Large-Scale Unsupervised Object Discovery Volet al. 2021

Seminar in Computer Vision, University of Freiburg, SS22

Unsupervised Object Discovery

• Can typically use Object Detection datasets

• Ground truth bounding boxes are considered true objects

• Ground truth boxes used only for evaluation

Outline

- Related works
- Methodology
- Baselines
- Experimental Settings
- Results & Conclusion

Related Works

- Early approaches ——> Small-scale datasets
 - Probabilistic Models
 - Non-negative matrix factorization (NMF)
 - Clustering

• Recent approaches

Moderate-sized datasets

- Assume images are embed in a graph structure
- Candidate region proposals generated for each image
- Combinatorial optimization to select good proposals

- Other approaches ——> Small-scale datasets
 - Decompose image into objects
 - Learn image representation

Outline

- Related works
- Methodology
- Baselines
- Experimental Settings
- Results & Conclusion

Methodology: Previous work (Vo et al. 2019)

• Initial work that scales up to moderate-size datasets

- Assume Implicit graph structure over Images
- Edges connect visually similar images

Methodology: Previous work (Vo et al. 2019)

• edge between image p,q : $e_{pq} \in \{0,1\}$

Image source [5]

Methodology: Previous work (Vo et,al 2019)

Methodology: Previous work (Vo et al. 2019)

- edge between image p,q : $e_{pq} \in \{0,1\}$
- Objectness of k-th proposal in image p: $x_p^k \in \{0,1\}$
- Edges connect visually similar images

$$\mathbf{x}_{\mathbf{p}} = \begin{bmatrix} x_p^1 \\ x_p^2 \\ \vdots \\ x_p^r \end{bmatrix} \quad \mathbf{S}_{\mathbf{pq}} = \begin{bmatrix} d(p^1, q^1) & \dots & d(p^1, q^r) \\ \vdots \\ d(p^r, q^1) & \dots & d(p^r, q^r) \end{bmatrix}$$

Methodology: Previous work (Vo et al. 2019)

$$\max_{x,e} \sum_{p=1}^{n} \sum_{q=1}^{n} e_{pq} \mathbf{x}_{\mathbf{p}}^{\mathbf{T}} \mathbf{S}_{\mathbf{pq}} \mathbf{x}_{\mathbf{q}} \qquad s.t \sum_{k=1}^{r} x_{p}^{k} \le \nu \text{ and } \sum_{p \neq q} e_{pq} \le \tau$$

- A relaxed version of this problem is considered
- The solutions are mapped back to the discrete space using an iterative greedy ascent approach

Bottleneck

- A follow up work by Vo et al. 2020 tries to scale this up by reducing r
- But was found to hinder the ability to discover multiple objects

• Assume n images, r candidate proposals per image

• Assume Implicit graph structure over Image proposals

Each node denoted by p^k : p-th image, k-th proposal

Total nodes $N = n \times r$

$$\mathbf{S}_{\mathbf{pq}} = \begin{bmatrix} d(p^1, q^1) & \dots & d(p^1, q^r) \\ \vdots & & \\ d(p^r, q^1) & \dots & d(p^r, q^r) \end{bmatrix}$$

Two nodes p^k, q^l have edge weight S^{k,l}_{pq}

• If p=q,
$$S_{pq} = 0^{r \times r}$$

• Goal: Find the proposals with prominent objects

 Idea: A node has a prominent object if its neighbors have prominent objects

 Rank according to an important measure y_i for all nodes i

 Idea: A node is important if its neighbors are important

• Compute
$$z_i = \sum_{j \in N(i)} W_{ji} y_j$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \quad \mathbf{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_N \end{bmatrix}$$

•
$$z_i = \sum_{j \in N(i)} W_{ji} y_j \longrightarrow \mathbf{z} = \mathbf{W} \mathbf{y} \qquad \max_{\mathbf{y}} \mathbf{y}^{\mathbf{T}} \mathbf{z} = \max_{\mathbf{y}} \mathbf{y}^{\mathbf{T}} \mathbf{W} \mathbf{y}$$

Lemma 1. Suppose W is irreducible (i.e., represents a strongly connected graph G). The solution y^* of the quadratic optimization problem:

$$y^* = \underset{\|t\| \le 1, t \ge 0}{\operatorname{argmax}} t^T W t \tag{Q}$$

is the unique unit, non-negative eigenvector of W associated with its largest eigenvalue.

