

Deep Residual Flow for Out of Distribution Detection

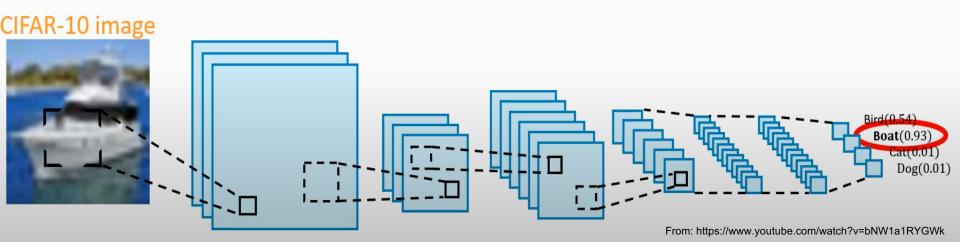
Ev Zisselman and Aviv Tamar

Block-Seminar on Deep Learning for Bio-Medical Data Analysis Advisor: Özgün Çiçek

Michel Dehn

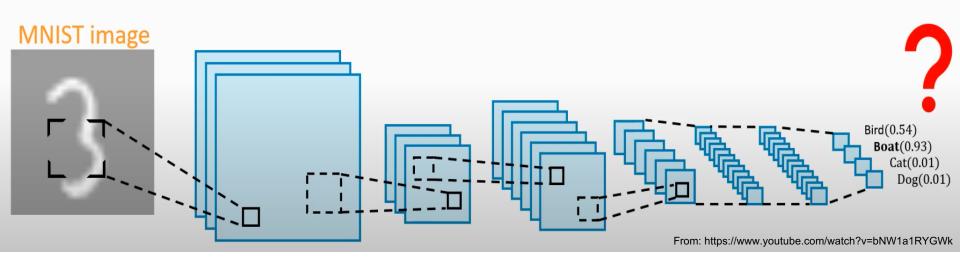
What is the problem?

CNN trained on CIFAR-10



What is the problem?

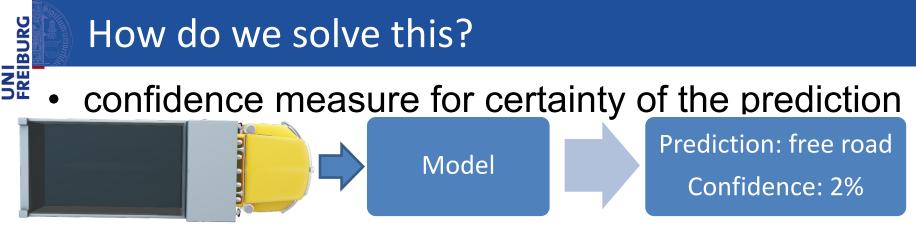
CNN trained on CIFAR-10



• Unexpected behavior for out-of-distribution images!

What is the problem?

 Real world applications are hindered by unexpected behavior!



 model a probability density function given samples form that distribution

0.06

0.04

0.02

Out of distribution

 Use the density function to estimate if a sample is part of the in-distribution
Gaussian

