Related work

NNCLR 0000000 Experiments & Results 000000000

With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations

Johannes Dienert

January 21, 2022

Related work

NNCLR 0000000 Experiments & Results 000000000

Unsupervised learning?

¹Image source: github.com/tzutalin

elated work

NNCLR 0000000 Experiments & Results 000000000

Unsupervised learning?

- labeling is expensive
- ImageNet
 - 14 million samples
 - 49 thousand human annotators
- unlabelled data
 - nearly unlimited
 - free

Figure: Manual labeling¹

¹Image source: github.com/tzutalin

Related work

NNCLR 0000000 Experiments & Results 000000000

Contrastive Learning

• self-supervised representation learning

Related work

NNCLR 0000000 Experiments & Results 0000000000

Contrastive Learning

- self-supervised representation learning
- label/ground truth: 'similar' vs 'not-similar'

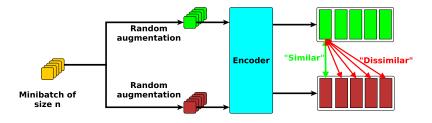


Figure: SimCLR training pipeline

Related work

NNCLR 0000000 Experiments & Results 000000000

Limitations

• generalization depends on augmentation

Related work

NNCLR 0000000 Experiments & Results 000000000

Limitations

- generalization depends on augmentation
- no positive pairs for
 - different viewpoints
 - similar objects

Related work

NNCLR 0000000 Experiments & Results 000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣

5

Better positive pairs

• beyond random augmentation

Related work

NNCLR 0000000 Experiments & Results 000000000

Better positive pairs

• beyond random augmentation

- class labels
- clustering

Related work

NNCLR 0000000 Experiments & Results 000000000

SimCLR

- positive pair: two random augmentations
- negative pairs: other samples from batch

Related work

NNCLR 0000000 Experiments & Results 000000000

- positive pair: two random augmentations
- negative pairs: other samples from batch
- focus on augmentation

Related work

NNCLR 0000000 Experiments & Results 000000000

BYOL

- no negative pairs
- two networks (online & target)

Related work

NNCLR 0000000 Experiments & Results 000000000

BYOL

- no negative pairs
- two networks (online & target)

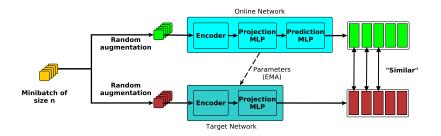


Figure: BYOL training pipeline

Related work

NNCLR 0000000 Experiments & Results 000000000

MoCo v1

• maintain support set (as queue)

Related work

NNCLR 0000000 Experiments & Results 000000000

MoCo v1

• maintain support set (as queue)

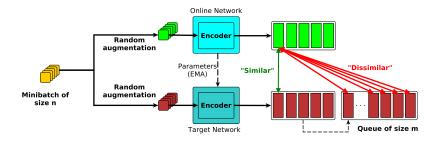
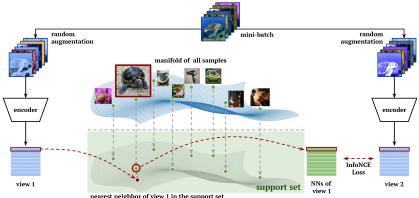


Figure: MoCo training pipeline

Introduction & motivation 0000	ction & motivation Related work		Experiments & Results 0000000000
	Idea		

• nearest-neighbor as positive

Related work


NNCLR •000000 Experiments & Results 000000000

- nearest-neighbor as positive
- compared to MoCo
 - one encoder
 - positive sample from queue

NNCLR 000000 Experiments & Results

NNCLR

nearest neighbor of view 1 in the support set

¹Image credit: Dwibedi et Al.

Related work 200 NNCLR 0000000 Experiments & Results 0000000000

NNCLR Training - Pseudocode

- d = 512 # embedding dim
- n = 1024 # batch size
- $m = 65536 \# queue \ length$
- Q = queue(m, d)

NNCLR 0000000 Experiments & Results 0000000000

NNCLR Training - Pseudocode

- d = 512 # embedding dim
- n = 1024 # batch size
- $m = 65536 \ \# \ queue \ length$
- Q = queue(m, d)

