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Motivation - Good Generalization
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Motivation – Generalization
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Prior Work

● Provided suitable hyperparameters, CNNs trained with SGD generalizes 
well even for noisy labels and randomly labeled data [1,2,3].

● Training with weighted examples counters noisy labels [4].

● MaML (Finn et al. [5]) incorporates gradient information of two datasets 
using second order derivatives.
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SGD Update Step (without Bilevel learning)

The update of the parameters at the t-th iteration
in SGD (for one mini-batch):

θt+1 = θt - ε∇li(
 θt)
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Bilevel Learning

Split training set into different mini-batches on each epoch.
We introduce a scalar weight ωi for each mini-batch in Tt

Bilevel learning then comprises these two tasks:

Upper level: Find the combination of “final” parameters and 
weights that minimizes loss on a validation set 

θ˝, ώ = argminθ, ω ∑j Vt  ∈ lj(θ(ω)) + μ/2∙|ω|2

Lower level: Find the “training set” parameters that minimize 
loss on training mini-batches

         subj. to θ(ω) = argminθʹ ∑i Tt ∈ ωi li(θʹ)
         |ω|1 = 1
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Bilevel Learning

● Upper-level problem - a performance 
evaluation on samples from a separate 
validation set

● Lower-level problem - model parameter 
optimization on samples from the

  training set
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Implementation

● To implement the method SGD with momentum was modified.

Data splitting into mini-batches Tt, Vt

Compute ∇li(θt) for each mini-batch

Compute the weights ωi

Update network parameters θ(ω) 
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Data Splitting

● m sample pairs (xk, yk)k=1,…,m

● b disjoint mini-batches B
i

● φθ – the model that depends on parameters θ

● The loss function:

Li(θ) ≜ ∑k Bi∈ L(φθ(xk), yk))

● Split a set of mini-batches into Tt – training set and Vt  - 
validation set

In all experiments Vt is one mini-batch

The distributions of labels across the k mini-batches are 
identical.

Data splitting into mini-batches Tt, Vt
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Bilevel Learning

At each iteration sample the data and conduct gradient descent step.
k-1 mini-batches with weights: ω
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Data splitting into mini-batches Tt, Vt
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A Proximal Formulation

First-order Taylor expansion:

                                li(θ) ≈ li(θt) + ∇li(θt)T(θ – θt)
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A Proximal Formulation

First-order Taylor expansion:

li(θ) ≈ li(θt) + ∇li(θt)T(θ – θt)

θt+1, ώ = argminθ, ω ∑j Vt  ∈ lj(θt)T(θ(ω) – θt) + |θ(ω) – θt|2/2λ + μ/2∙|ω|  

subj. to  θ(ω) = argminθʹ ∑i Tt ∈ ωi[ li(θt) + ∇li(θt)T(θʹ – θt)] 
+ |θʹ – θt|2/2ε

 |ω|1 = 1
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A Proximal Formulation

First-order Taylor expansion:

li(θ) ≈ li(θt) + ∇li(θt)T(θ – θt)

θt+1, ώ = argminθ, ω ∑j Vt  ∈ lj(θt)T(θ(ω) – θt) + |θ(ω) – θt|2/2λ + μ/2∙|ω|  

subj. to  θ(ω) = argminθʹ ∑i Tt ∈ ωi[ li(θt) + ∇li(θt)T(θʹ – θt)] 
+ |θʹ – θt|2/2ε

 |ω|1 = 1
Update the parameters via:

θ(ω) =  θt - ε ∑i Tt ∈ ώi∇li(
 θt)
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Weights Computation

                  
                 ώ = argminθ, ω ∑j Vt∈ , i Tt∈   - ωi∇ lj(θt)T∇li(θt) + 

             |∑i Tt∈  ωi∇li(
 θt)|2/(2λ/ε) + (μ/2ε)∙|ω|2,

s.t. |ω|1 = 1

Compute the weights ωi
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Weights Computation

                  
                 ώ = argminθ, ω ∑j Vt∈ , i Tt∈   - ωi∇ lj(θt)T∇li(θt) + 

             |∑i Tt∈  ωi∇li(
 θt)|2/(2λ/ε) + (μ/2ε)∙|ω|2,

s.t. |ω|1 = 1

 λʹ = λ/ε,  μʹ = μ/ε, 
Solve the equation for any i  ∈ Tt

          ωi ← ∑j Vt∈  ∇ lj(θt)T∇li(θt)/(|∇ lj(θt)|2/(λʹ+μʹ))
 

Compute the weights ωi
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Data Splitting – weights optimization

At each iteration sample the data and conduct gradient descent step.
k-1 mini-batches with weights: ω
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Update Step