-50 -25

0.30 0.25 0.20 0.15

0.10

-10.0

-7.5

-5.0

-2.5

0.0

From: https://www.youtube.com/watch?v=bNW1a1RYGWk

2.5

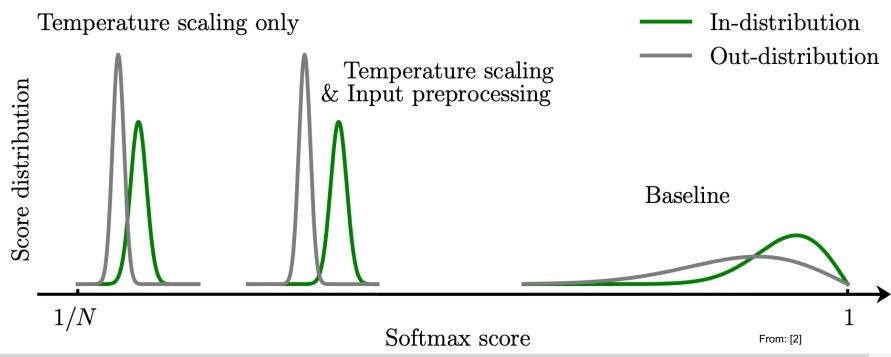
5.0

7.5

10.0

Related methods

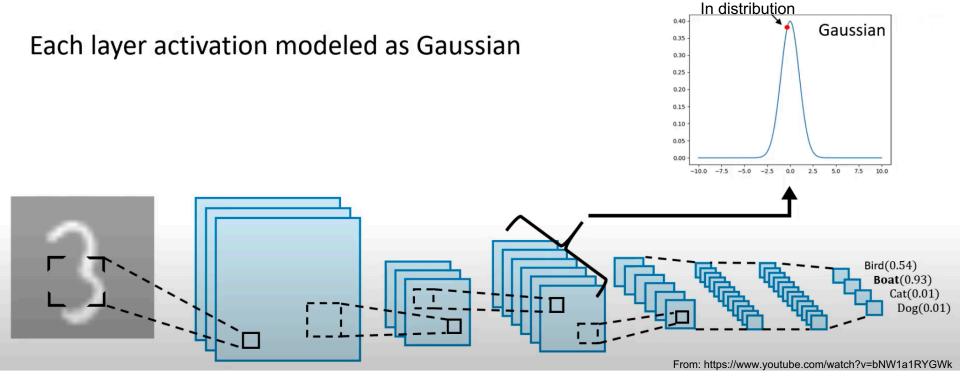
- UNI FREIBURG Classical methods like: One-Class SVMs
 - **Setting:** Trained classification net, labeled data •
 - Baseline line method by [Hendrycks and Gimpel] Uses soft-max score as the confidence score
 - ODIN by [Liang et al.] •



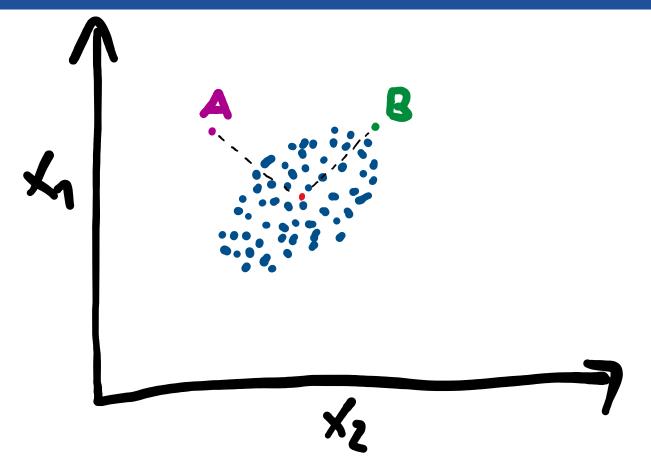
Previous State-of the-Art (Mahalanobis) by: Lee et al.

Main idea:

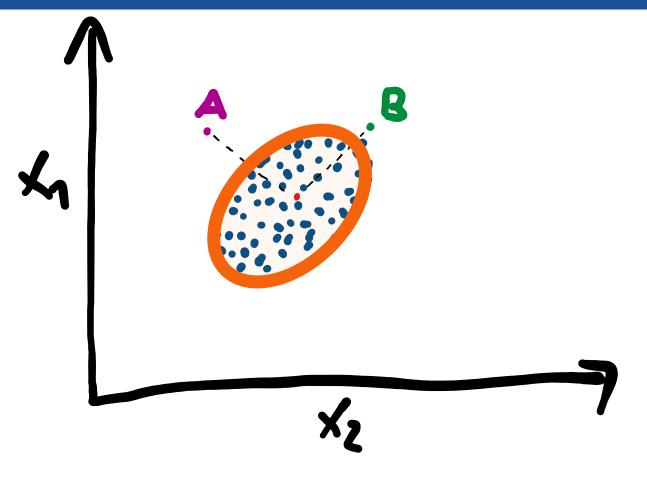
Model each layer activations as a Gaussian distribution and use the Mahalanobis distance as a confidence score.



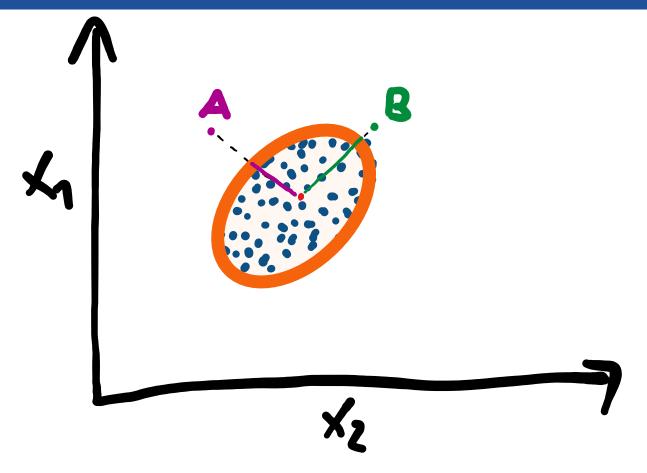
What is the Mahalanobis distance?



