

VideoBERT

A Joint Model for Video and Language Representation Learning

Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid

Seminar on Current Works in Computer Vision

Presenter: Anna Khatyreva Advisor: Mohammadreza Zolfaghari

Anna Khatyreva

- Introduction
- Historical overview
- BERT model
- VideoBERT model
- Summary

Introduction

Cut the *lettuce* into pieces

Understand the contents and dynamics of video

Goal

Discover high-level semantic features that correspond to actions and events that unfold over longer time scales

Approach

Learn a bidirectional joint distributions over sequences of visual and linguistic tokens

Introduction: Tasks

Introduction: Tasks

Historical Overview

Source: Devlin et al. [2019]

Goal:

Design a model to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers

Approach: Multi-layer bidirectional Transformer encoder

Architectures

- BERT_{BASE}: Number of Transformers layers = 12 Number of self-attention heads = 12
- BERT_{LARGE}: Number of Transformers layers = 24Number of self-attention heads = 16

Datasets

- Wikipedia (2.5B words)
- BookCorpus (800M words)

Steps

- 1. Train a language model on a large unlabeled text corpus
- 2. Fine-tune this large model to specific NLP tasks

BERT: Input Representation

Input	[CLS]	my	dog	is	cute	[SEP]	he	likes	play	##ing	[SEP]
Token Embeddings	E _[CLS]	E _{my}	E _{dog}	E _{is}	E _{cute}	E _[SEP]	E _{he}	E _{likes}	E _{play}	E _{##ing}	E _[SEP]
	+	+	+	+	+	+	+	+	+	+	+
Segment Embeddings	E _A	E _A	E _A	E _A	E _A	E _A	E _B	E _B	E _B	E _B	E _B
	+	+	+	+	+	+	+	+	+	+	+
Position Embeddings	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀

Source: Devlin et al. [2019]

Problem

Bidirectional conditioning would allow each word to trivially predict the target word in a multi-layer context

Solution

Mask out 15% of all WordPiece tokens in each sentence at random

Input:

the man went to [MASK] store

[MASK] – token that replaces "masked" words

[CLS] – special classification token

[SEP] – special token to separate to different sentences

[MASK] – token that replaces "masked" words

 $Label = \{IsNext, NotNext\} - shows if the two sentences are consistent$

Input:

[CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP] Label = IsNext

Input:

[CLS] the man [MASK] to the store [SEP]penguin [MASK] are flight ##less birds [SEP] Label = NotNext

BERT: Fine-tuning

Source: Devlin et al. [2019]

BERT: Fine-tuning

Source: Devlin et al. [2019]

VideoBERT

Goal:

Find a way to model the relationships between the visual model and the linguistic domain

Approach:

- 1. Use an automatic speech recognition (ASR) system to convert speech into text
- 2. Apply vector quantization (VQ) to low-level spatio-temporal visual features derived from pretrained video classification models
- 3. Use BERT model for learning joint distributions over sequences of discrete tokens

Training

- \Rightarrow Focus on cooking videos
- \Rightarrow Use videos from YouTube
- $\Rightarrow \qquad \text{Use YouTube's ASR toolkit provided by the YouTube Data API} \\ \text{to obtain text from videos}$

Result: 120K videos

Evaluation

 \Rightarrow Use YouCook II dataset

Result: 2K videos

Input:

[CLS]orange chicken with [MASK] sauce [>] v01 [MASK] v08 v72 [SEP]

[CLS] – special classification token
[SEP] – special token to separate to different sentences
[MASK] – token that replaces "masked" words
[>] – special token to combine text and video sentences
v01, v08, v72 – visual tokens

Illustration of VideoBERT in the context of a cloze task

[CLS] - the first token of a sequence[SEP] - special token to separate to different sentences[MASK] - token that replaces "masked" words $c = \{0, 1\} - shows if the two sentences are consistent$ v01, v08, v72 - visual tokens[>] - special token to combine text and video sentences

Input: [CLS] let's make a traditional [MASK] cuisine [SEP] orange chicken with [MASK] sauce[SEP]

Class label: c = 1

Problem

[CLS] token is a noisy indicator, since the speaker may be referring to something that is not visually present

Solution

- Concatenate neighboring sentences into a single long sentence
- Randomly pick a subsampling rate of 1 to 5 steps for the video tokens

Visual words

- Sample frames at 20 fps and create clips from 30-frame non-overlapping
- 2. For each 30-frame clip, apply S3D network to obtain feature vector
- **3.** Tokenize the features using hierarchical *k*-means

