Evolving Losses for Unsupervised Video Representation Learning

AJ Piergiovanni, Anelia Angelova, Michael S. Ryoo

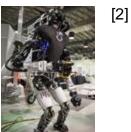
Albert-Ludwigs-Universität Freiburg

05.10.2020

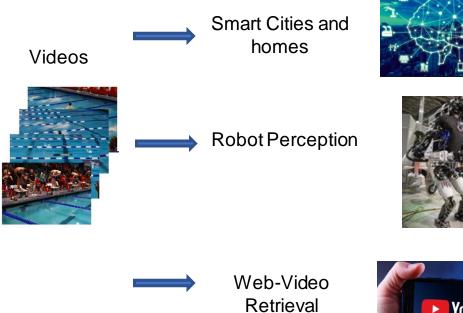
Salem Ayedi

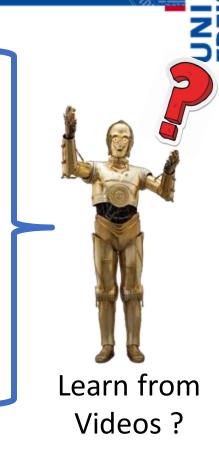
Advisor: David Hoffmann

[1]



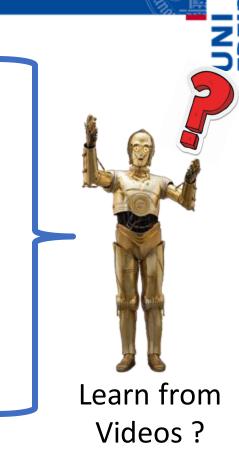
Web-Video Retrieval



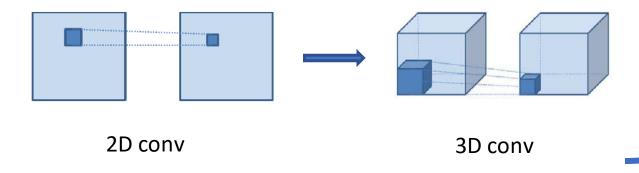




- Higher dimensions.

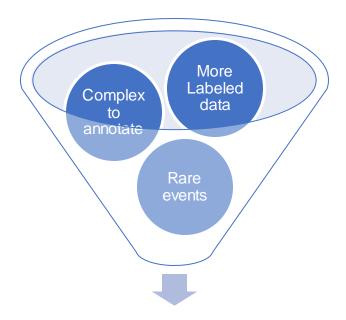


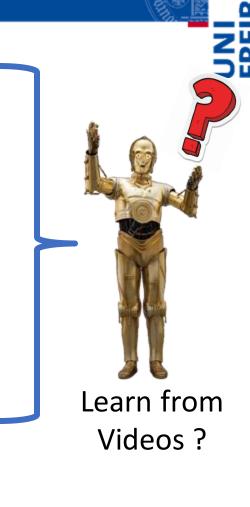
- Higher dimensions.
- More trainable parameters if use 3D convs.



- Higher dimensions.
- More trainable parameters if use 3D convs.

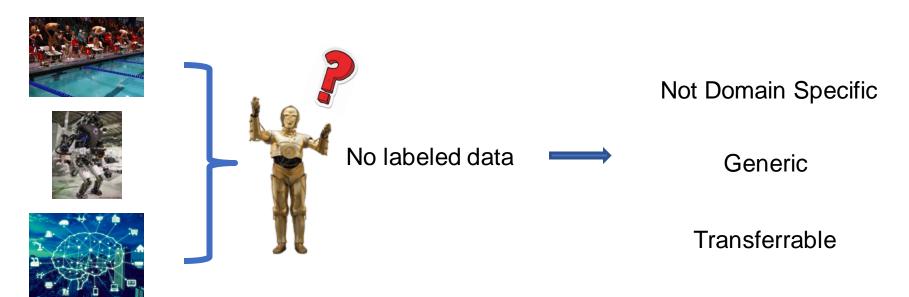
- Expensive!





How to learn a good Video representation?

How to learn a robust video representation?



How to learn a robust video representation?

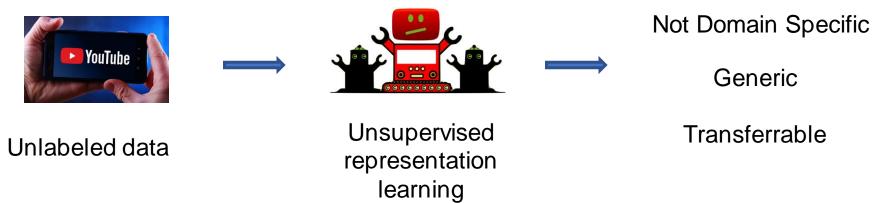
Unsupervised representation learning

Not Domain Specific

Generic

Transferrable

How to learn a robust video representation?



→ Learn an Unsupervised representation by formulating an Multi-Modal and Multi-task learning problem.

How to learn a robust video representation?

Not Domain Specific

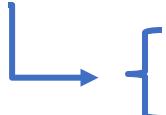
Generic

Unlabeled data

Unsupervised representation learning

Transferrable

→ Learn an Unsupervised representation by formulating an Multi-Modal and Multi-task learning problem.



