remove nonlinear projection head
- Use representation **h** for downstream tasks

UNI FREIBURG

What enables good contrastive representation learning?

- Data augmentations & their compositions
- Learnable nonlinear projection head
- Scaling up architecture, training data & duration

Composition of augmentations is crucial

- Systematic study of different data augmentations & compositions
- Considered transformations:

(a) Original

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(j) Sobel filtering

Chen, T. et al. (2020)

Composition of augmentations is crucial

- Target transformation is applied to only one branch
- Augmentations applied individually (on diagonal) & in pairs

 \rightarrow No single transformation is sufficient for good representations

→ Best composition: Random crop & color distortion

Julia Mertesdorf

UNI FREIBURG

Effect of color distortion

Problem: most random crops from an image share a similar color distribution

Chen, T. et al. (2020)

- \rightarrow Color histograms suffice to distinguish images
- \rightarrow Potential shortcut for neural networks to solve task

Data augmentation defines predictive tasks

- Previous approaches define prediction tasks by changing the architecture
- SimCLR: Simple random cropping creates predictive tasks:

Global-to-local view prediction

Neighboring view prediction

Chen, T. et al. (2020)

 \rightarrow Decouples predictive task from other components (e.g. architecture)

Nonlinear projection head improves representation

Linear evaluation results for 3 different projection heads:

Chen,	T.	et al.	(2020)
-------	----	--------	--------

No projection	Linear projection	Nonlinear projection
50%	60% (+ 10%)	63 (+ 13%)

- \rightarrow z is trained to be invariant to data transformations
- \rightarrow By using a nonlinear projection, more information can be maintained in h

Julia Mertesdorf

UNI FREIBURG

Deep Learning for Bio-Medical Data Analysis

Zi

 h_i

Information loss induced by contrastive loss

- Assumption: nonlinear projection *g* removes information about transformations
- Experiment: Learn to predict the transformation applied during pretraining, using either *h* or *g(h)*

What to predict?	Random guess	Repres h	sentation $g(\boldsymbol{h})$
Color vs grayscale	80	99.3	97.4
Rotation	25	67.6	25.6
Orig. vs corrupted	50	99.5	59.6
Orig. vs Sobel filtered	50	96.6	56.3

Chen, T. et al. (2020)

\rightarrow *h* contains more information while *g(h)* loses information

Self-supervised learning benefits more from scaling up

- → Increasing encoder depth & width improves performance
- → Accuracy gap between supervised & self-supervised models shrinks with increasing model size

Julia Mertesdorf

UNI FREIBURG

Self-supervised learning benefits more from scaling up

• Impact of batch size for different #training epochs:

Chen, T. et al. (2020)

- \rightarrow The shorter the training, the more beneficial are larger batch sizes
- \rightarrow Larger batch size = more negative samples \rightarrow Faster progress

Julia Mertesdorf

UNI FREIBURG

- Very simple design
- No specialized architecture or memory bank required
- Exchangeable encoder architecture
- Large benefits from scaling up

Results: Linear evaluation performance

• Linear classifiers trained on top of frozen pretrained models

Chen, T. et al. (2020)

- → SimCLR outperforms previous self-supervised models
- → Best SimCLR model reaches accuracy of supervised pretrained ResNet

Julia Mertesdorf

UNI FREIBURG

Results: Transfer learning performance

- Evaluation across 12 image datasets
- Two settings: Linear evaluation (frozen network) & Fine-tuning
- Results for ResNet-50 (4x):

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluatio	on:											
SimCLR (ours)	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	75.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78. 7	92.3	94.1	94.2
Fine-tuned:												
SimCLR (ours)	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0
Random init	88.3	96.0	81.9	77.0	53.7	91.3	84.8	69.4	64.1	82.7	72.5	92.5

Chen, T. et al. (2020)

- \rightarrow Fine-tuning: SimCLR outperforms supervised on 5 datasets
- \rightarrow No clear advantage of supervised over self-supervised learning

Limitations of SimCLR

- Needs much larger encoder architectures to compete with supervised models
- Large batch size requires TPU support (default size: 4096)
 → not memory-efficient
- Very sensitive to hyperparameters
- Global semantic structure of dataset is ignored (Negative pairs with similar semantics are pushed apart)

Outlook

- MoCo v2: integrates concepts of SimCLR
 - Nonlinear projection head
 - Stronger data augmentation
 - → Improves SimCLR accuracy & runs on a regular GPU machine
- SimCLR v2
 - Encoder network: Deeper ResNet model
 - Deeper nonlinear projection head
 - Incorporated memory mechanism from MoCo
- Many new state of the art self-supervised methods
- → Fast progress & advances!

- Simple often works better
- Composition of data augmentations is crucial
- Introducing a nonlinear projection before the contrastive loss improves the representation quality
- Contrastive learning benefits more from scaling-up than supervised learning
- Closing gap between supervised & self-supervised learning in computer vision

Thank you for your attention!

