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Learn from
Videos ?

- Higher dimensions.

- More trainable parameters if use 3D convs.

- Expensive!

How to learn a good Video representation?

Rare 
events

Complex 
to 

annotate

More 
Labeled 

data
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Video Modalities Multiple Self-

supervised tasks

➔ Learn an Unsupervised representation by formulating 

an Multi-Modal and Multi-task learning problem.
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How to learn a robust video representation?
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Unlabeled data

Not Domain Specific

Generic

TransferrableUnsupervised 
representation 

learning

➔ Learn an Unsupervised representation by formulating 

an Multi-Modal and Multi-task learning problem.

▪ Loss Function

▪ Evaluation Metric

▪ Single RGB Network
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Self Supervised Learning for Video Representations:

▪ Future prediction. 

▪ Shuffled Frame Detection

▪ Forward/ Backward Detection

Temporal structure current future

[1]

[1] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised learning using temporal order

verification. In Proceedings of European Conference on Computer Vision (ECCV), 2016.
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Self Supervised Learning for Video Representations:

▪ Future prediction. 

▪ Shuffled Frame Detection

▪ Forward/ Backward Detection

Temporal structure current future

RGB

Audio
Optical 
Flow

[1]

[1] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised learning using temporal order

verification. In Proceedings of European Conference on Computer Vision (ECCV), 2016.
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Self Supervised Learning for Video Representations:

▪ Future prediction. 

▪ Shuffled Frame Detection

▪ Forward/ Backward Detection

Spatial structure

▪ Tracking patches over time. 

▪ Relative position patches detection

Temporal structure

[2]

[2] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In Proceedings 

of European Conference on Computer Vision (ECCV), pages 69–84, 2016.

.
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Self Supervised Learning for Video Representations:

▪ Future prediction. 

▪ Shuffled Frame Detection

▪ Forward/ Backward Detection

Spatial structure

▪ Tracking patches over time. 

▪ Shuffled image parts

Temporal structure

Multi Modal 

tasks

▪ Multi-Modal Alignment

▪ Cross Modal Translation

RGB to Flow
[3]

[3] Andrew Owens and Alexei A Efros. Audio-visual scene analysis with self-supervised multisensory features. In Proceedings of 

European Conference on Computer Vision (ECCV), 2018..
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Self Supervised Learning for Video Representations:

▪ Tracking patches over time. 

▪ Shuffled image parts

RGB to Flow

How do we learn a 

representation that combines 

all these tasks?
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Multi-Task Self Supervised Learning:

▪ Future RGB prediction. 

▪ Future Audio prediction.

▪ Shuffled RGB Detection

▪ Shuffled Flow Detection

▪ Audio/RGB Alignment

▪ Flow/ RGB Alignment

Representation

Carl Doersch and Andrew Zisserman. Multi-task selfsupervised visual learning. In Proceedings of the IEEE International 

Conference on Computer Vision (ICCV), 2017.
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➔ Learning from multi-modal inputs and automatically

discovering the weights of the tasks

21

Multi-Task Self Supervised Learning:

▪ Future RGB prediction. 

▪ Future Audio prediction.

▪ Shuffled RGB Detection

▪ Shuffled Flow Detection

▪ Audio/RGB Alignment

▪ Flow/ RGB Alignment

Representation

Tasks are assumed to have equal weights

Carl Doersch and Andrew Zisserman. Multi-task selfsupervised visual learning. In Proceedings of the IEEE International 

Conference on Computer Vision (ICCV), 2017.
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Video

Input: unlabeled Video
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Video

Optical Flow RGB Audio

Different Head for 

each task



Approach: Representation Learning

27

How to combine the 

information learned in each 

modality?
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How to combine the 

information learned in each 

modality?

➔ “infuse” all the information to the RGB 

Network
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Video

Optical Flow RGB Audio

: Loss of modality “m” and task “t”
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Video

Optical Flow RGB Audio

: Loss of modality “m” and task “t”

Distillation 
Losses

Distillation 
Losses

Infuse to RGB

➔ Robust
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Video

Optical Flow RGB Audio

: Loss of modality “m” and task “t”

Distillation 
Losses

Distillation 
Losses

Loss

: Distillation Loss
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Distillation Loss Transfer 

Knowledge
Infuse

Optical 

Flow RGB Audio

RGB

: Activation of a layer in the main network

: Activation of a layer of another network



Approach: Loss function

35

How to find these weights 

without any labeled data?