- Loss Function
- Evaluation Metric
- Single RGB Network

Plan

- Related work
- Approach:
 - Representation learning
 - Loss function
 - Evolving losses
 - Metrics
- Results

Plan

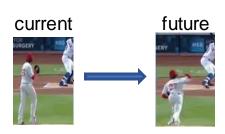
- Related work
- Approach:
 - Representation learning
 - Loss function
 - Evolving losses
 - Metrics
- Results

Related work

Self Supervised Learning for Video Representations:

Temporal structure

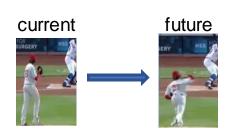
- Future prediction.
- Shuffled Frame Detection
- Forward/ Backward Detection

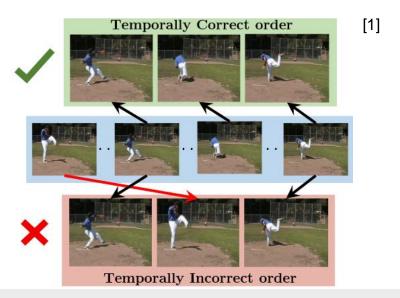


Self Supervised Learning for Video Representations:

Temporal structure

- Future prediction.
- Shuffled Frame Detection
- Forward/ Backward Detection



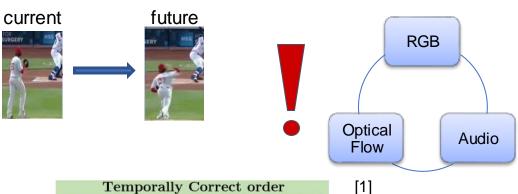


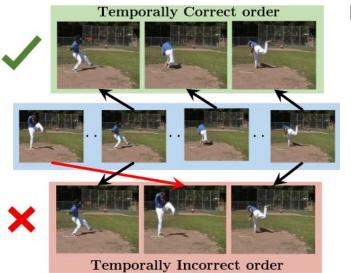
Related work

Self Supervised Learning for Video Representations:

Temporal structure

- Future prediction.
- Shuffled Frame Detection
- Forward/ Backward Detection





Related work

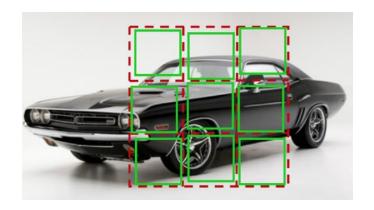
Self Supervised Learning for Video Representations:

Temporal structure

- Future prediction.
- Shuffled Frame Detection
- Forward/ Backward Detection

Spatial structure

- Tracking patches over time.
- Relative position patches detection



[2]

Self Supervised Learning for Video Representations:

Temporal structure

- Future prediction.
- Shuffled Frame Detection
- Forward/ Backward Detection

Spatial structure

- Tracking patches over time.
- Shuffled image parts

RGB to Flow

[3]

Multi Modal tasks

- Multi-Modal Alignment
 - **Cross Modal Translation**

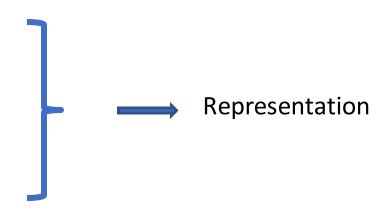
Related work

Self Supervised Learning for Video Representations:

How do we learn a representation that combines all these tasks?

Multi-Task Self Supervised Learning:

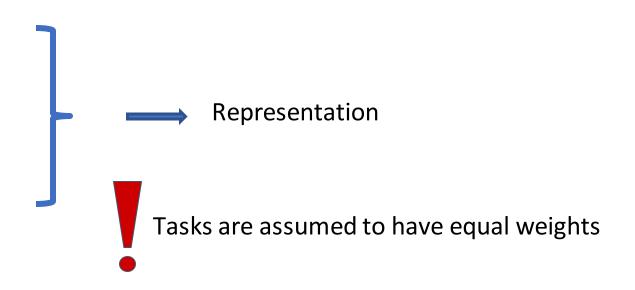
- Future RGB prediction.
- Future Audio prediction.
- Shuffled RGB Detection
- Shuffled Flow Detection
- Audio/RGB Alignment
- Flow/ RGB Alignment



Related work

Multi-Task Self Supervised Learning:

- Future **RGB** prediction.
- Future Audio prediction.
- Shuffled RGB Detection
- Shuffled Flow Detection
- Audio/RGB Alignment
- Flow/ RGB Alignment



→ Learning from multi-modal inputs and automatically discovering the weights of the tasks

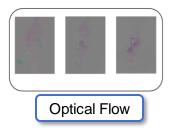
Plan

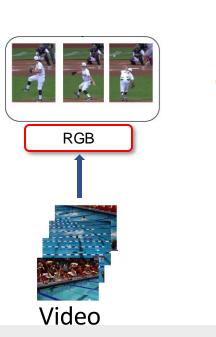
- Related work
- Approach:
 - Representation learning
 - Loss function
 - Evolving losses
 - Metrics
- Results