• W is not irreducible (our G is not strongly connected), Add $\frac{\gamma}{N} \begin{bmatrix} 1 & \dots & 1 \\ \vdots & \vdots & \vdots \\ 1 & \dots & 1 \end{bmatrix}$ to **W**

Distributed algorithms & tools for eigen value problems can be utilized

Methodology: Applicability of PageRank (P)

• PageRank

- Nodes are web-pages
- Edges are links
- Goal: Rank the pages based on importance

• Idea

 \circ $\$ a page is important if its backlinks are important

• Transition Matrix
$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1N} \\ \vdots & a_{pq} & \vdots \\ a_{N1} & \dots & a_{NN} \end{bmatrix}$$

• Normalize columns in our W to apply PageRank

Methodology: Hybrid approach (LOD)

• General form of Transition matrix

$$(1-\beta)A + \beta \begin{bmatrix} u_1 & u_1 & \dots & u_1 \\ u_2 & u_2 & \dots & u_2 \\ \vdots & & & \vdots \\ u_N & u_N & \dots & u_N \end{bmatrix}$$

 $\boldsymbol{u}_{_{\!\!\!\!\!\!l}}$ importance is manually added to node j

Compute a maximizer solution y using
 (Q) and then use it as u to apply (P)

Outline

- Related works
- Methodology
- Baselines
- Experimental Settings
- Results & Conclusion

Baselines (can scale to large datasets)

- EdgeBoxes (EB)
 - Unsupervised method
 - Outputs regions in an image with an importance score
- Kim (2009)
 - candidate ROI set provided for each image
 - Maintain a current ROI set
 - 1st step: find good ROIs (hubs) among current ROI set ι pagerank
 - 2nd step: Update current ROI set based on hubs
- Wei (2019)
 - A scalable approach for Image co-localization

Outline

- Related works
- Methodology
- Baselines
- Experimental Settings
- Results & Conclusion

Experiment Settings

• Datasets

С120К	OP1.7M	С20К	OP50K		
Derived from MSCOCO	OpenImages	Subset of C120K	Subset of OP1.7M		
~120K Images	~1.7M Images	~20K Images	~50K Images		

- Generating Region Proposals
 - Vo (2020) proposed an algorithm which uses activations from pre-trained cnns
 - VGG16 trained on Imagenet with labels (supervised setting)
 - VGG OBoW trained without labels (self-supervised setting)

Experiment Settings

- Similarity Model
 - Probabilistic Hough Matching (PHM) algorithm (Cho et al. 2015)
 - Compares local appearance and global geometric consistency of proposals

- Evaluation Settings
 - Single object discovery
 - Return m=1 region proposal per image
 - Multi object discovery
 - Return m=M region proposals per image
 - M = max #objects in any image

Evaluation Metrics

- Single Object Discovery
 - Correct localization score (CorLoc)
 - Percentage of proposals correctly localized
 - If IOU >= 0.5 between one of the ground truth boxes and predicted proposal

- Multi Object Discovery
 - Average Precision (AP50)
 - Area under PR curve by varying m=1 to M (at 50% IOU threshold)
 - Average Precision (AP@[50:95])
 - Average of AP under different IOU thresholds (10 equal intervals from 50% to 95%)

Outline

- Related works
- Methodology
- Baselines
- Experimental Settings
- Results & Conclusion

