Automated Data Augmentation with AutoAugment and RandAugment

Diane Wagner

Based on: Cubuk et al. [2019]

Seminar on Current Works in Computer Vision Advisor: Sudhanshu Mittal 22/01/2020

- Deep learning: It's all about data!
- Data augmentation may improve:
 - > Accuracy
 - > Model robustness
 - > Generalization

Automated data augmentation

- An optimal augmentation strategy depends on the dataset
- Manual selection:
 - > Time-consuming
 - > Tedious
 - > Sub-optimal
 - > Requires expert knowledge

Automated data augmentation

- An optimal augmentation strategy depends on the dataset
- Manual selection:
 - > Time-consuming
 - > Tedious
 - > Sub-optimal
 - > Requires expert knowledge

Transformation: 180° rotation

 \Rightarrow High interest in automating this task

• AutoAugment

• RandAugment

• Discussion

Lerr In Cincle of the Cincle o	AutoA data Agammiai Barret 24% "Dade Creg The Construction of the second	<section-header><text><text><text></text></text></text></section-header>	arXiv:1909.13719v2 [cs.CV] 14 Nov 2019	<section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>	ctical au reduces reduces rest 2000 gle Research rest 2000 reduces rest 2000 reduces rest 2000 rest	tormated data bearch space 'A each space the space of the space 'A each space of the space 'A each space of the space of	a suggreed a , Quere V. () () () () () () () () () () () () () () () () () () (Transitions Le 0.000 $\frac{1000}{1000}$ $\frac{1000}{1000$	The second secon

AutoAugment

Goal

Find a good augmentation strategy for a target task

Approach

- 1. Find an optimized augmentation strategy on a proxy task
- 2. Apply the strategy on the target task

Find optimal augmentation strategies

Find optimal augmentation strategies

Find optimal augmentation strategies

Policy				
Sub-policy 1	Sub-policy 2	Sub-policy 3	Sub-policy 4	Sub-policy 5

 \Rightarrow Uniformly sample one sub-policy at random for each image

 \Rightarrow Uniformly sample one sub-policy at random for each image

 \Rightarrow Concatenate the best five policies and train on the full model

Policy P	Sub-Policy	Operation 1	Operation 2
P_1	Sub-policy 1	(Invert, 0.1, 7)	(Contrast, 0.2, 6)
	Sub-policy 2	(Rotate, 0.7, 2)	(TranslateX, 0.3, 9)
	Sub-policy 3	(Sharpness, 0.8, 1)	(Sharpness, 0.9, 3)
	Sub-policy 4	(ShearY, 0.5, 8)	(TranslateY, 0.7, 9)
	Sub-policy 5	(AutoContrast, 0.5, 8)	(Equalize, 0.9, 2)

Geometric transformations

Original

Rotate

ShearX

TranslateX

Geometric transformations

Original

Rotate

ShearX

TranslateX

The direction of a geometric transformation is determined randomly

Color transformations

Original

Equalize

Solarize

Posterize

AutoContrast

Sharpness

Brightness

Invert

Other transformations

Original

Cutout

Random cropped and random flipped patches

Sample Pairing

Dataset	Dataset Architecture		Baseline	AutoAugment		
		Acc.	Search Sp.	Acc.	Search Sp.	
Red. CIFAR-10	WR-28-10	83.5	0	87.7	10^{32}	
CIFAR-10 CIFAR-100	WR-28-10 WR-28-10	$\begin{array}{c} 96.1 \\ 81.2 \end{array}$	0 0	97.4 82.9	$10^{32} \\ 10^{32}$	

Dataset	Dataset Architecture		Baseline	AutoAugment		
		Acc.	Search Sp.	Acc.	Search Sp.	
Red. CIFAR-10	WR-28-10	83.5	0	87.7	10^{32}	
CIFAR-10	WR-28-10	96.1	0	97.4	10^{32}	
CIFAR-100	WR-28-10	81.2	0	82.9	10^{32}	

Reported by: Cubuk et al. [2019]

 \Rightarrow New state-of-the-art accuracies, but high GPU costs

- They improved the baselines on five challenging datasets by using the learned policy from ImageNet
- However using the policy found by AutoAugment-direct for a target dataset still yield the best performance

Relation between #training steps and #sub-policies

A sub-policy needs to be applied for a certain number of training steps before the model benefits from it.