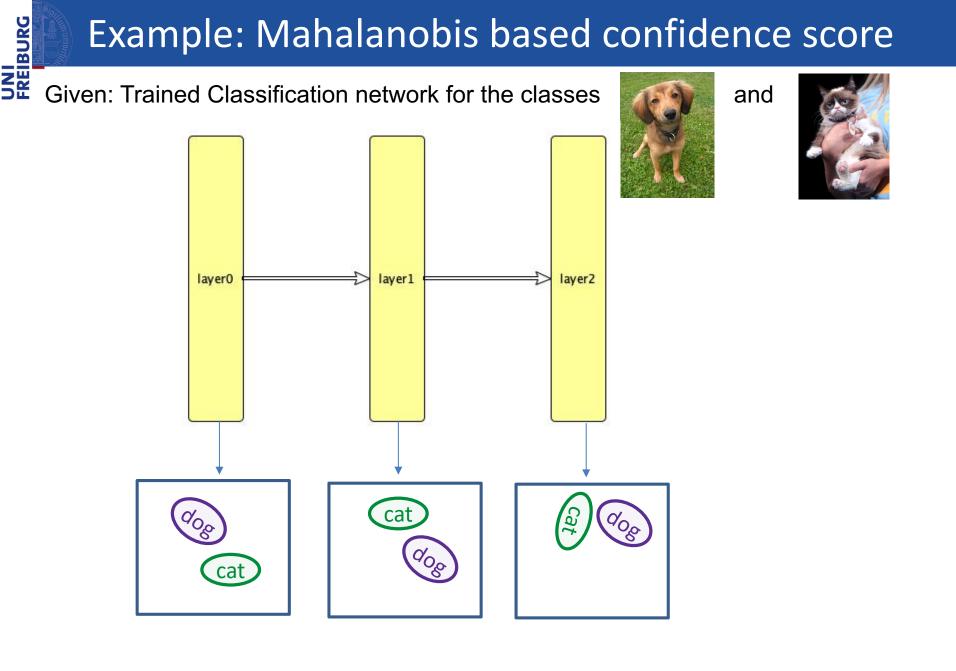
What is the Mahalanobis distance?



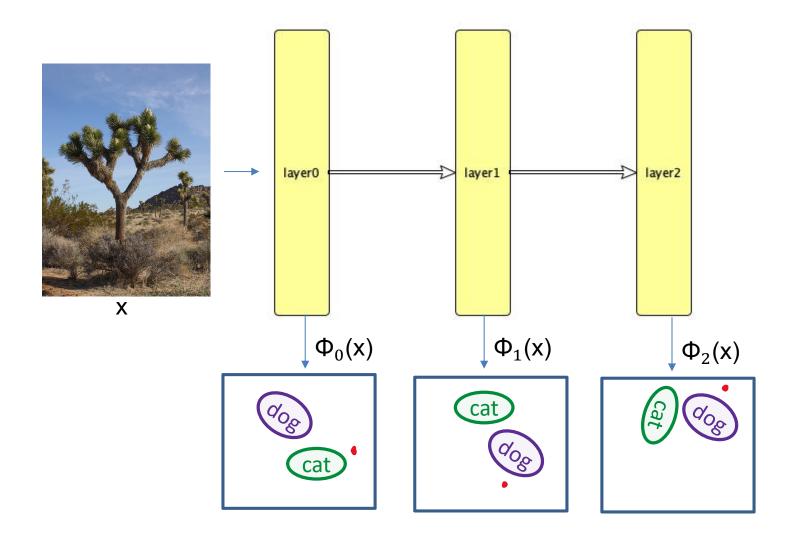
What is the Mahalanobis distance?



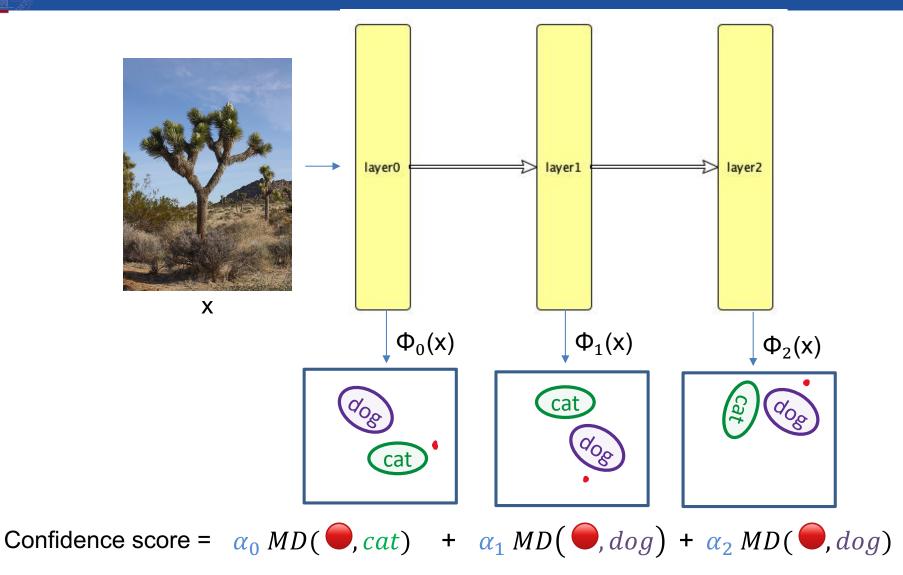
Measures of how far away a Point is from a distribution