• Vo [67] is previous work of Vo et al. 2020

	Single-object CorLoc				Multi-object							
Method					AP50				AP@[50:95]			
	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M
EB [83]	28.8	29.1	32.7	32.8	4.86	4.91	5.46	5.49	1.41	1.43	1.53	1.53
Wei [71]	38.2	38.3	34.8	34.8	2.41	2.44	1.86	1.86	0.73	0.74	0.6	0.6
Kim [32]	35.1	34.8	37.0	-	3.93	3.93	4.13	-	0.96	0.96	0.98	-
Vo [67]	48.5	<u>48.5</u>	48.0	47.8	5.18	5.03	4.98	4.88	1.62	1.6	1.58	1.57
Ours (LOD+Self [18])	41.1	42.4	49.5	49.4	4.56	4.90	6.37	6.28	1.29	1.37	1.87	1.86
Ours (LOD)	48.5	48.6	48.1	47.7	6.63	6.64	6.46	6.28	1.98	2.0	1.88	1.83

• Vo [67] is previous work of Vo et al. 2020

		Feature	Single	e-object	Multi-object					
Opt.	Proposal		Co	rLoc	A	P50	AP@[50:95]			
			C20K	Op50K	C20K	Op50K	C20K	Op50K		
	EB [83]		28.8	32.7	4.86	5.46	1.41	1.53		
None	[67]+Self	None	29.7	39.8	2.47	3.72	0.61	1.0		
	[67]+Sup		23.6	38.1	4.07	4.81	1.03	1.39		
Wa: [71]	Nama	Self	37.9	42.4	2.53	3.13	0.69	0.9		
wei [/1]	None	Sup	38.2	34.8	2.41	1.86	0.73	0.6		
	ED [02]	Self	5.5	5.4	0.64	0.79	0.13	0.15		
Vim [22]	EB [83]	Sup	15.6	20.2	1.96	2.56	0.36	0.47		
K IIII [32]	[67]+Self	Self	4.7	4.6	0.13	0.29	0.02	0.05		
	[67]+Sup	Sup	35.1	37.0	3.93	4.13	0.96	0.98		
	ED [02]	Self	35.6	43.6	3.34	4.43	0.99	1.39		
Vo [67]	ED [03]	Sup	40.2	44.0	4.0	4.47	1.21	1.41		
vo [07]	[67]+Self	Self	37.8	48.1	2.65	4.19	0.82	1.45		
	[67]+Sup	Sup	48.5	$\overline{48.0}$	5.18	4.98	1.62	1.58		
LOD	ED [02]	Self	35.5	39.7	5.87	6.73	1.57	1.76		
	EB [83]	Sup	38.9	41.3	6.52	7.01	1.76	1.86		
	[67]+Self	Self	41.1	49.5	4.56	6.37	1.29	1.87		
	[67]+Sup	Sup	48.5	48.1	6.63	6.46	1.98	1.88		

		Feature	Single	e-object	Multi-object					
Opt.	Proposal		Co	rLoc	A	P50	AP@[50:95]			
			C20K	Op50K	C20K	Op50K	C20K	Op50K		
	ED [92]	Self	32.8	40.3	4.15	6.43	1.07	1.67		
0	ED [03]	Sup	36.0	41.1	5.72	6.49	1.47	1.7		
Q	[67]+Self	Self	38.7	48.9	4.38	6.39	1.17	1.84		
	[67]+Sup	Sup	43.8	47.5	6.21	6.66	1.74	1.88		
	EB [83]	Self	35.5	39.7	4.91	6.73	1.34	1.75		
D		Sup	38.9	41.3	6.51	<u>6.99</u>	1.76	1.86		
Р	[67]+Self	Self	41.2	49.5	4.38	6.13	1.24	1.81		
	[67]+Sup	Sup	<u>47.5</u>	47.8	6.25	6.19	1.87	1.81		
	EB [83]	Self	35.5	39.7	5.87	6.73	1.57	1.76		
		Sup	38.9	41.3	6.52	7.01	1.76	1.86		
LUD	[67]+Self	Self	41.1	49.5	4.56	6.37	1.29	1.87		
	[67]+Sup	Sup	48.5	48.1	6.63	6.46	1.98	1.88		

• Runtime Comparison

Image source [1]

• Results by LOD on OP1.7M, Ground truth objects in yellow, predictions in red

Summary

- Novel formulation of UOD as ranking problem
- LOD can be scaled to very large datasets (eg. OP1.7M)
- LOD + self-supervised features (state of the art on OP1.7M, Multi object setting)
- Only works well with VGG16 features
- Small objects are not discovered well
- LOD is found to be sensitive to hyperparameters

References

[1] Vo, Van Huy, et al. "Large-scale unsupervised object discovery." *Advances in Neural Information Processing Systems* 34 (2021): 16764-16778.