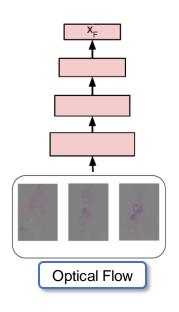
Approach: Overview

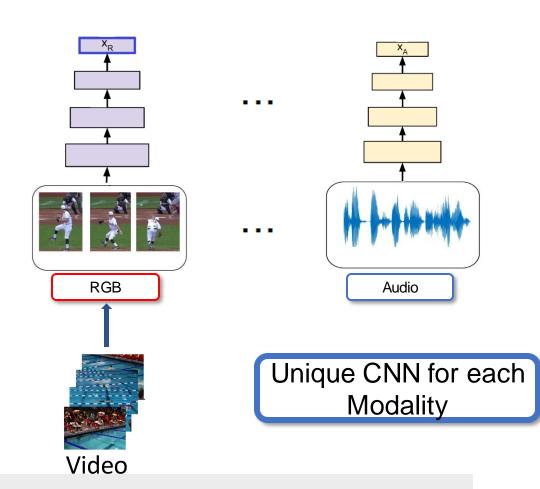
Input: unlabeled Video

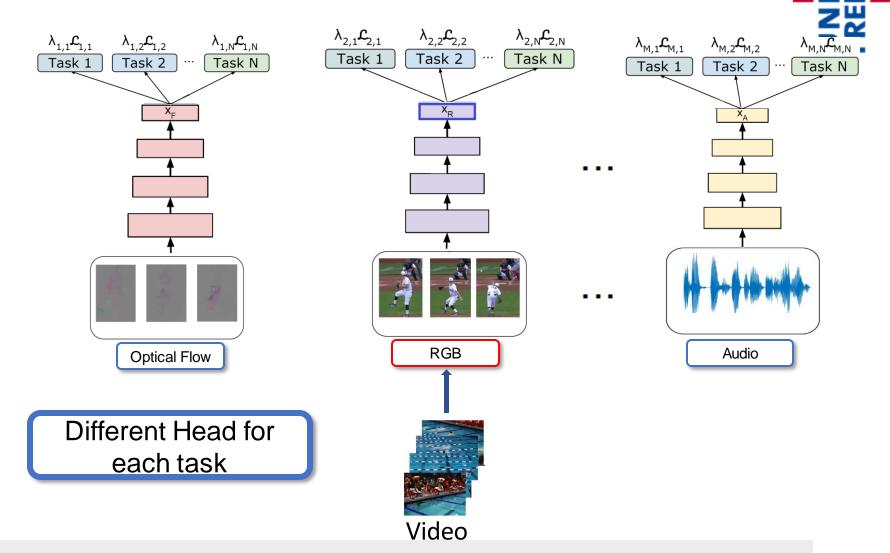
Modalities

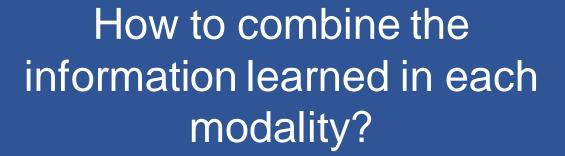






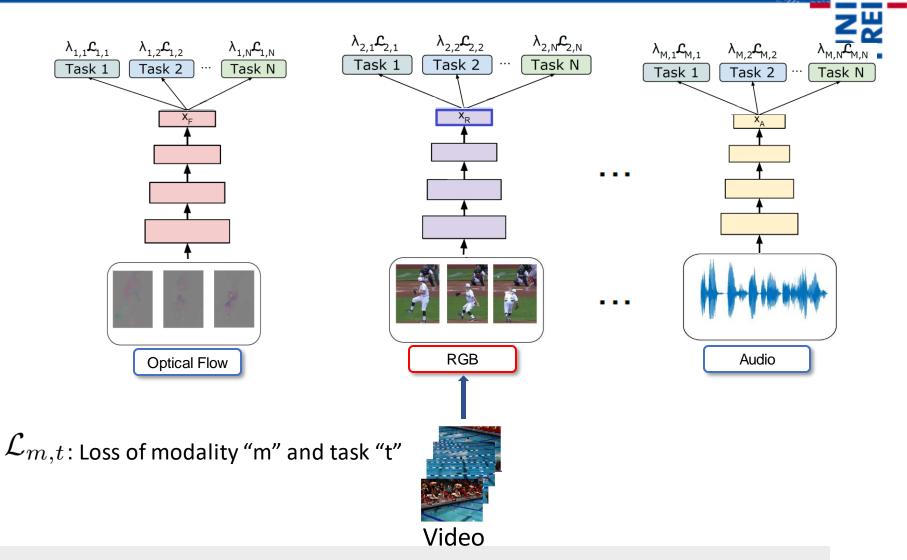


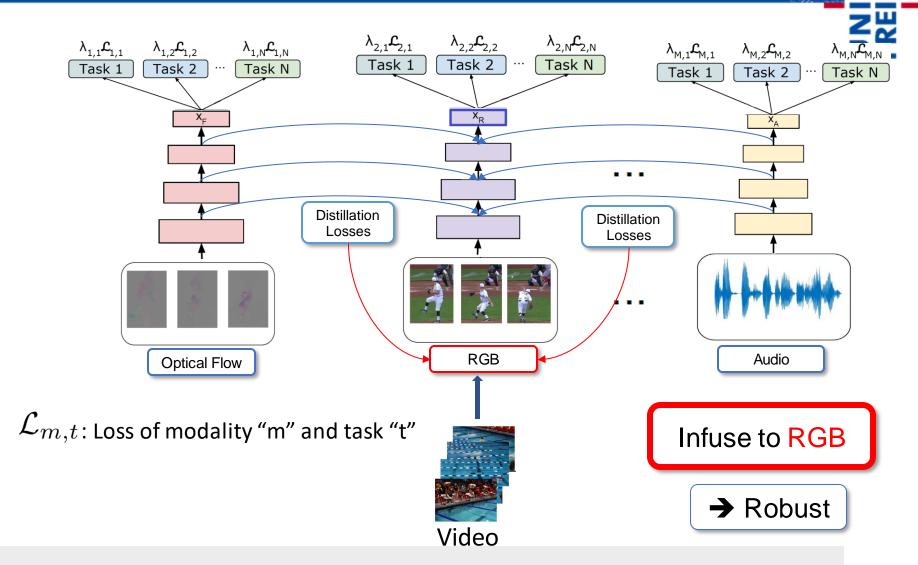


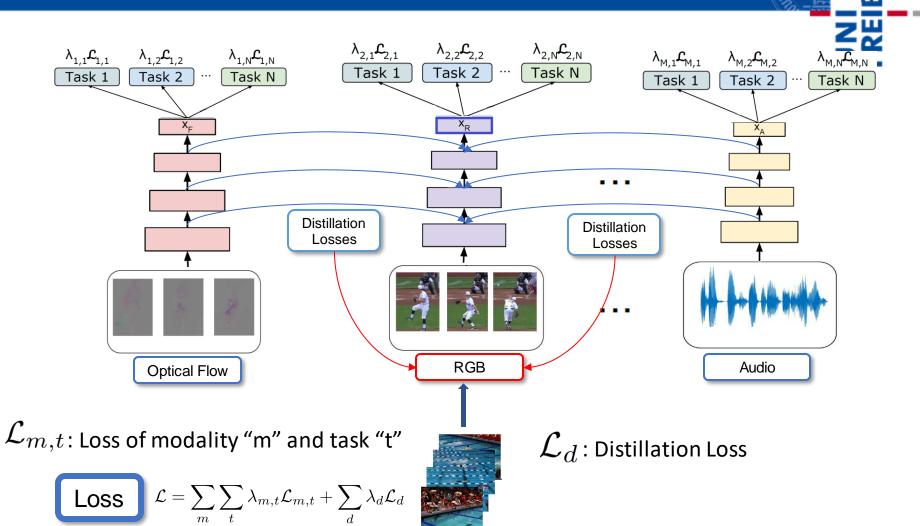


How to combine the information learned in each modality?

→ "infuse" all the information to the RGB Network







Video



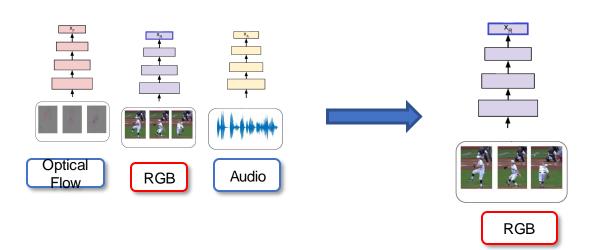
Distillation Loss \mathcal{L}_d — Transfer Knowledge

$$\mathcal{L} = \sum_{m} \sum_{t} \lambda_{m,t} \mathcal{L}_{m,t} + \sum_{d} \lambda_{d} \mathcal{L}_{d}$$

Distillation Loss $\overline{\mathcal{L}_d}$ —

Transfer Knowledge

Infuse

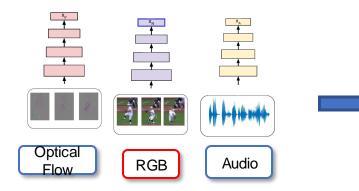


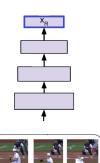
$$\mathcal{L} = \sum_{m} \sum_{t} \lambda_{m,t} \mathcal{L}_{m,t} + \sum_{d} \lambda_{d} \mathcal{L}_{d}$$

Distillation Loss $|\mathcal{L}_d|$ -

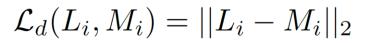
Transfer Knowledge

Infuse



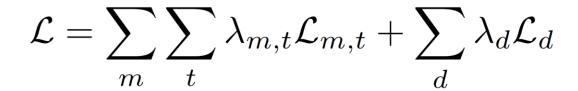


RGB



 M_i : Activation of a layer in the ${
m main}$ network

 L_i : Activation of a layer of another network



How to find these weights without any labeled data?