Relation between #training steps and #sub-policies

A sub-policy needs to be applied for a certain number of training steps before the model benefits from it.

Changing #sub-policies

Increasing the number of sub-policies (up to ${\sim}20)$ improves validation accuracy.

Cubuk et al. [2019]

Randomizing the probabilities and magnitudes

- Improves the baseline from 96.1% to 97.0%
- 0.4% worse than AutoAugment (97.4%)

Randomizing the probabilities and magnitudes

- Improves the baseline from 96.1% to 97.0%
- 0.4% worse than AutoAugment (97.4%)

Performance of random policies

- Better than the baseline 96.1% to 96.9%
- 0.1% worse than randomizing the probabilities and magnitudes

A separate search phase on a proxy task:

- Increases training complexity and computational costs
- Only slightly better than random policies

A separate search phase on a proxy task:

- Increases training complexity and computational costs
- Only slightly better than random policies

Solution RandAugment

- No proxy task, directly optimize on the target task
- Optimal augmentation strategy depends on the model size and training set size
- Strong reduction of the search space for augmentation strategies

- Sample *N* transformations uniformly at random (sequentially)
- Use a fixed magnitude M for each augmentation operation

- Sample *N* transformations uniformly at random (sequentially)
- Use a fixed magnitude M for each augmentation operation

 \Rightarrow Optimize the hyperparameters N and M using grid search

Transformations in order to maintain image diversity:

- ShearX/Y
- Equalize
- Brightness
- Color
- Invert

- TranslateX/Y
- Solarize
- Contrast
- Sharpness
- Cutout

- Rotate
- Posterize
- AutoContrast
- Identity
- Sample Pairing

Four strategies for magnitude *M*

- Random magnitude
- Constant magnitude
- Linearly increasing magnitude
- Random magnitude with increasing upper bound

Four strategies for magnitude M

- Random magnitude
- Constant magnitude
- Linearly increasing magnitude
- Random magnitude with increasing upper bound

 \Rightarrow Selected constant magnitude through preliminary experiments

Magnitude dependence and results

Training set size

Magnitude dependence and results

Training set size

 \Rightarrow Larger training set size \rightarrow larger magnitude

Training set size

Dataset	Architecture	Baseline		AutoAugment		RandAugment	
		Acc.	Search Sp.	Acc.	Search Sp.	Acc.	Search Sp.
Reduced CIFAR-10	WR-28-10	83.5	0	87.7	10 ³²	86.8	10 ²
CIFAR-10	WR-28-10	96.1	0	97.4	10^{32}	97.3	10^{2}
SVHN (core set)	WR-28-10	96.9	0	98.1	10^{32}	98.3	10^{2}
SVHN	WR-28-10	98.5	0	98.9	10^{32}	99.0	10^{2}

Training set size

Dataset	Architecture	Baseline		AutoAugment		RandAugment	
		Acc.	Search Sp.	Acc.	Search Sp.	Acc.	Search Sp.
Reduced CIFAR-10	WR-28-10	83.5	0	87.7	10^{32}	86.8	10 ²
CIFAR-10	WR-28-10	96.1	0	97.4	10^{32}	97.3	10^{2}
SVHN (core set)	WR-28-10	96.9	0	98.1	10^{32}	98.3	10^{2}
SVHN	WR-28-10	98.5	0	98.9	10^{32}	99.0	10^{2}