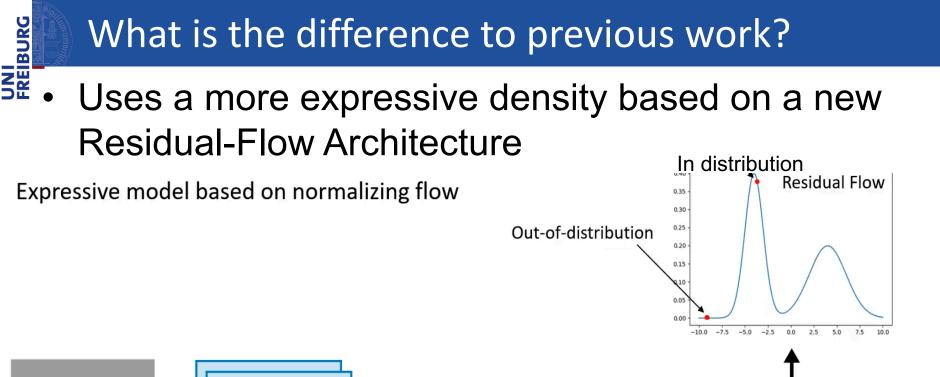
Example: Mahalanobis based confidence score

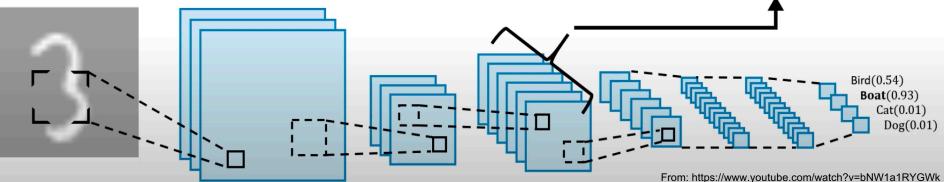


Example: Mahalanobis based confidence score



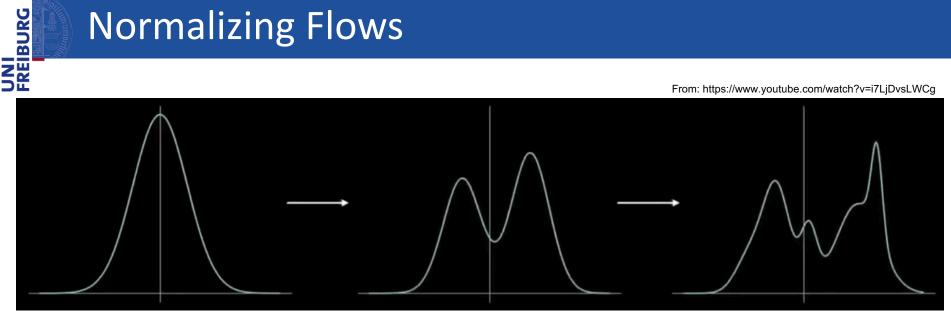
Michel Dehn





• Uses the Residual-Flow-Score instead of the Mahalanobis distance as confidence measure

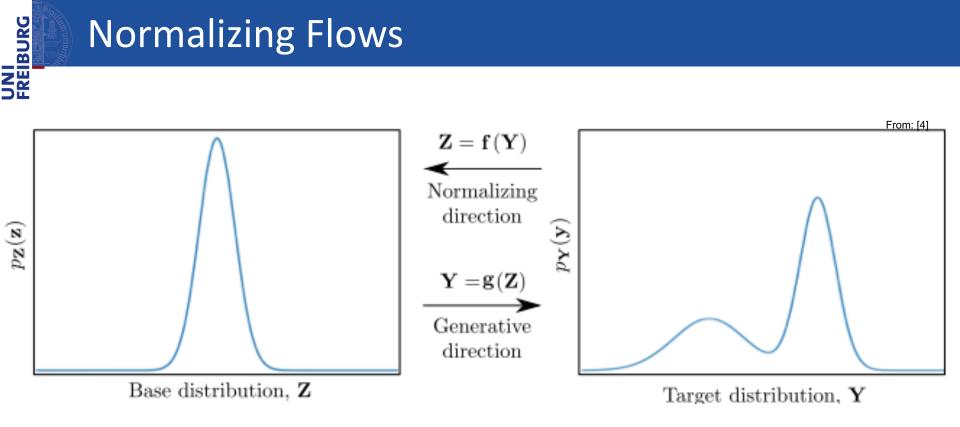
From: https://www.youtube.com/watch?v=i7LjDvsLWCg