Approach: Evolving Loss function

$$\mathcal{L} = \sum_{m} \sum_{t} \lambda_{m,t} \mathcal{L}_{m,t} + \sum_{d} \lambda_{d} \mathcal{L}_{d}$$

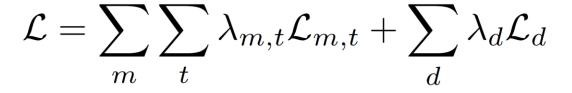
Evolutionary Algorithms

Loss Population

 $\lambda_{m,t} \,\, \lambda_d \,\, ext{in} \, [0,1]$

JNI REIBURG

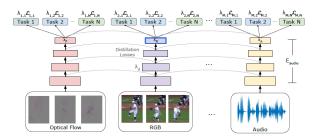
Approach: Evolving Loss function



Evolutionary Algorithms

Loss Population Train the networks of each Loss

$$\lambda_{m,t} \,\, \lambda_d \,\, ext{in} \, [0,1]$$



Approach: Evolving Loss function

$$\mathcal{L} = \sum_{m} \sum_{t} \lambda_{m,t} \mathcal{L}_{m,t} + \sum_{d} \lambda_{d} \mathcal{L}_{d}$$

Evolutionary Algorithms

Loss Population

Train the networks of each Loss

Evaluate each loss with the Fitness Criterion

$$\lambda_{m,t} \,\, \lambda_d \,\, ext{in} \, [0,1]$$

Approach: Evolving Loss function

$$\mathcal{L} = \sum_{m} \sum_{t} \lambda_{m,t} \mathcal{L}_{m,t} + \sum_{d} \lambda_{d} \mathcal{L}_{d}$$

Evolutionary Algorithms

Loss Population

Train the networks of each Loss

Evaluate each network with the Fitness Criteria

Mutate the top performing losses:

Evolution Loss →
Child population

 $\left[\lambda_{m,t} \ \lambda_d \ ext{in} \ [0,1]
ight]$

→ Tournament Selection

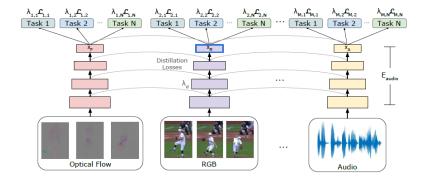
→ CMA-ES: Cov Matrix Adaptation

Approach: Summary ELo

JN REBURG

1 – Define population of losses

2 – learn an unsupervised representation for each loss



3 – Evaluate how good is the learned representation of each loss

4 – Improve the loss generation

Approach: Evolving Loss function

$$\mathcal{L} = \sum_{m} \sum_{t} \lambda_{m,t} \mathcal{L}_{m,t} + \sum_{d} \lambda_{d} \mathcal{L}_{d}$$

Evolutionary Algorithms

Loss Population

Train the networks of each Loss

Evaluate each network with the Fitness Criteria

Mutate the top performing losses: Evolution Loss→ Child Population

 $[\lambda_{m,t} \,\,\, \lambda_d \,\, ext{in} \, [0,1]$ -

→ Fitness Criteria

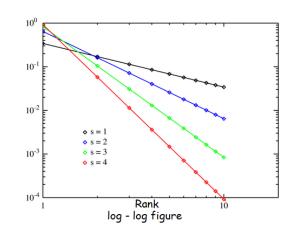
→ Tournament Selection

→ CMA-ES: Cov Matrix Adaptation

$$\mathcal{L} = \sum_{m} \sum_{t} \lambda_{m,t} \mathcal{L}_{m,t} + \sum_{d} \lambda_{d} \mathcal{L}_{d}$$

Fitness Criterion

$$q(c_i) = \frac{1/i^s}{H_{k,s}}$$



- → Activity recognition
- → Zipf Distribution

$$\mathcal{L} = \sum_{m} \sum_{t} \lambda_{m,t} \mathcal{L}_{m,t} + \sum_{d} \lambda_{d} \mathcal{L}_{d}$$

Fitness Criterion

- → Activity recognition
- → Zipf Distribution

Video
$$I$$

$$\longrightarrow x_{RGB} = E_{RGB}(I) \longrightarrow \mathbb{K} \text{ clusters}$$

$$\mathcal{L} = \sum_{m} \sum_{t} \lambda_{m,t} \mathcal{L}_{m,t} + \sum_{d} \lambda_{d} \mathcal{L}_{d}$$
Fitness Criterion

Fully
Unsupervised

Compute KL
Divergence

Video I
 $x_{RGB} = E_{RGB}(I)$

K clusters

KL Divergence

$$p(x|c_i) = \frac{1}{\sqrt{2\sigma^2\pi}} \exp\left(-\frac{(x-c_i)^2}{2\sigma^2}\right)$$

 K clusters Likelihood of x in each class

$$\mathcal{L} = \sum_{m} \sum_{t} \lambda_{m,t} \mathcal{L}_{m,t} + \sum_{d} \lambda_{d} \mathcal{L}_{d}$$

KL Divergence

$$\longrightarrow p(x|c_i) = \frac{1}{\sqrt{2\sigma^2\pi}} \exp\left(-\frac{(x-c_i)^2}{2\sigma^2}\right)$$