The number of hierarchy levels d = 4The number of clusters per level k = 12 $12^4 = 20736$ clusters in total

VideoBERT: Centroids

"but in the meantime, you're just kind of moving around your cake board and you can keep reusing make sure you're working on a clean service so you can just get these all out of your way but it's just a really fun thing to do especially for a birthday party"

"apply a little bit of butter on one side and place a portion of the stuffing and spread evenly cover with another slice of the bread and apply some more butter on top since we're gonna grill the sandwiches"

Linguistic sentences

- 1. Utilize YouTube's ASR toolkit provided by the YouTube Data API to retrieve
- timestamped speech information
- **2.** Tokenize the text obtained from the video into WordPieces

Visual sentences

- **1.** According to the ASR sentence
- 2. If ASR sentence is not available, use 16 tokens as a segment

VideoBERT: Zero-shot action classification

Action classification

Top verbs:make, assemble, prepare**Top nouns:**pizza, sauce, pasta

Top verbs:make, do, pour**Top nouns:**cocktail, drink, glass

Top verbs:make, prepare, bakeTop nouns:cake, crust, dough

Action classification performance on YouCook II dataset

Method	Supervision	verb top-1 (%)	verb top-5 (%)	object top-1 (%)	object top-5 (%)
S3D [34]	yes	16.1	46.9	13.2	30.9
BERT (language prior) VideoBERT (language prior)	no no	0.0 0.4	0.0 6.9	0.0 7.7	0.0 15.3
VideoBERT (cross modal)	no	3.2	43.3	13.1	33.7

Idea

Use VideoBERT as a feature extractor

Approach

- Append the video tokens to a template sentence
- Extract the feature for the video tokens and the masked out text tokens

"now let's [MASK] the [MASK] to the [MASK], and then [MASK] the [MASK]"

Video captioning performance on YouCook II

Method	BLEU-3	BLEU-4	METEOR	ROUGE-L	CIDEr
Zhou <i>et al</i> . [39]	7.53	3.84	11.55	27.44	0.38
S3D [34]	6.12	3.24	9.52	26.09	0.31
VideoBERT (video only)	6.33	3.81	10.81	27.14	0.47
VideoBERT	6.80	4.04	11.01	27.50	0.49
VideoBERT + S3D	7.59	4.33	11.94	28.80	0.55

VideoBERT: Transfer Learning

GT: add some chopped basil leaves into it VideoBERT: chop the basil and add to the bowl S3D: cut the tomatoes into thin slices

GT: cut yu choy into diagonally medium pieces VideoBERT: chop the cabbage S3D: cut the roll into thin slices

Source: Sun et al. [2019]

GT: cut the top off of a French loaf VideoBERT: cut the bread into thin slices S3D: place the bread on the pan

GT: remove the calamari and set it on paper towelVideoBERT: fry the squid in the panS3D: add the noodles to the pot

Anna Khatyreva

Retrieved centroid

Retrieved centroid

Cut the *carrot* into pieces

Cut the *steak* into pieces

Source: Sun et al. [2019]

Anna Khatyreva

Put the *cookies* into oven

Retrieved centroid

Retrieved centroid

Put the *pizza* into oven

Video-to-text generation

Original

ASR:

"This is what happens when you play with dough thinking of yourselves as a kitten who happens to look like Ed Sheeran"

Top verbs: make, shape, roll **Top nouns:** dough, filling, chicken

ASR:

"I highly recommend that you use a whole sheet just because when you make the smaller sushi rolls, they the fixings tend to fall out"

Top verbs: roll, make, cut **Top nouns:** fish, salmon, dough

Centroids

Original

Source: Sun *et al.* [2019]

Anna Khatyreva

Video-to-video generation

The impact of the training dataset size on the action classification performance on YouCook II dataset

Method	Data size	verb top-1 (%)	verb top-5 (%)	object top-1 (%)	object top-5 (%)
VideoBERT	10K	0.4	15.5	2.9	17.8
VideoBERT	50K	1.1	15.7	8.7	27.3
VideoBERT	100K	2.9	24.5	11.2	30.6
VideoBERT	300K	3.2	43.3	13.1	33.7

- VideoBERT can be used in numerous tasks, including action classification and video captioning
- This paper adapts the BERT model to learn a joint visual-linguistic representation for video
- The model is able to learn high level semantic representations and outperforms the state-of-the-art for video captioning on the YouCook II dataset
- The model can be used directly for open-vocabulary classification
- The performance of the model grows monotonically with the size of training set