Related work

NNCLR 00000000 Experiments & Results 000000000

NN Selection

$$\mathit{NN}(z,Q) = rgmin_{q \in Q} \min ||z - q||_2$$

- L2 normalization
- Q: support set
- z: embedding

Related work

NNCLR 00000000 Experiments & Results 000000000

NNCLR Loss

$$\mathcal{L}^{\textit{NNCLR}}_i = -log rac{exp(\textit{NN}(z_i, Q) \cdot z_i^+ / au)}{\sum\limits\limits_{k=1}^n exp(\textit{NN}(z_i, Q) \cdot z_k^+ / au)}$$

• L2 normalization before dot product

elated work

NNCLR 00000000 Experiments & Results 000000000

Implementation details
$$(1)$$

• symmetric loss \mathcal{L}_{i}^{NNCLR} :

$$-\log \frac{\exp(\mathsf{NN}(z_i, Q) \cdot z_i^+ / \tau)}{\sum\limits_{k=1}^{n} \exp(\mathsf{NN}(z_i, Q) \cdot z_k^+ / \tau)} - \log \frac{\exp(\mathsf{NN}(z_i, Q) \cdot z_i^+ / \tau)}{\sum\limits_{k=1}^{n} \exp(\mathsf{NN}(z_k, Q) \cdot z_i^+ / \tau)}$$

★ロト ★御 ト ★注 ト ★注 ト 一注

elated work

NNCLR

Experiments & Results 0000000000

Implementation details (2)

- prediction head g (optional)
 - additional MLP g
 - process embeddings $p_i^+ = g(z_i^+)$ and $p_i = g(z_i)$

elated work

NNCLR

Experiments & Results 0000000000

Implementation details (2)

- prediction head g (optional)
 - additional MLP g
 - process embeddings $p_i^+ = g(z_i^+)$ and $p_i = g(z_i)$

$$-\log \frac{\exp(\mathsf{NN}(\mathsf{p}_i, Q) \cdot \mathsf{p}_i^+ / \tau)}{\sum\limits_{k=1}^n \exp(\mathsf{NN}(\mathsf{p}_i, Q) \cdot \mathsf{p}_k^+ / \tau)} - \log \frac{\exp(\mathsf{NN}(\mathsf{p}_i, Q) \cdot \mathsf{p}_i^+ / \tau)}{\sum\limits_{k=1}^n \exp(\mathsf{NN}(\mathsf{p}_k, Q) \cdot \mathsf{p}_i^+ / \tau)}$$

Related work 000 NNCLR 0000000 Experiments & Results

Experimental setup

Related work 000 NNCLR 0000000 Experiments & Results

Experimental setup

- ResNet-50 encoder
- projection head
- embeddings d = 256
- batch size bs = 4096
- queue size 98304

Related work 000 NNCLR 0000000 Experiments & Results

Experimental setup

- ResNet-50 encoder
- projection head
- embeddings d = 256
- batch size bs = 4096
- queue size 98304

- cosine annealing schedule
- learning rate lr = 0.3
- weight-decay

Related work

NNCLR 0000000 Experiments & Results

ImageNet linear evaluation procedure

• self-supervised representation learning

Related work

NNCLR 0000000 Experiments & Results

ImageNet linear evaluation procedure

- self-supervised representation learning
- freeze weights
- linear classifier (supervised)

Related work

NNCLR 0000000 Experiments & Results

ImageNet evaluations (1)

Method	Top-1	Top-5
PIRL	63.6	-
CPC v2	63.8	85.3
MoCo v2	71.1	-
SimCLR v2	71.7	-
SwAV	71.8	N/A
InfoMin Aug.	73.0	91.1
BYOL	74.3	91.6
NNCLR	75.4	92.3
SwAV (multi crop)	75.3	N/A
NNCLR (multi crop)	75.6	92.4

Table: Comparison with other self-supervised learning methods on ResNet-50 encoder. Methods on the top section use two views only.

elated work

NNCLR 0000000 Experiments & Results

ImageNet evaluations (2)

	ImageNet 1%		ImageN	let 10%
Method	Top-1	Top-5	Top-1	Top-5
Supervised	25.4	48.4	56.4	80.4
PIRL	-	57.2	-	83.8
SimCLR	48.3	75.5	65.6	87.8
BYOL	53.2	78.4	68.8	89.0
NNCLR	56.4	80.7	69.8	89.3
SwAV (multi crop)	53.9	78.5	70.2	89.9

Table: **Semi-Supervised** learning results on ImageNet. Performances are reported on fine-tuning a pre-trained ResNet-50 with ImageNet 1% and 10% datasets.

