

RANSAC-Flow: generic two-stage image alignment

Shen H., Darmon F., Efros A. and Aubry M.

Presented by: Advisor: Examiner: Joshua Heipel Philipp Schroeppel Prof. Dr. Thomas Brox

17.12.2020

ALBERT-LUDWIGS-UNIVERSITY FREIBURG

Outline

- Introduction
- Approach
 - Coarse Alignment (RANSAC)
 - Fine Alignment (Optical Flow Estimation)
 - Training Procedure
 - Inference
- Experiments
- Conclusion

Introduction

Motivation

source

target

Motivation

source

target

Motivation

- Dense Image Alignment
- Optical Flow Estimation
- Visual Localization
- 3D Reconstruction
- Artwork Alignment
- Texture Transfer

Parametric Methods

- Compute a global transformation $H(p_i) = q_i$ (affine, homographic, etc.)
- Based on sparse local image features (e.g. SIFT)
- Can deal with large displacements

Non-Parametric Methods

- Compute an individual displacement vector \vec{w}_i for each pixel p_i
- Based on pixel similarities (e.g. brightness constancy)
- Are flexible towards the underlying transformation

⇒ Hybrid two-stage image alignment

source

target

source

target

source

target

coarse alignment

Introduction

source

target

coarse alignment

fine alignment

17.12.2020

source

target

coarse alignment

fine alignment

17.12.2020

Approach

1. Coarse Alignment (RANSAC)

Deep Feature Extraction

- Fully convolutional architecture
- Based on ResNet-50 (bottleneck with residual connections)
- Pretrained model (ImageNet or MoCo Features)

Residual Block

relu

- Source and target images $(I_s \text{ and } I_t)$ are processed independently
- Calculate dot product similarities between extracted feature maps $(\vec{f_s} \text{ and } \vec{f_t})$
- A pair of positions (*p*, *q*) is a mutual match if:

$$\vec{f}_{s}(p)^{\mathrm{T}}\vec{f}_{t}(q) = \max_{q' \in \Omega_{t}} \left\{ \vec{f}_{s}(p)^{\mathrm{T}}\vec{f}_{t}(q') \right\}$$
$$\vec{f}_{s}(p)^{\mathrm{T}}\vec{f}_{t}(q) = \max_{p' \in \Omega_{s}} \left\{ \vec{f}_{s}(p')^{\mathrm{T}}\vec{f}_{t}(q) \right\}$$

Homography Estimation

• **Goal**: Calculate a homographic transformation *H* such that

$$H(p_i) = q_i \qquad 1 \le i \le n$$

Homography Estimation

target

• **Goal**: Calculate a homographic transformation *H* such that

$$H(p_i) = q_i \qquad 1 \le i \le n$$

Homography Estimation

• **Goal**: Calculate a homographic transformation *H* such that

$$H(p_i) = q_i \qquad 1 \le i \le n$$

 Problem: set of correspondences M = {(p_i, q_i) | 1 ≤ i ≤ n} contains false matches

\Rightarrow RANSAC algorithm

Algorithm:

- 1. Draw 4 random samples (p_j, q_j) from the set of matches $M = \{(p_i, q_i) \mid 1 \le i \le n\}$
- 2. Estimate parameters θ of homography matrix H_{θ} such that $H_{\theta}(p_j) = q_j$ for all $1 \le j \le 4$
- 3. Compute the number of inliers (consensus set) $|C| \coloneqq |\{ (p_i, q_i) \in M \mid ||H_\theta(p_i) - q_i||_2 < \epsilon \}|$
- ▶ Repeat steps 1. 3. for *k* iterations and return H_{θ} with maximum |C|

Approach

Fine Alignment (Optical Flow Estimation)

Encoder-Decoder Architecture

- Siamese Encoder based on ResNet-18
- Correlation Layer computing cosine similarities between encoded feature maps
- Two separate Decoder Streams for:
 - Optical Flow: $\vec{w}_{s \to t}$, $\vec{w}_{t \to s}$
 - Matchability (Confidence): $m_{s \to t}, m_{t \to s} \in [0, 1]$

Approach

3. Training Procedure

- Extract deep features and precompute homographic transformations (coarse alignment)
- Learn optical flow from unlabeled training data using a combined loss function (fine alignment):

• (Optional) fine-tuning on the test dataset

Combined Loss Function

$$\mathcal{L} = \mathcal{L}_{rec} + \lambda \mathcal{L}_m + \mu \mathcal{L}_c$$

$$\vec{w}_{s \to t}(p) = q$$

 $\vec{w}_{t \to s}(q) = p'$

• Cycle Consistency Loss:

$$\mathcal{L}_c = \sum_{q \in \Omega_t} m(q) \cdot \| p - p' \|_2$$

Reconstruction Loss:
$$\mathcal{L}_{rec} = \sum_{q \in \Omega_t} m(q) \cdot (1 - SSIM(p,q))$$

 $q \bullet$ $\vec{w}_{s \to t}$

 Ω_{S}

 Ω_t

with $SSIM(p,q) \in [-1,1]$

• Matchability Loss:

$$\mathcal{L}_m = \sum_{q \in \Omega_t} |m(q) - 1| \qquad \text{with } m(q) = m_{t \to s}(q) \cdot m_{s \to t} (p)$$
$$m(q) \in [-1, 1]$$