Julia Mertesdorf

Deep Learning for Bio-Medical Data Analysis

5.10.2020

Bibliography

- Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. *arXiv preprint arXiv:2002.05709*
- Wu, Z., Xiong, Y., Yu, S. X., & Lin, D. (2018). Unsupervised feature learning via nonparametric instance discrimination. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 3733-3742)
- He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 9729-9738)
- Silva, T. (2020). Exploring SimCLR: A Simple Framework for Contrastive Learning of Visual Representations. <u>https://towardsdatascience.com/exploring-simclr-a-simple-framework-for-contrastive-learning-of-visual-representations-158c30601e7e</u>. Visited on 26th of October, 2020
- Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss objective. In Advances in neural information processing systems (pp. 1857-1865)
- Image source for slide 2
 <u>https://raw.githubusercontent.com/bagdonas/beautystack/master/docs/images/examp</u>
 <u>le1.jpg</u>

Appendix

Julia Mertesdorf

Deep Learning for Bio-Medical Data Analysis

5.10.2020

NT-Xent loss

UNI FREIBURG

- Normalized temperature-scaled cross entropy loss
- Modification of the InfoNCE loss (similarity-score is scaled by a temperature parameter, cosine similarity used as score)
- Loss function for a positive pair of samples (i, j):

$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

$$\sin(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{u}^{\top} \boldsymbol{v} / \| \boldsymbol{u} \| \| \boldsymbol{v} \|$$

- Final loss is computed across all positive pairs in a minibatch
- Loss is applied on normalized embeddings (z has unit length)
- Temperature τ normalizes similarity score (improves stability); with lower value, the importance of the positive pair is increased

Julia Mertesdorf

Algorithm pseudo code

Algorithm 1 SimCLR's main learning algorithm.

input: batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ $h_{2k-1} = f(\tilde{x}_{2k-1})$ # representation $z_{2k-1} = g(h_{2k-1})$ # projection # the second augmentation $\tilde{x}_{2k} = t'(x_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, \dots, 2N\}$ and $j \in \{1, \dots, 2N\}$ do $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

Chen, T. et al. (2020)

Julia Mertesdorf

UNI FREIBURG

Setup & Hyperparameters for ablation study

Contrastive loss	NT-Xent loss (adaption of NCE loss)
Encoder network	ResNet-50
Nonlinear projection head	2-layer MLP (output dim.: 128)
Optimizer	LARS with linear learning rate scaling
Learning rate	0.3 * batch_size / 256
Learning rate scheduler	Linear warmup for the first 10 epochs, Cosine decay schedule without restarts
Weight decay	10-6
Batch size	4096
Training epochs	100
Augmentations	Random crop & resize, Color distortion, Gaussian Blur

Hyperparameters for performance comparison

Contrastive loss	NT-Xent loss (adaption of NCE loss)
Encoder network	ResNet-50 in 3 different widths (1x, 2x, 4x)
Nonlinear projection head	2-layer MLP (output dim.: 128)
Optimizer	LARS with linear learning rate scaling
Learning rate	0.3 * batch_size / 256
Learning rate scheduler	Linear warmup for the first 10 epochs, Cosine decay schedule without restarts
Weight decay	10-6
Batch size	4096
Training epochs	1000
Augmentations	Random crop & resize, Color distortion, Gaussian Blur

Augmentation procedure details

1. Random crop & resize to 224 x 224

- Crop of random size (uniform from 0.08 to 1.0) & random aspect ratio (default: 3/4 to 4/3)
- Crop is resized to the original size
- With probability p = 0.5, perform horizontal / left-to-right flip

2. Color distortion

- Composed of color jittering & color dropping with a strength parameter
- Color jittering: random brightness, contrast, saturation, hue (p = 0.8)
- Color drop: convert rgb image to grayscale image (p = 0.2)

3. Gaussian blur

- Blur image with probability p = 0.5 using a Gaussian kernel
- Randomly sample $\sigma \in [0.1, 2.0]$, kernel size = 10% of image height / width

Julia Mertesdorf

UNI FREIBURG

	Color distortion strength								
Methods	1/8	1/4	1/2	1	1 (+Blur)				
SimCLR Supervised	59.6 77.0	61.0 76.7	62.6 76.5	63.2 75.7	64.5 75.4				

Chen, T. et al. (2020)

- → SimCLR: stronger color augmentation improves linear evaluation accuracy
- → Supervised: extreme color distortion does not improve & can hurt performance

UNI FREIBURG

Nonlinear head: Better representation separability

Visualizations of hidden vectors of images from randomly selected 10 classes

Chen, T. et al. (2020)

 \rightarrow Classes represented by **h** are better separated compared to **z**

Julia Mertesdorf

UNI FREIBURG

Performance comparison of different contrastive losses

- NT-Logistic & Margin Triplet loss only regard 1 positive & 1 negative sample → need negative mining for good performance
- Linear evaluation for models trained with different contrastive losses (sh = using negative mining)