$$z \sim p_Z(z) = N(0,1)$$
$$x = g(z) = g_k \circ \dots \circ g_2 \circ g_1(z)$$

each g_i is invertible (bijective)

$$g^{-1} = f$$

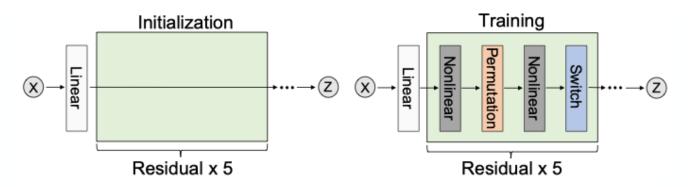


What is the density of a given y? Change of variables formula: $p_Y(y) = p_Z(f(y)) * |\det \frac{\delta f(y)}{\delta v}$

- UNI FREIBURG q(x) = Ax + b, where A is invertable
 - Training a linear flow model on the feature space of a neural network is equal to fitting a Gaussian distribution via LDA
 - Linear flow transformation can be obtained analytically

Residual Flow

- Residual Flow = linear flow + non linear residual component
- Non-linear block component: is a DNN
- Permutations are used to diversifying the inputs of the non-linear components



(a) Residual Flow blocks during initialization and training.

$$(b) \text{ The complete Residual Flow architecture } Z = f(X).$$

How does it work?

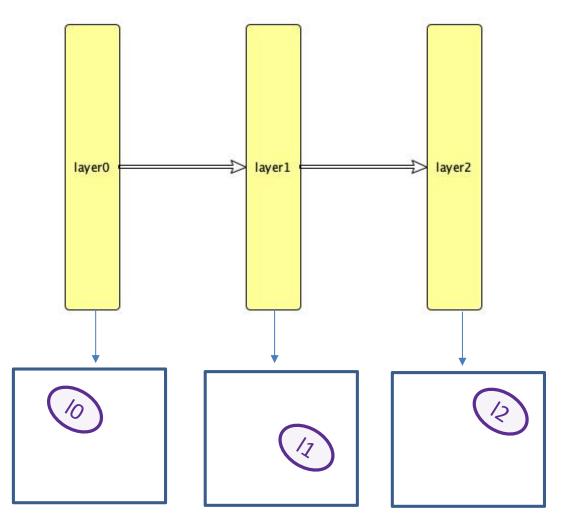
UNI FREIBURG Given: trained image classifier and labelled pictures of dogs and cats:

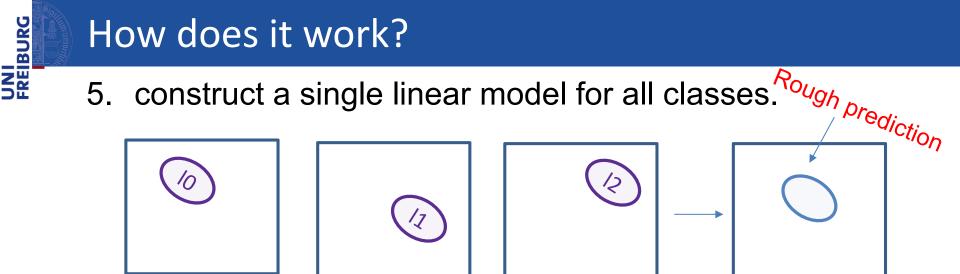
- 1. for each sample x in our training data, we extract the network activation in layer l: $\Phi_l(x)$
- 2. for each network layer l, we extract the mean activation in the training data for each class label: μ_{LC}
- 3. calculate centred feature training set:

 $\widehat{\Phi}_{l}(x) = \Phi_{l}(x) - \mu_{l,c}$

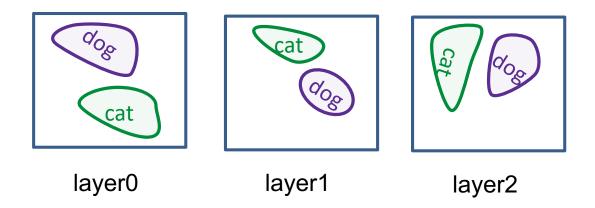
How does it work?

4. fit a Gaussian distribution to the centered dataset by constructing a linear flow model for each layer





6. for each layer I, and for each class c, we train a residual flow model by training the non-linear flow blocks.