Magnitude dependence and results

Network size

Magnitude dependence and results

Network size

 \Rightarrow Larger network size \rightarrow larger magnitude

Network size

Dataset	Architecture	Baseline		Aut	AutoAugment		dAugment
		Acc.	Search Sp.	Acc.	Search Sp.	Acc.	Search Sp.
CIFAR-10	WR-28-2	94.9	0	95.9	10 ³²	95.8	10 ²
CIFAR-10	WR-28-10	96.1	0	97.4	10^{32}	97.3	10^{2}
CIFAR-100	WR-28-2	75.4	0	78.5	10^{32}	78.3	10^{2}
CIFAR-100	WR-28-10	81.2	0	82.9	10^{32}	83.3	10^{2}

Network size

Dataset	Architecture	Baseline		Aut	AutoAugment		dAugment
		Acc.	Search Sp.	Acc.	Search Sp.	Acc.	Search Sp.
CIFAR-10	WR-28-2	94.9	0	95.9	10 ³²	95.8	10 ²
CIFAR-10	WR-28-10	96.1	0	97.4	10^{32}	97.3	10^{2}
CIFAR-100	WR-28-2	75.4	0	7 8.5	10^{32}	78.3	10^{2}
CIFAR-100	WR-28-10	81.2	0	82.9	10^{32}	83.3	10^{2}

Set of transformations	Accuracy
All transformations One transformation removed Only geometric transformations	$\begin{array}{c} 85.6 \pm 0.3 \\ 85.5 \pm 0.3 \\ 82.6 \pm 0.3 \end{array}$

Learning probabilities to select transformations

Dataset	RandAugment Acc.	Learned probabilities Acc.
Reduced CIFAR-10	86.8	87.4
CIFAR-10	97.3	97.4

Learning probabilities to select transformations

Dataset	RandAugment Acc.	Learned probabilities Acc.
Reduced CIFAR-10	86.8	87.4
CIFAR-10	97.3	97.4

Reported by: Cubuk et al. [2019]

 \Rightarrow Improvement by learning the probabilities

Discussion

Pros

- AA: Transferability of learned autgmentation policies
- RA: No costs for a proxy task
- Both: Achieved new state-of-the-art accuracies

Pros

- AA: Transferability of learned autgmentation policies
- RA: No costs for a proxy task
- Both: Achieved new state-of-the-art accuracies

Cons

- AA: Experiments over #sub-policies used a fixed number of epochs
- Errors and contradictions in the papers
- Missing studies

- Apply RandAugment on other tasks like semantic segmentation, speech recognition, etc.
- More study if and when a separate search phase is required
- Study dependence on image transformations for different datasets

- Study the magnitude dependence for different N > 1 and different datasets
- Transformation importance study
 - $\, \hookrightarrow \, \, \text{Weight transformations accordingly} \,$

- Study the magnitude dependence for different N > 1 and different datasets
- Transformation importance study
 → Weight transformations accordingly
- Optimize transformation groups separately
- Joint optimization of augmentation strategy and other hyperparameters

AutoAugment and RandAugment

- Use mixup instead of sample pairing
- Study the number of operation according to the datasets

Presented Works

- Both effectively made use of automated data augmentations
- RandAugment: Successfully solved the problem of AutoAugment

Future Work

Room for further experiments and improvements

Presented Works

- Both effectively made use of automated data augmentations
- RandAugment: Successfully solved the problem of AutoAugment

Future Work Room for further experiments and improvements

Thank you!