Margin	NT-Logi.	Margin (sh)	NT-Logi.(sh)	NT-Xent
50.9	51.6	57.5	57.9	63.9

Chen, T. et al. (2020)

 \rightarrow Negative mining helps, but NT-Xent loss works still much better

- Linear classifiers trained on top of frozen pretrained models
- ImageNet Top-1 & Top-5 accuracy

Method	Architecture	Param (M)	Top 1	Top 5
Methods using R	esNet-50:			
Local Agg.	ResNet-50	24	60.2	-
MoCo	ResNet-50	24	60.6	-
PIRL	ResNet-50	24	63.6	-
CPC v2	ResNet-50	24	63.8	85.3
SimCLR (ours)	ResNet-50	24	69.3	89.0
Methods using ot	ther architectures	:		
Rotation	RevNet-50 $(4\times)$) 86	55.4	-
BigBiGAN	RevNet-50 $(4\times)$) 86	61.3	81.9
AMDIM	Custom-ResNet	626	68.1	-
CMC	ResNet-50 $(2\times)$	188	68.4	88.2
MoCo	ResNet-50 $(4 \times)$	375	68.6	-
CPC v2	ResNet-161 (*)	305	71.5	90.1
SimCLR (ours)	ResNet-50 $(2\times)$	94	74.2	92.0
SimCLR (ours)	ResNet-50 $(4 \times)$	375	76.5	93.2

Chen, T. et al. (2020)

UNI FREIBURG

FREIBURG

Design choices comparison: SimCLR & previous approaches

- **CPC**: defines context prediction task by splitting images into patches. Uses a context aggregation network
- **AMDIM**: performs global-to-local / local-to-neighbor prediction. Uses modified ResNet with constraints on the receptive fields
- **CMC**: uses a separated network for each view & a different loss
- MoCo & PIRL: use an explicit memory bank

Model	Data Augmentation	Base Encoder	Projection Head	Loss	Batch Size	Train Epochs
CPC v2	Custom	ResNet-161 (modified)	PixelCNN	Xent	512#	~ 200
AMDIM	Fast AutoAug.	Custom ResNet	Non-linear MLP	Xent w/ clip,reg	$1008^{\#}$	150
CMC	Fast AutoAug.	ResNet-50 $(2 \times, L+ab)$	Linear layer	Xent w/ ℓ_2, au	156*	280
MoCo	Crop+color	ResNet-50 $(4 \times)$	Linear layer	Xent w/ ℓ_2, τ	256*	200
PIRL	Crop+color	ResNet-50 $(2\times)$	Linear layer	Xent w/ ℓ_2, au	1024*	800
SimCLR	Crop+color+blur	ResNet-50 ($4 \times$)	Non-linear MLP	Xent w/ ℓ_2, au	4096	1000

- Chen, T. et al. (2020)
- * = a memory bank is used
- # = images are split into multiple patches
- → Combination of design choices in SimCLR is crucial. Design choices in SimCLR are generally simpler

Julia Mertesdorf

SimCLR vs. Supervised: **ResNet-50 (4x)**

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
<i>Linear evaluatio</i> SimCLR (ours) Supervised	on: 76.9 75.2	95.3 95.7	80.2 81.2	48.4 56.4	65.9 64.9	60.0 68.8	61.2 63.8	84.2 83.8	78.9 78.7	89.2 92.3	93.9 94.1	95.0 94.2
<i>Fine-tuned:</i> SimCLR (ours) Supervised Random init	89.4 88.7 88.3	98.6 98.3 96.0	89.0 88.7 81.9	78.2 77.8 77.0	68.1 67.0 53.7	92.1 91.4 91.3	87.0 88.0 84.8	86.6 86.5 69.4	77.8 78.8 64.1	92.1 93.2 82.7	94.1 94.2 72.5	97.6 98.0 92.5

\rightarrow SimCLR outperforms on 5 datasets

Chen, T. et al. (2020)

SimCLR vs. Supervised: ResNet-50

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation	on:	00.0	71.6	27.4	50.0	50.2	50.2	80 5	745	92 (00.2	01.2
Supervised	68.4 72.3	90.8 93.6	71.6 78.3	57.4 53.7	58.8 61.9	50.3 66.7	50.5 61.0	80.5 82.8	74.5 74.9	83.6 91.5	90.3 94.5	91.2 94.7
<i>Fine-tuned:</i> SimCLR (ours) Supervised Random init	88.2 88.3 86.9	97.7 97.5 95.9	85.9 86.4 80.2	75.9 75.8 76.1	63.5 64.3 53.6	91.3 92.1 91.4	88.1 86.0 85.9	84.1 85.0 67.3	73.2 74.6 64.8	89.2 92.1 81.5	92.1 93.3 72.6	97.0 97.6 92.0

→ SimCLR outperforms on only 1 dataset

Chen, T. et al. (2020)

→ With a narrower architecture, supervised learning has a clear advantage over self-supervised learning. Accuracy gap decreases for bigger models

Julia Mertesdorf