Approach

4. Inference

- 1. Fit homography and estimate optical flow
- 2. Repeat procedure for pixels q_i with low confidence $m(q_i)$
- 3. Aggregate final flow predictions

Experiments

1. Quantitative & Qualitative Results

Optical Flow Estimation

KITTI 2015

source & target

HPatches

source

target

ground truth

coarse alignment

fine alignment

prediction

coarse flow

fine flow

Optical Flow Estimation

Method	KITTI 2015 (AAE↓)		HPatches Viewpoint (AAE↓)				
	noc	all	1	2	3	4	5
FlowNet2	4.93	10.06	5.99	15.55	17.09	22.13	30.68
PWC-Net	-	10.35	4.43	11.44	15.47	20.17	28.30
ImageNet + H	13.49	17.26	1.33	3.34	3.71	6.04	10.07
MoCo + H	13.86	17.60	1.47	2.96	3.43	7.73	10.53
DSTFlow	6.96	16.79	-	-	-	-	-
EpicFlow	4.45	9.57	-	-	-	-	-
RANSAC-Flow (MoCo)	4.15	12.63	0.52	2.13	4.83	5.13	6.36
RANSAC-Flow (ImageNet)	3.87	12.48	0.51	2.36	2.91	4.41	5.12

Sparse Correspondences

RobotCar

MegaDepth

source

target

coarse alignment

fine alignment

coarse alignment

fine alignment

Sparse Correspondences

Method	RobotCar Acc(≤ d pixels ↑)			MegaDep Acc($\leq d$)		
	1	3	5	1	2	3
ImageNet + H	1.03	8.12	19.21	3.49	23.48	43.94
MoCo + H	1.08	8.77	20.05	3.70	25.12	45.45
SIFT-Flow	1.12	8.13	16.45	8.70	12.19	13.30
DGC-Net	1.19	9.35	20.17	3.55	20.33	34.28
Glu-Net	2.16	16.77	33.38	25.20	51.00	56.80
RANSAC-Flow (MoCo)	2.10	16.07	31.66	53.47	83.45	86.81
RANSAC-Flow (ImageNet)	2.10	16.09	31.80	53.15	83.34	86.74

Ablation Studies

	KITTI 2015 (AAE↓)		HPatch Viewpo	es int (AAI			
	noc	all	1	2	3	4	5
RANSAC-Flow (MoCo)	4.15	12.63	0.52	2.13	4.83	5.13	6.36
w/o fine-tuning	4.67	13.51	0.53	2.04	2.32	6.54	6.79
w/o Multi-H	7.04	14.02	-	-	-	-	-

	RobotCar Acc(≤ d pixels ↑)			MegaDep Acc($\leq d$		
	1	3	5	1	2	3
RANSAC-Flow (MoCo)	2.10	16.07	31.66	53.47	83.45	86.81
w/o fine-tuning	2.09	15.94	31.61	52.60	83.46	86.80
w/o Multi-H	2.06	15.77	31.05	50.65	78.34	81.59

Experiments

2. Downstream Applications

3D Reconstruction

source

target

3D reconstruction

Artwork Alignment

target 1

source

target 2

Texture Transfer

source

target

texture transfer

Experiments

3. Demo

source

target

source

fine alignment

17.12.2020

Experiments

source

target

source

coarse alignment

fine alignment

source

target

source

target

coarse alignment

fine alignment

Experiments

Conclusion

- Combines the benefits of parametric and non-parametric methods
- Robust and precise correspondence estimation
- Unsupervised training procedure
- Various applications (3D reconstruction, artwork alignment, texture transfer, etc.)

References

- [1] Fischler, M. A. & Bolles, R. C. "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography" *Communications of the ACM* 24, 381–395 (1981).
- [2] He, K., Fan, H., Wu, Y., Xie, S. & Girshick, R. "Momentum Contrast for Unsupervised Visual Representation Learning" in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 9726–9735 (2020).
- [3] He, K., Zhang, X., Ren, S. & Sun, J. "Deep Residual Learning for Image Recognition" in *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)* 770–778 (2016).
- [4] Raguram, R., Chum, O., Pollefeys, M., Matas, J. & Frahm, J.-M. "USAC: A Universal Framework for Random Sample Consensus" *IEEE Transaction on Pattern Analysis and Machine Intelligence* 35, 2022–2038 (2013).
- [5] Shen, X., Darmon, F., Efros, A. A. & Aubry, M. "RANSAC-Flow: Generic Two-Stage Image Alignment" in *Computer Vision – ECCV 2020* (eds. Vedaldi, A., Bischof, H., Brox, T. & Frahm, J.-M.) 618–637 (2020).
- [6] Shen, X., Efros, A. A. & Aubry, M. "Discovering Visual Patterns in Art Collections With Spatially-Consistent Feature Learning" in *2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)* 9270–9279 (2019).
- [7] Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. "Image Quality Assessment: From Error Visibility to Structural Similarity" *IEEE Transactions on Image Process.* 13, 600–612 (2004).