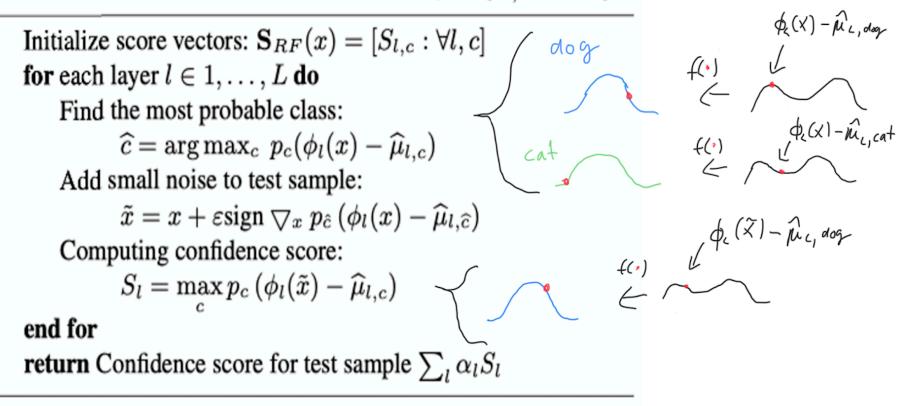


FREIBURG

OOD Detection

Algorithm 1 Computing the Residual-Flow score S_l .

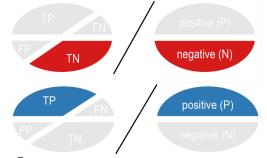
Input: Test sample x, weights of logistic regression detector α_l , noise ε and C residual-flow for each layer: $\{f_{l,c}^{res} : \forall l, c\}$



Res-Flow

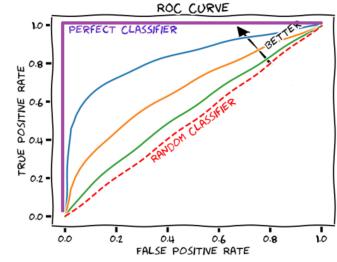
Evaluation

- UNI FREIBURG
- Same evaluation technique as Lee et al.
 - Same datasets and architectures, ...
- Most important performance measures:
 - true negative rate at 95% true positive rate



From: https://moredvikas.wordpress.com/2017/09/12/what-istrue-positive-and-true-negative-confusion-matrix/

· area under the receiver operating characteristic curve



From: https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/

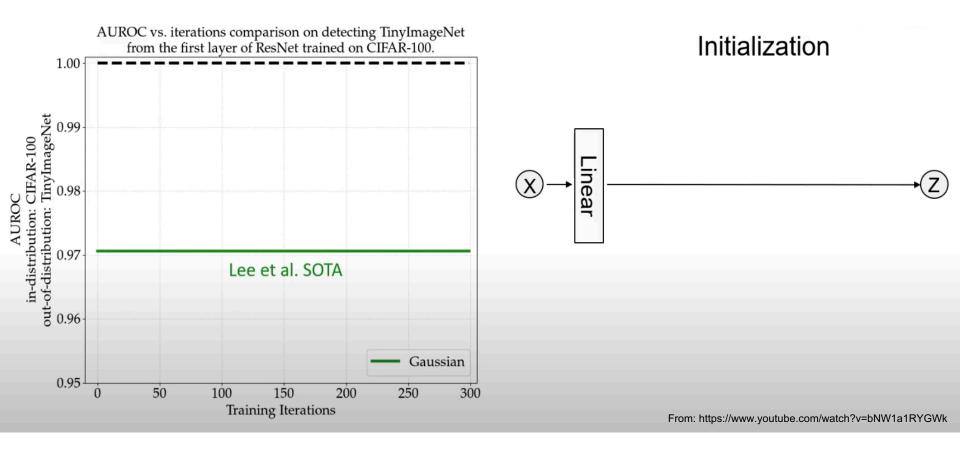
UNI FREIBURG

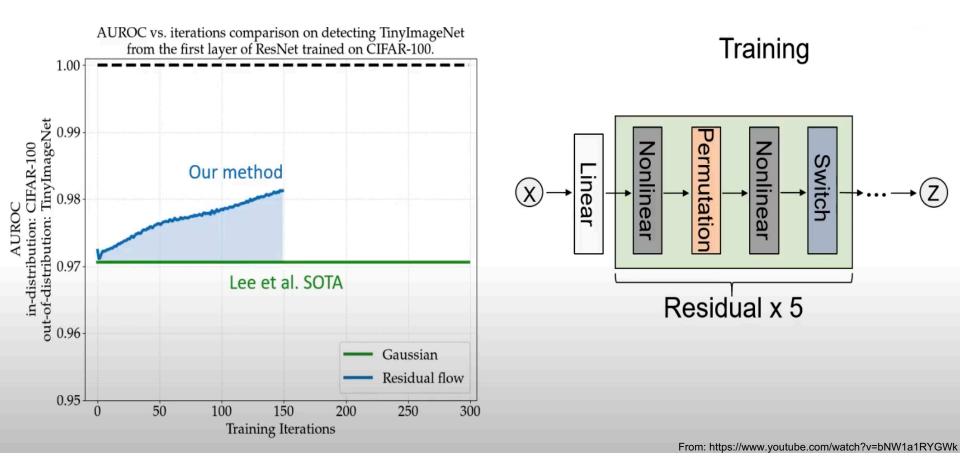
> How does the OOD detection method compare with state-of-the-art? They report an principled improvement on the current STOA