Approach: Evolving Loss function

36

Evolutionary Algorithms

Loss 
Population



Approach: Evolving Loss function

37

Evolutionary Algorithms

Loss 
Population

Train the 
networks of 
each Loss



Approach: Evolving Loss function

38

Evolutionary Algorithms

Loss Population
Train the 

networks of 
each Loss

Evaluate each 
loss with the 

Fitness Criterion



Approach: Evolving Loss function

39

Evolutionary Algorithms

Loss Population
Train the networks 

of each Loss

Evaluate each 
network with the 
Fitness Criteria

Mutate the top 
performing losses: 
Evolution Loss ➔
Child population

➔ Tournament Selection

➔ CMA-ES: Cov Matrix 

Adaptation



Approach: Summary ELo

1 – Define population of losses

2 – learn an unsupervised 

representation for each loss

3 – Evaluate how good is the 

learned representation of each 

loss

4 – Improve the loss generation
40
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Evolutionary Algorithms

Loss Population
Train the networks 

of each Loss

Evaluate each 
network with the 
Fitness Criteria

Mutate the top 
performing losses: 
Evolution Loss➔
Child Population

➔ Tournament Selection

➔ CMA-ES: Cov Matrix 

Adaptation

➔Fitness 

Criteria
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Fitness Criterion

➔ Activity recognition

➔ Zipf Distribution

https://en.wikipedia.org/wiki/Zipf%27s_law
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Fitness Criterion

➔ Activity recognition

➔ Zipf Distribution

RGB
Video 

K clusters

Compute KL

Divergence

➔Fully 

Unsupervised
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Likelihood of x in 

each class 
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KL Divergence

Zipf Distribution

K clusters

Compute KL Divergence

Likelihood of x in 

each class 
Equal prior for 

all clusters
Bayes rule
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Fitness Criterion

HMDB Labels

RGB
HMDB Video

K clusters

Accuracy

➔Weakly 

Supervised
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Experiments and Results
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Multi-Task Self Supervised Learning:

▪ Reconstruction tasks for each modality

▪ Future prediction for each modality.

▪ Temporal ordering for each modality.

▪ Cross-modality transfer tasks: Flow to RGB…

▪ Multi-Modal alignment

▪ Multi-Modal contrastive loss
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Datasets

Training Dataset

2 Million Random Unlabeled

Youtube Videos

Evaluation Dataset

HMDB, UCF101, Imagenet

and Kinetics.

➔ Less prune to bias and more general representation
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Implementation Details

(2+1)D ResNet 50 backbone 
network for each modality

For a loss function, train the 
network for 100 epochs on 2 M 
videos

During search, used smaller networks 
(ResNet-18); the fitness of each model 
can be found in 4 hours using 8 GPUs 

The final model uses 64 GPUs for 3 
days
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Table 2: Comparison to SoTA on HMDB51 and UCF101

➔Importance of distillation

AJ Piergiovanni, Anelia Angelova, Michael S. Ryoo: Evolving Losses for Unsupervised Video Representation Learning
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Table 1: Evaluation of various self-supervised methods on 

HMDB51

AJ Piergiovanni, Anelia Angelova, Michael S. Ryoo: Evolving Losses for Unsupervised Video Representation Learning
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Table 1: Evaluation of various self-supervised methods on 

HMDB51

➔Importance of Evolution Loss

AJ Piergiovanni, Anelia Angelova, Michael S. Ryoo: Evolving Losses for Unsupervised Video Representation Learning
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Figure 7: The values of the loss function for the various 

tasks throughout evolution

AJ Piergiovanni, Anelia Angelova, Michael S. Ryoo: Evolving Losses for Unsupervised Video Representation Learning
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Figure 5 and Table 3: How much Labeled, supervised 

data to achieve SoTA

➔Improving Supervised 

Learning

Because you start with a 

good representation

AJ Piergiovanni, Anelia Angelova, Michael S. Ryoo: Evolving Losses for Unsupervised Video Representation Learning
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Figure 9: Comparison of the fitness measures for 100 

different loss functions

➔Strong Correlation
➔Zipf matching is suitable for unsupervised 

representation evaluation

AJ Piergiovanni, Anelia Angelova, Michael S. Ryoo: Evolving Losses for Unsupervised Video Representation Learning
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Figure 6: Different amounts of unsupervised data

AJ Piergiovanni, Anelia Angelova, Michael S. Ryoo: Evolving Losses for Unsupervised Video Representation Learning
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Figure 6: Different amounts of unsupervised data

AJ Piergiovanni, Anelia Angelova, Michael S. Ryoo: Evolving Losses for Unsupervised Video Representation Learning



Conclusion

▪ Formulate an unsupervised video representation as Multi-Modal and 
Multi-task learning problem.

▪ Infuse the information to RGB network 

▪ loss function evolution

▪ unsupervised fitness 

➔ Powerful video representation.

➔ Match or improve the performance of networks trained on supervised 

data

63
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CMA ES

▪ Offspring not generated by the mutation of

each single individual:

• Choose random j:  xi = xj +λi z

▪ But from weighted mean of the current 

population 

• xi = mean+λi z

▪ With z ~ 𝓝(0, C) and C is the covariance 
matrix

67



Zipf distribution

68
https://medium.com/datadriveninvestor/zipfs-law-breakdown-application-in-app-development -5e9cda70cdc8

▪ Generalized Harmoic 
number

Where:

▪ „N“: number of elements

▪ „i“:  is the rank
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Figure 9: Comparison of the fitness measures for 100 

different loss functions
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