Likelihood of x in each class

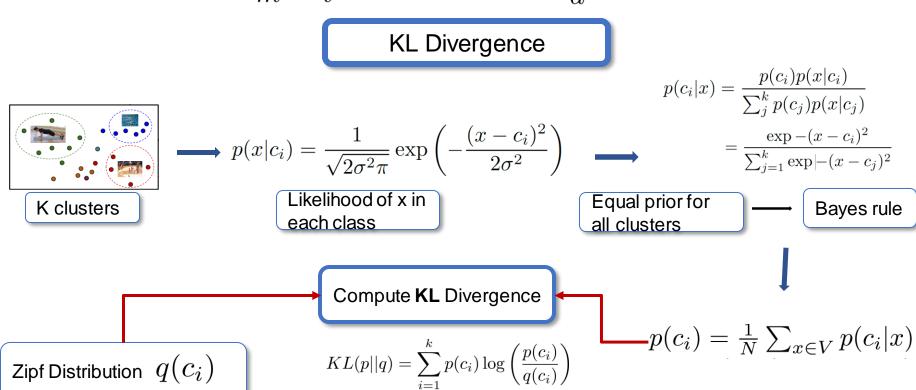
$$p(c_i|x) = \frac{p(c_i)p(x|c_i)}{\sum_{j=1}^{k} p(c_j)p(x|c_j)}$$
$$= \frac{\exp{-(x-c_i)^2}}{\sum_{j=1}^{k} \exp{|-(x-c_j)^2}}$$

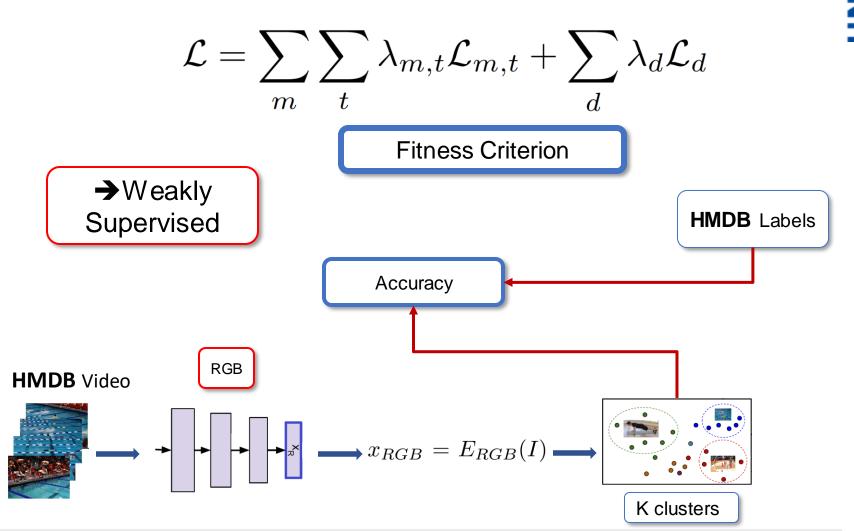
Equal prior for all clusters

Bayes rule

$$p(c_i) = \frac{1}{N} \sum_{x \in V} p(c_i|x)$$

$$\mathcal{L} = \sum_{m} \sum_{t} \lambda_{m,t} \mathcal{L}_{m,t} + \sum_{d} \lambda_{d} \mathcal{L}_{d}$$





Plan

- Related work
- Approach:
 - Representation learning
 - Loss function
 - Evolving losses
 - Metrics
- Experiments and Results

Multi-Task Self Supervised Learning:

- Reconstruction tasks for each modality
- Future prediction for each modality.
- Temporal ordering for each modality.
- Cross-modality transfer tasks: Flow to RGB...
- Multi-Modal alignment
- Multi-Modal contrastive loss

Datasets

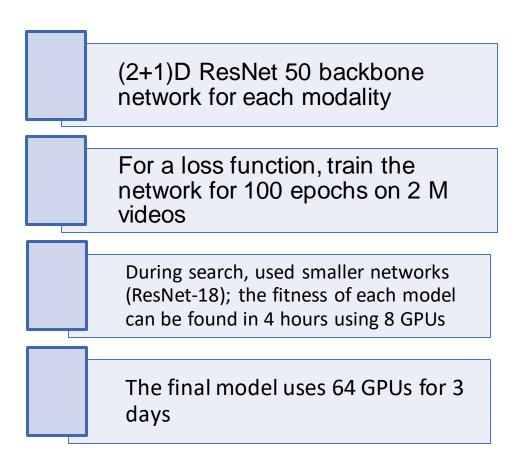
Training Dataset

2 Million **Random Unlabeled** Youtube Videos **Evaluation Dataset**

HMDB, UCF101, Imagenet and Kinetics.