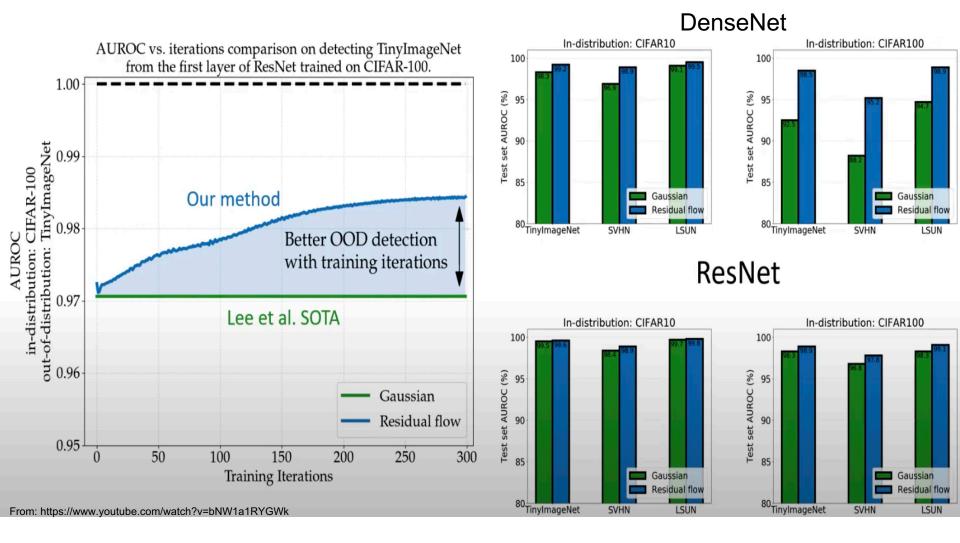
In-dist (model)	Out-of-dist	TNR at TPR 95%	AUROC	Detection accuracy	AUPR in	AUPR out
		Mahalanobis [27]/ Res-Flow without pre-processing / Res-Flow with pre-processing				
CIFAR-10 (DenseNet)	SVHN	85.8 / 94.9 / 94.9	96.6 / 98.9 / 98.9	91.9 / 95.3 / 95.3	98.7 / 99.5 / 99.5	88.8 / 97.5 / 97.5
	ImageNet	95.3 / 96.4 / 96.4	98.9 / 99.2 / 99.2	95.2 / 96.0 / 96.0	98.9 / 99.2 / 99.2	98.7 / 99.2 / 99.2
	LSUN	97.9 / 98.2 / 98.2	99.3 / 99.5 / 99.5	96.8 / 97.1 / 97.1	99.3 / 99.6 / 99.6	98.2 / 99.5 / 99.5
CIFAR-100 (DenseNet)	SVHN	82.9 / 73.0 / 84.9	96.1 / 95.2 / 97.5	90.9 / 88.7 / 91.9	98.5 / 97.5 / 99.0	89.0 / 91.1 / 95.1
	TinyImageNet	85.8 / 93.0/ 93.0	96.6 / 98.5 / 98.5	91.2 / 94.1 / 94.1	96.9 / 98.5 / 98.5	95.5 / 98.5 / 98.5
	LSUN	83.6 / 96.3 / 96.3	94.9 / 98.9 / 98.9	89.9 / 95.7 / 95.7	95.7 / 99.0 / 99.0	93.0/ 98.8 / 98.8
SVHN (DenseNet)	CIFAR-10	96.5 / 99.0 / 99.0	98.9 / 99.5 / 99.5	95.9 / 97.4 / 97.4	95.6 / 97.8 / 97.8	99.6 / 99.8 / 99.8
	TinyImageNet	99.8 / 100.0 / 100.0	99.9 / 100.0 / 100.0	98.8 / 99.4 / 99.4	99.6 / 99.8 / 99.8	100.0 / 100.0 / 100.0
	LSUN	100.0/ 100.00 / 100.00	99.9 / 100.0 / 100.0	99.3 / 99.7 / 99.7	99.7 / 99.9 / 99.9	100.0 / 100.0 / 100.0
CIFAR-10 (ResNet)	SVHN	96.4 / 94.5 / 96.5	99.1 / 98.9 / 99.1	95.8 / 94.9 / 95.8	99.6 / 99.6 / 99.6	98.3 / 97.6 / 98.3
	TinyImageNet	97.1 / 97.8 / 97.8	99.5 / 99.6 / 99.6	96.3 / 96.9 / 96.9	99.5 / 99.6 / 99.6	99.5 / 99.6 / 99.6
	LSUN	98.9 / 99.0 / 99.0	99.7 / 99.8 / 99.8	97.7 / 97.8 / 97.8	99.7 / 99.8 / 99.8	99.7 / 99.8 / 99.8
CIFAR-100 (ResNet)	SVHN	92.0 / 88.8 / 93.0	98.4 / 97.8 / 98.5	93.7 / 92.6 / 94.5	99.3 / 99.1 / 99.3	96.4 / 95.3 / 97.1
	TinyImageNet	90.8 <mark>/ 95.0 /</mark> 94.6	98.2 / 98.9 / 98.9	93.3 / 95.0 / 95.0	98.1 / 98.9 / 98.9	98.2 / 98.9 / 98.8
	LSUN	90.9 <mark>/96.7 /</mark> 96.2	98.2 / <mark>99.1</mark> / 99.0	93.5 / 96.0 / 95.7	97.8 / 99.0 / 98.9	98.4 / 98.8 / 98.6
SVHN (ResNet)	CIFAR-10	98.5 / 99.3 / 99.4	99.3 / 99.6 / 99.6	96.9 / 97.7 / 97.7	97.0 / 98.3 / 98.3	99.7 / 99.9 / 99.9
	TinyImageNet	99.9 / 100.0 / 100.0	99.9 / <mark>100.0</mark> / 99.9	99.1 / 99.5 / 99.3	99.1 / 99.8 / 99.7	99.9 / 100.0 / 100.0
	LSUN	99.9 / 100.0 / 100.0	99.9 / <mark>100.0 / 100.0</mark>	99.5 / 99.7 / 99.7	99.2 / 99.8 / 99.8	99.9 / 100.0 / 100.0