                  
                 ώ = argminθ, ω ∑j Vt∈ , i Tt∈   - ωi∇ lj(θt)T∇li(θt) + 

             |∑i Tt∈  ωi∇li(
 θt)|2/(2λ/ε) + (μ/2ε)∙|ω|2,

s.t. |ω|1 = 1

 λʹ = λ/ε,  μʹ = μ/ε, 
Solve the equation for any i  ∈ Tt

          ωi ← ∑j Vt∈  ∇ lj(θt)T∇li(θt)/(|∇ lj(θt)|2/(λʹ+μʹ))
 

ώ = ω/|ω|1

θ(w) =  θt - ε ∑i Tt ∈ ώi∇li(
 θt)

Update network parameters θ(ω) 
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Weights based on similarity to val. set
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Experiments

The datasets used for the experiments:

● CIFAR-10 - 50K training and 10K test images, size 32x32 pixels, 10 
classes

● CIFAR-100 - 50K training and 10K test images, size 32x32 pixels, 100 
classes

● Pascal VOC 2007 - 5011 training and 4952 test images, 20 classes 
● ImageNet – 1.28M training and 50K test images, 1K classes

AlexNet: Pascal VOC and ImageNet.
CifarNet and a small Inception: CIFAR-10 and CIFAR-100. 
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Ablation Experiments
● Dataset: CIFAR-10.

Reduction of a training set size could cause the decreasing of the accuracy. 
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Ablation Experiments

The number of training steps is a constant.
More mini-batches corresponds to smaller batch sizes.
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Ablation Experiments

The number of mini-batches is fixed at 8.
Small mini-batch sizes lead to better generalization.
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Ablation Experiments

The parameter μ does not seem to have a significant influence on the 
performance.
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Ablations Summary (Clean Data)

Experiment
CifarNet Inception

Train Test Gap Train Test Gap

SGD 99.99 75.68 24.31 99.91 88.13 11.78

Baseline Bilevel 97.60 75.52 22.08 96.13 87.78 8.35

No L1 ( |ω|1 = 1) 96.44 74.32 22.12 79.46 77.07 2.39

Not forcing 
equal label 

distributions
72.69 68.19 4.50 79.78 78.25 1.53

Allowing 
different 
dropout

95.92 74.76 21.16 95.58 87.86 7.72
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Random Pixel Permutations

Model Train Test Gap

SGD 50.0 33.2 16.8

Bilevel 34.8 33.6 1.2

● The setup from [1] – is followed 
   (same permutation is applied to all the images in both 
   training and test set)
● Inception network
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Memorization of Partially Corrupted Labels
The networks are trained with 8 mini-batches, 100 epochs on batches of size 64. 
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Generalization on Small Datasets

● Training images are randomly cropped to an area between 30% to 100% of the original 
and then resized to 227x227. mAP is obtained from the average prediction over 10 
random crops

● decay the learning rate from 0.01 to 0 and train for 1K epochs
● mini-batches of size 64, 4 mini-batches
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Summary

● Bilevel Learning is based on the principles of cross-
validation.

● Data is splitted into training(lower-level) and 
validation(upper-level) mini-batches.

● A validation set is used to limit the model overfitting.

● Computationally the method resembles stochastic 
gradient descent.

● The algorithm improves the generalization of the model, 
especially for noisy data.
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Discussion

● The method is computationally expensive.
● Is the accuracy improvement significant?
● How to sample data in mini-batches effectively?
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Ablation Experiments
● Dataset: CIFAR-10
● 8 mini-batches of size 128
● μ = 0.01 and λ= 1
● Single dropout layer, same dropping in all mini-batches
● 200 epochs
● Standard augmentations only for the Inception network
● SGD with momentum of 0.9 and an initial learning rate of 0.01 in the case of CifarNet and 

0.1 for Inception.

Reduction of a training set size could cause the decreasing of the accuracy. 
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Experiment

CifarNet Inception

Clean 50% Random Clean 50% Random

Train Test Gap Train Test Train Test Gap Train Test

SGD 99.99 75.68 24.31 96.75 45.15 99.91 88.13 11.78 65.06 47.64

Baseline 97.60 75.52 22.08 89.28 47.62 96.13 87.78 8.35 45.43 73.08

L1 96.44 74.32 22.12 95.50 45.79 79.46 77.07 2.39 33.86 62.16

ω per Layer 97.43 74.36 23.07 81.60 49.62 90.38 85.25 5.13 81.60 49.62

Sampling 72.69 68.19 4.50 16.13 23.93 79.78 78.25 1.53 17.71 27.20

Dropout 95.92 74.76 21.16 82.22 49.23 95.58 87.86 7.72 44.61 75.71

Ablations Summary
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Memorization of Partially Corrupted Labels
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Modeling Realistic Label Noise on ImageNet

Method 44% Noise Clean

SGD 50.75% 57.4%

Bilevel 52.69% 58.2%

● Predicted labels of a pre-trained AlexNet were used to model realistic label 
noise (for ImageNet).

● To obtain a high noise level - leave dropout active when making the 
predictions on the training set ~ 44% label noise.

● Retrain an AlexNet from scratch on those labels using standard SGD and our 
bilevel optimizer.
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