→ Less prune to bias and more general representation

Implementation Details



Method	HMDB	UCF101
Supervised		
(2+1)D ResNet-50 Scratch	35.2	63.1
(2+1)D ResNet-50 ImageNet	49.8	84.5
(2+1)D ResNet-50 Kinetics	74.3	95.1
Unsupervised		
Shuffle [26]	18.1	50.2
O3N [12]	32.5	60.3
OPN [24]	37.5	37.5
Patch [43]	-	41.5
Multisensory [29]	-	82.1
AVTS [22]	61.6	89.0
Weakly guided, HMDB		
Evolved Loss (ours)	67.8	94.1
Unsupervised		
Evolved Loss (ours, no distiliation)	53.7	84.2
Evolved Loss - ELo (ours)	67.4	93.8

Table 2: Comparison to SoTA on HMDB51 and UCF101

→ Importance of distillation

Method	HMDB	UCF101	
Supervised			
(2+1)D ResNet-50 Scratch	35.2	63.1	
(2+1)D ResNet-50 ImageNet	49.8	84.5	
(2+1)D ResNet-50 Kinetics	74.3	95.1	
Unsupervised			
Shuffle [26]	18.1	50.2	
O3N [12]	32.5	60.3	
OPN [24]	37.5	37.5	
Patch [43]	-	41.5	
Multisensory [29]	-	82.1	
AVTS [22]	61.6	89.0	
Weakly guided, HMDB			
Evolved Loss (ours)	67.8	94.1	
Unsupervised			
Evolved Loss (ours, no distiliation)	53.7	84.2	
Evolved Loss - ELo (ours)	67.4	93.8	

Table 2: Comparison to SoTA on HMDB51 and UCF101

Method	HMDB	UCF101			
Supervised					
(2+1)D ResNet-50 Scratch	35.2	63.1			
(2+1)D ResNet-50 ImageNet	49.8	84.5			
(2+1)D ResNet-50 Kinetics	74.3	95.1			
Unsupervised					
Shuffle [26]	18.1	50.2			
O3N [12]	32.5	60.3			
OPN [24]	37.5	37.5			
Patch [43]	-	41.5			
Multisensory [29]	-	82.1			
AVTS [22]	61.6	89.0			
Weakly guided, HMDB					
Evolved Loss (ours)	67.8	94.1			
Unsupervised					
Evolved Loss (ours, no distiliation)	53.7	84.2			
Evolved Loss - ELo (ours)	67.4	93.8			

Table 2: Comparison to SoTA on HMDB51 and UCF101

Method	k-means	1-layer	fine-tune					
Supervised using additional labeled data								
Scratch (No Pretraining)	15.7	17.8	35.2					
ImageNet Pretrained	32.5	37.8	49.8					
Kinetics Pretrained	68.8	71.5	74.3					
Unsupervised using unlabeled videos								
Frame Shuffle [26]	22.3	24.3	28.4					
Reverse Detection [31]	21.3	24.3	27.5					
Audio/RGB Align [29, 22]	32.4	36.8	40.2					
RGB to Flow	31.5	36.4	39.9					
Predicting 4 future frames	31.8	35.8	39.2					
Joint Embedding	29.4	32.5	38.4					
Ours, weakly-sup clustering, using unlabeled videos								
Evolved Loss - ELo-weak	45.7	64.3	67.8					
Ours, unsupervised, using unlabeled videos								
Random Loss (unsup.)	26.4	26.9	31.2					
Evolved Loss - ELo (unsup.)	43.4	64.5	67.4					

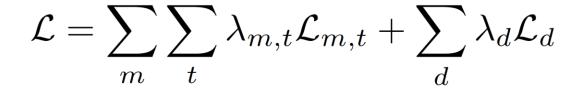
Table 1: Evaluation of various self-supervised methods on HMDB51

Method	k-means	1-layer	fine-tune					
Supervised using additional labeled data								
Scratch (No Pretraining)	15.7	17.8	35.2					
ImageNet Pretrained	32.5	37.8	49.8					
Kinetics Pretrained	68.8	71.5	74.3					
Unsupervised using unlabeled videos								
Frame Shuffle [26]	22.3	24.3	28.4					
Reverse Detection [31]	21.3	24.3	27.5					
Audio/RGB Align [29, 22]	32.4	36.8	40.2					
RGB to Flow	31.5	36.4	39.9					
Predicting 4 future frames	31.8	35.8	39.2					
Joint Embedding	29.4	32.5	38.4					
Ours, weakly-sup clustering, using unlabeled videos								
Evolved Loss - ELo-weak	45.7	64.3	67.8					
Ours, unsupervised, using unlabeled videos								
Random Loss (unsup.)	26.4	26.9	31.2					
Evolved Loss - ELo (unsup.)	43.4	64.5	67.4					

Table 1: Evaluation of various self-supervised methods on HMDB51

→ Importance of Evolution Loss

UNI FREIBURG



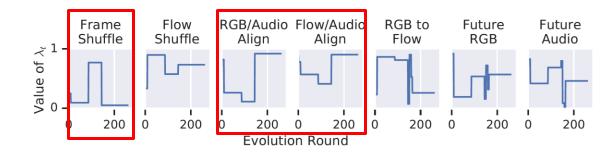
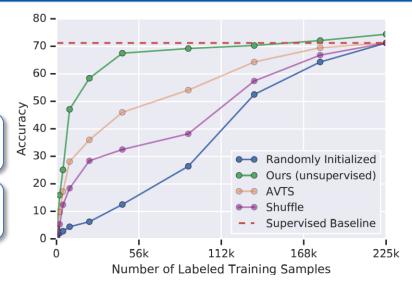


Figure 7: The values of the loss function for the various tasks throughout evolution