From [1]

Michel Dehn

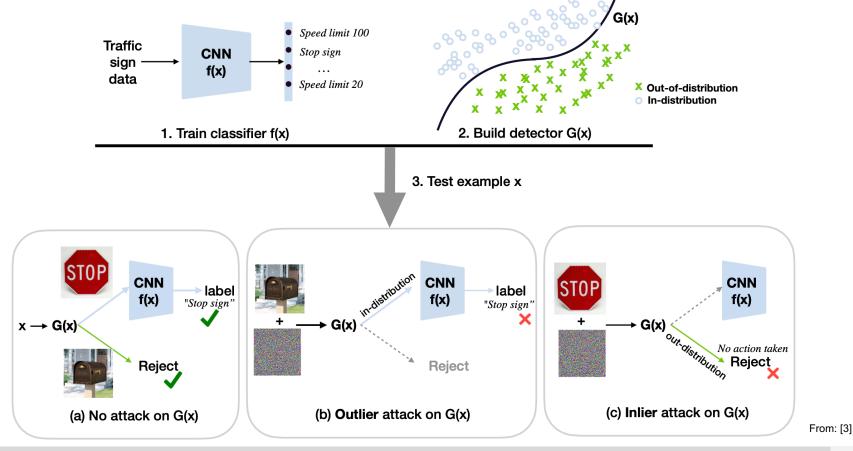






Future work

- UNI FREIBURG Applying this general model to different data: speech recognition and natural language processing
 - Fixing adversarial attack problems [Chen et al.]



Conclusion

- UNI FREIBURG 1. Can be applied to a trained network without retraining or changing the underlying architecture
 - 2. No compromise on classification accuracy
 - 3. Performance improvement
 - Approach can be applied to different data e.g. NLP 4.
 - Method has problems with In- and Outlier attacks 5.

Thank you!

Michel Dehn

References

- [1] Deep Residual Flow for Out of Distribution Detection, Ev Zisselman and Aviv Tamar, https://arxiv.org/pdf/2001.05419.pdf
- [2] Principled Detection of Out-of-Distribution Examples in Neural Networks , Liang et al., https://arxiv.org/pdf/1706.02690v1.pdf
- [3] Robust Out-of-distribution Detection for Neural Network, Chen et al., <u>https://arxiv.org/pdf/2003.09711.pdf</u>
- [4] Normalizing Flows: An Introduction and Review of Current Methods, Kobyzev et al, https://arxiv.org/pdf/1908.09257.pdf
- Tree picture: slide 12, 13: <u>https://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Joshua Tree 01.jpg/1200px-Joshua Tree 01.jpg</u>
- Cat picture: slide 11, 19: https://upload.wikimedia.org/wikipedia/commons/d/dc/Grumpy_Cat_%2814556024763%29_%28cropped%29.jpg
- Dog picture: slide 11, 19: https://c1.peakpx.com/wallpaper/463/347/648/dog-portrait-a-hybrid-brown-wallpaper.jpg