Appendix

Dataset	Model	Baseline	Cutout [12]	AutoAugment
CIFAR-10	Wide-ResNet-28-10 [67]	3.9	3.1	2.6 ± 0.1
	Shake-Shake (26 2x32d) [17]	3.6	3.0	2.5 ± 0.1
	Shake-Shake (26 2x96d) [17]	2.9	2.6	$2.0 {\pm} 0.1$
	Shake-Shake (26 2x112d) [17]	2.8	2.6	$1.9 {\pm} 0.1$
	AmoebaNet-B (6,128) [48]	3.0	2.1	$1.8 {\pm} 0.1$
	PyramidNet+ShakeDrop [65]	2.7	2.3	$\bf 1.5\pm0.1$
Reduced CIFAR-10	Wide-ResNet-28-10 [67]	18.8	16.5	14.1 ± 0.3
	Shake-Shake (26 2x96d) [17]	17.1	13.4	10.0 ± 0.2
CIFAR-100	Wide-ResNet-28-10 [67]	18.8	18.4	17.1 ± 0.3
	Shake-Shake (26 2x96d) [17]	17.1	16.0	$14.3 {\pm} 0.2$
	PyramidNet+ShakeDrop [65]	14.0	12.2	10.7 ± 0.2
SVHN	Wide-ResNet-28-10 [67]	1.5	1.3	1.1
	Shake-Shake (26 2x96d) [17]	1.4	1.2	1.0
Reduced SVHN	Wide-ResNet-28-10 [67]	13.2	32.5	8.2
	Shake-Shake (26 2x96d) [17]	12.3	24.2	5.9

Model	Inception	AutoAugment	
	Pre-processing [59]	ours	
ResNet-50	76.3 / 93.1	77.6 / 93.8	
ResNet-200	78.5 / 94.2	80.0 / 95.0	
AmoebaNet-B (6,190)	82.2 / 96.0	82.8 / 96.2	
AmoebaNet-C (6,228)	83.1 / 96.1	83.5 / 96.5	
Table 3. Validation set To	p-1 / Top-5 accuracy (%) on ImageNet.	

AA: Transferability of learned policies to other datasets

Dataset	Train	Classes	Baseline	AutoAugment-
	Size			transfer
Oxford 102	2,040	102	6.7	4.6
Flowers [43]				
Caltech-101 [15]	3,060	102	19.4	13.1
Oxford-IIIT	3,680	37	13.5	11.0
Pets [14]				
FGVC	6,667	100	9.1	7.3
Aircraft [38]				
Stanford	8,144	196	6.4	5.2
Cars [27]				

RA: More results

	baseline	PBA	Fast AA	AA	RA
CIFAR-10					
Wide-ResNet-28-2	94.9	-	-	95.9	95.8
Wide-ResNet-28-10	96.1	97.4	97.3	97.4	97.3
Shake-Shake	97.1	98.0	98.0	98.0	98.0
PyramidNet	97.3	98.5	98.3	98.5	98.5
CIFAR-100					
Wide-ResNet-28-2	75.4	-	-	78.5	78.3
Wide-ResNet-28-10	81.2	83.3	82.7	82.9	83.3
SVHN (core set)					
Wide-ResNet-28-2	96.7	-	-	98.0	98.3
Wide-ResNet-28-10	96.9	-	-	98.1	98.3
SVHN					
Wide-ResNet-28-2	98.2	-	-	98.7	98.7
Wide-ResNet-28-10	98.5	98.9	98.8	98.9	99.0

	baseline	Fast AA	AA	RA
ResNet-50	76.3 / 93.1	77.6 / 93.7	77.6 / 93.8	77.6 / 93.8
EfficientNet-B5	83.2 / 96.7	-	83.3 / 96.7	83.9 / 96.8
EfficientNet-B7	84.0 / 96.9	-	84.4 / 97.1	85.0 / 97.2

model	augmentation	mAP	search space
	Baseline	38.8	0
ResNet-101	AutoAugment	40.4	10^{34}
	RandAugment	40.1	10^{2}
	Baseline	39.9	0
ResNet-200	AutoAugment	42.1	10^{34}
	RandAugment	41.9	10^{2}

RA: Transformation importance study 1

RA: Transformation importance study 2

transformation	$\Delta(\%)$	transformation	Δ (%)
rotate	1.3	shear-x	0.9
shear-y	0.9	translate-y	0.4
translate-x	0.4	autoContrast	0.1
sharpness	0.1	identity	0.1
contrast	0.0	color	0.0
brightness	0.0	equalize	-0.0
solarize	-0.1	posterize	-0.3