→ Improving Supervised Learning

Because you start with a good representation



	Number of Labeled Samples						225k			
Method	400	2k	4k	8k	20k	40k	80k	120k	160k	(all samples)
Random Init	0.93	2.1	2.8	4.4	6.2	12.5	26.4	52.5	64.3	71.2
Frame Shuffle	1.5	5.3	12.4	18.4	28.4	32.5	38.2	57.4	66.8	70.9
Audio Align	2.5	9.8	17.2	28.1	36.0	46.0	54.1	64.3	69.5	71.5
ELo (unsupervised)	3.6	15.8	24.8	47.0	58.3	67.5	69.2	70.2	72.2	74.4

Figure 5 and Table 3: How much Labeled, supervised data to achieve SoTA

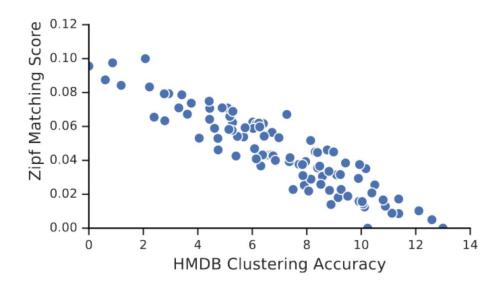


Figure 9: Comparison of the fitness measures for 100 different loss functions

→ Strong Correlation

→ Zipf matching is suitable for unsupervised representation evaluation

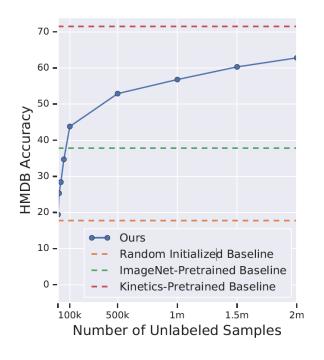
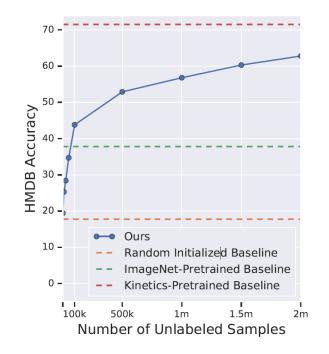


Figure 6: Different amounts of unsupervised data



Method	HMDB	UCF101
Supervised		
(2+1)D ResNet-50 Scratch	35.2	63.1
(2+1)D ResNet-50 ImageNet	49.8	84.5
(2+1)D ResNet-50 Kinetics	74.3	95.1
Unsupervised		
Shuffle [26]	18.1	50.2
O3N [12]	32.5	60.3
OPN [24]	37.5	37.5
Patch [43]	-	41.5
Multisensory [29]		82.1
AVTS [22]	61.6	89.0
Weakly guided, HMDB		
Evolved Loss (ours)	67.8	94.1
Unsupervised		
Evolved Loss (ours, no distiliation)	53.7	84.2
Evolved Loss - ELo (ours)	67.4	93.8

Figure 6: Different amounts of unsupervised data

Conclusion

- Formulate an unsupervised video representation as Multi-Modal and Multi-task learning problem.
- Infuse the information to RGB network
- loss function evolution
- unsupervised fitness
- → Powerful video representation.
- → Match or improve the performance of networks trained on supervised data

Bibliography

AJ Piergiovanni, Anelia Angelova, Michael S. Ryoo: Evolving Losses for Unsupervised Video Representation Learning

Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised learning using temporal order verification. In Proceedings of European Conference on Computer Vision (ECCV), 2016.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In Proceedings of European Conference on Computer Vision (ECCV), pages 69–84, 2016.

Andrew Owens and Alexei A Efros. Audio-visual scene analysis with self-supervised multisensory features. In Proceedings of European Conference on Computer Vision (ECCV), 2018..

Carl Doersch and Andrew Zisserman. Multi-task selfsupervised visual learning. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.

CMA ES

- Offspring not generated by the mutation of each single individual:
 - Choose random j: $x_i = X_j + \lambda_i z$
- But from weighted mean of the current population
 - $X_{i=}$ mean+ λ_i Z
- With $z \sim \mathcal{N}(0, C)$ and C is the covariance matrix

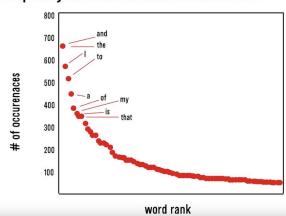
Zipf distribution

$$q(c_i) = \frac{1/i^s}{H_{k,s}}$$

Generalized Harmoic number

$$H_{k,s} = \frac{1/k^s}{\sum\limits_{n=1}^{N} (1/n^s)}$$

word frequency and rank in Romeo and Juliet



Where:

- "N": number of elements
- ji": is the rank

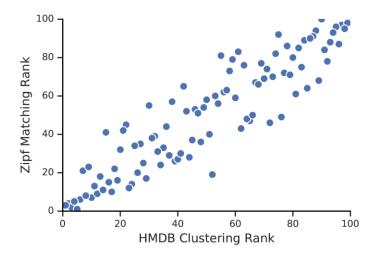


Figure 9: Comparison of the fitness measures for 100 different loss functions