[2] Vo, Huy V., Patrick Pérez, and Jean Ponce. "Toward unsupervised, multi-object discovery in large-scale image collections." *ECCV 2020-16th European Conference on Computer Vision*. 2020.

[3] Vo, Huy V., et al. "Unsupervised image matching and object discovery as optimization." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2019.

[4] Wei, Xiu-Shen, et al. "Unsupervised object discovery and co-localization by deep descriptor transformation." *Pattern Recognition* 88 (2019): 113-126.

[5] Kim, Gunhee, and Antonio Torralba. "Unsupervised detection of regions of interest using iterative link analysis." *Advances in neural information processing systems* 22 (2009).

[6] Cho, Minsu, et al. "Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015.

[7] Tuytelaars, Tinne, et al. "Unsupervised object discovery: A comparison." *International journal of computer vision* 88.2 (2010): 284-302.

Unsupervised Object Discovery

• Detect prominent objects in Large collection of images

• Ground truth bounding boxes are considered true objects

• Challenge: prominent objects could be some meaningless textures

Table 1: Large-scale object discovery performance and comparison to the state of the art on COCO [42] (C120K), OpenImages [35] (Op1.7M) and their respective subsets C20K and Op50K, in three standard metrics. Using VGG16 features [60], the proposed method LOD achieves top performance in both single and multi-object discovery, and scales better to 1.7M images in Op1.7M than the previous state of the art [67]. When running with self-supervised features (LOD + Self [18]), it yields the best results on Op1.7M, showing the first effective fully unsupervised pipeline for UOD. See Sec. 4 for more details.

Method	Single-object CorLoc				Multi-object							
					AP50				AP@[50:95]			
	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M	C20K	C120K	Op50K	Op1.7M
EB [83]	28.8	29.1	32.7	32.8	4.86	4.91	5.46	5.49	1.41	1.43	1.53	1.53
Wei [71]	38.2	38.3	34.8	34.8	2.41	2.44	1.86	1.86	0.73	0.74	0.6	0.6
Kim [32]	35.1	34.8	37.0	-	3.93	3.93	4.13	2	0.96	0.96	0.98	-
Vo [67]	48.5	48.5	48.0	47.8	5.18	5.03	4.98	4.88	1.62	1.6	1.58	1.57
Ours (LOD+Self [18])	41.1	42.4	49.5	49.4	4.56	4.90	6.37	6.28	1.29	1.37	1.87	1.86
Ours (LOD)	48.5	48.6	48.1	47.7	6.63	6.64	6.46	6.28	1.98	2.0	1.88	1.83

Unsupervised Object Discovery

• Challenge: prominent objects could be some meaningless textures

• Measures for foregroundness, standout score etc

• Pre-trained cnn activations contain cues to locate objects

Methodology: Previous work (Vo et al. 2019)

- Initial work on modeling UOD as an optimization problem
- Assume Implicit graph
 structure over Images
- edge between image p,q : $e_{pq} \in \{0,1\}$

 $e_{12} = 1, e_{23} = 1, e_{13} = 0$

3

Experiment Settings

- Datasets
 - C120K (derived from MSCOCO), C20K
 - OpenImages (OP1.7M), OP50K
- Generating Region Proposals
 - Vo (2020) proposed an algorithm which uses activations from pre-trained cnns
 - VGG16 trained on Imagenet with labels (supervised setting)
 - VGG OBoW trained without labels (self-supervised setting)
- Similarity Model
 - Probabilistic Hough Matching (PHM) algorithm
- Evaluation Settings
 - Single object discovery: Return m=1 region per image
 - Multi object discovery: Returns m=M regions per image (M = max #objects in any image)