elated work

NNCLR 0000000 Experiments & Results

Transfer learning evaluations

Method	Food101	CIFAR10	SUN397	Cars	DTD
BYOL	75.3	91.3	62.2	67.8	75.5
SimCLR	72.8	90.5	60.6	49.3	75.7
SupIN	72.3	93.6	61.9	66.7	74.9
NNCLR	76.7	93.7	62.5	67.1	75.5

Table: Selection of the **transfer learning** evaluation results. All results reported as Top-1 classification accuracy.

elated work

0000000

Experiments & Results

Transfer learning evaluations

Method	Food101	CIFAR10	SUN397	Cars	DTD
BYOL	75.3	91.3	62.2	67.8	75.5
SimCLR	72.8	90.5	60.6	49.3	75.7
SupIN	72.3	93.6	61.9	66.7	74.9
NNCLR	76.7	93.7	62.5	67.1	75.5

Table: Selection of the **transfer learning** evaluation results. All results reported as Top-1 classification accuracy.

- best performance in 8 / 12
- better than features from supervised learning in 11 / 12

lelated work

NNCLR 0000000 Experiments & Results

Dependence on Augmentation

Method	SimCLR	BYOL	NNCLR
0			72.9
Only crop	40.3 (-27.6)	59.4 (-13.1)	68.2 (-4.7)

Table: Effect of limited data augmentation methods

★ロト ★御 ト ★注 ト ★注 ト 一注

Related work

NNCLR 0000000 Experiments & Results

Only my best friend?

・ロト・4回ト・モート・ヨー りへの

Related work 200 NNCLR 0000000 Experiments & Results

Only my best friend?

<i>k</i> in Top-k NN				•		~-
Top-1 perf.	74.9 92.1	74.1	73.8	73.8	73.8	73.2
Top-5 perf.	92.1	91.6	91.5	91.4	91.3	91.2

Table: Effect of randomly taking one of the k best neighbors.

Related work 000 NNCLR 0000000 Experiments & Results

Soft vs. Hard NN

- convex combination of embeddings
- weighted by similarity to z_i

NN Type	Top-1 perf.	Top-5 perf.
Soft NN	71.4	90.4
Hard NN	74.9	92.1

Table: Soft vs. Hard nearest neighbor selection

Related work

NNCLR 0000000 Experiments & Results

Conclusions

- nearest-neighbours to increase diversity
- state-of-the-art performance
- reduce reliance on data augmentation

Related work

NNCLR 0000000 Experiments & Results

• Thank you for your audience!

Related work 000 NNCLR 0000000 Experiments & Results

Pure effect of NN

Mom. Enc.	Positive sample	Top-1 perf.	Top-5 perf.
No	View 1	71.4	90.4
No	NN of View 1	74.5	91.9
Yes	View 1	72.5	91.3
Yes	NN of View 1	74.9	92.1

Table: Effect of using the nearest-neighbors as positives

Related work 000 NNCLR 0000000 Experiments & Results

Support set size

Queue size					
Top-1 perf.					
Top-5 perf.	91.2	91.7	92.1	92.2	92.3

Table: Effect of different sized support set (queue length)

Related work 000 NNCLR 0000000 Experiments & Results

Class of my NN

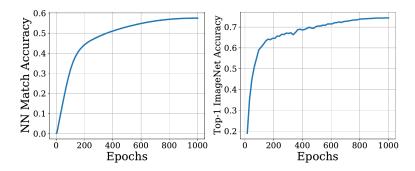


Figure: Accuracy of the NN belonging to the same class vs. Top-1 Accuracy

<ロト < 部 ト < 言 ト く 言 ト と き の Q () 28

Related work 000 NNCLR 0000000 Experiments & Results

MoCo vs MoCo v2

- projection head: replaced 1 layer MLP by 2 layers with ReLu
- data augmentation: added blurring
- learning schedule: cosine

Related work

NNCLR 0000000 Experiments & Results

Embedding size

d	128	256	512	1024	2048
Top-1 perf.					
Top-5 perf.	92.1	92.1	92.0	92.0	92.0

Table: Effect of embedding dimensionality d

Related work 000 NNCLR 0000000 Experiments & Results 0000000000

Prediction Head

Prediction MLP	Top-1	Top-5
No	74.5	92.0
Yes	74.9	92.1

Table: Prediction head provides a small boost