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Motivation

Motivation - Related Work - MIL-NCE objective -  Experiments - Conclusion

● Objective: Learning video representations

● Challenge: Most current video representation models require extensive 
annotations. Annotating videos is expensive and not scalable

● Possible solution: Leveraging narrated videos that are available at 
scale on the web
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Motivation
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● Narrated / instructional videos: Videos that include an oral description of 
what it is happening

● HowTo100M: dataset of 100 million clips-narrations from YouTube 

● Challenges: Narration supervision is weak and noisy. 
In particular, weak alignment between text and image (~50% misalignment)
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Motivation
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In this work...

● Learning embeddings of video and text in a self-supervised manner 
directly from uncurated instructional videos

● MIL-NCE objective: New specific loss to address misalignments in 
narrated videos
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Related Work
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1. Self-supervised learning on videos

2. Joint video-language 

3. Multiple Instance Learning

4. Noise Contrastive Estimation

6



Self-supervised learning on videos

Motivation - Related Work - MIL-NCE objective -  Experiments - Conclusion

● Use metadata from social media videos as labels [Ghadiyaram et al. 2019]

● Self-supervised: learn a proxy task with labels taken directly from videos

      ...

● Domain gap between curated and uncurated videos [Caron et al. 2019]
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Geometric transformations [Jing et al. 2018]

Predicting the future [Han et al. 2019]



Joint video-language

Motivation - Related Work - MIL-NCE objective -  Experiments - Conclusion

● Learn a joint embedding space for visual and textual data
- Supervised: Manual annotated datasets
- Self-Supervised: Exploit semantic information from natural language 

(audio speech or Automatic Speech Recognition)

● [Miech et al. HowTo100M 2019]  and [Sun et al. CBT 2019]: 
Self-supervised using ASR but leverage pre-trained visual representations 
on ImageNet and Kinetics
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Multiple Instance Learning (MIL)

Motivation - Related Work - MIL-NCE objective -  Experiments - Conclusion

● Weakly supervised learning with labeled sets of many samples instead 
of individual labels per sample

● Multiple instances of the same object, where the label refers to the object

● MIL deals with problems with incomplete knowledge
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Multiple Instance Learning (MIL)
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● MIL applied to video understanding
- Max-pooling: MIL-SVM 
- Discriminative clustering: DIFFRAC
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Person recognition in movies [Miech et al. 2017]
Action localization  [Weinzaepfe et al. 2016]



Noise Contrastive Estimation (NCE)

Motivation - Related Work - MIL-NCE objective -  Experiments - Conclusion

● Discriminate between samples from a ‘real’ distribution and an artificially 
generated noise distribution

● Used to train classifiers with a very large number of classes
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Noise Contrastive Estimation (NCE)

Motivation - Related Work - MIL-NCE objective -  Experiments - Conclusion

● [Hénaff et al. 2019] and [Van den Oord et al. 2018] apply NCE to 
self-supervised learning using InfoNCE loss

● [Sun et al. CBT 2019] apply NCE loss to video-text representation 
learning: 

- Different way of constructing the negative samples
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MIL-NCE objective

Motivation - Related Work - MIL-NCE objective -  Experiments - Conclusion

● Learning joint embedding space from video and text
● Embedding similarity when text and video content semantically similar
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Embedding space
video model

text model

[Miech et al. 2019]



MIL-NCE objective
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MIL-NCE objective
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● “Maximizing ratio of the sum of positive candidate scores to the sum of 
negative samples scores, where score is exponentiated dot product of 
the embeddings”
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x: video-clip y: narration
f and g: embedding functions

P: positive candidates N: negative candidates



MIL-NCE objective
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Building the MIL-NCE objective step by step…

1. Simple joint probabilistic model

2. MIL contribution: Multiple options for matching video with narration 

3. NCE contribution



Joint probabilistic model

Motivation - Related Work - MIL-NCE objective -  Experiments - Conclusion

● Input: Set of n video-text pairs from the joint data distribution

● Output: Two parametrized functions f and g that map video and text to a 
d-dimensional vector space

● Probability of a matching pair (x , y) can be estimated up to a constant as:
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MIL contribution

Motivation - Related Work - MIL-NCE objective -  Experiments - Conclusion

● Key idea: Consider multiple options to match a video with a narration

● Given a video-clip x, K positive narrations that are close in time 
Joint probability of x happening with any of the yk  (mutually exclusive):

● Symmetric joint probability
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NCE contribution

Motivation - Related Work - MIL-NCE objective -  Experiments - Conclusion

● A lot of all possible pairs of video-text: intractable for generative loss

● Discriminative loss: softmax version of NCE [Jozefowicz et al. 2016]
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NCE contribution
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● A lot of all possible pairs of video-text: intractable for generative loss

● Discriminative loss: softmax version of NCE [Jozefowicz et al. 2016]
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MIL-NCE objective
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● NCE: Discriminate between positive and negative candidates

● Model a symmetric joint probability between text and video

● MIL: Solve the temporal misalignments between text and video



Experiments
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1. Implementation details

2. Downstream tasks

3. Ablation studies

4. Comparison to state-of-the-art



Implementation details
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● Video-model:
I3D [Carreira et al. 2017] / S3D [Xie et al. 2018]

● Text-model:
word2Vec pre-trained on Google News 
[Mikolov et al. 2013] 

● Train on HowTo100M dataset
- 120M pairs      15 years 
- 3.2 seconds video (32 frames)
- Automatic Speech Recognition
- max. 16 words narration



Implementation details
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● Positive samples   
   

Size of the positive set:   |P| = 3



Implementation details
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...

● Negative samples   
   Size of the negative set:   |N| = 8

Symmetric



Downstream tasks
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Action Recognition Temporal Action Localization Action Step Localization

Temporal Action Segmentation Text-to-Video Retrieval

datasets
HMDB-51
UCF-101
Kinetics700

metric
accuracy

dataset
Youtube8M 
Segments

metric
mAP

dataset
CrossTask
(CTR)

metric
average 
recall

Add egg

Pour mixture

dataset
COIN

metric
frame 
accuracy 
(FA)

datasets
YouCook2
(YR10)

MSR-VTT
(MR10)

metric
recall@Kpred GT

Output:

Input: cut tomato

playing guitar



Ablation Studies
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Ablation Studies
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Ablation Studies
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● Importance of Multiple Instance Learning: trade-off between 
likelihood to align and noise

● Many symmetric negative candidates

● Simple language models

Ablation Studies
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Ablation Studies
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Comparison to SOTA
● Video-only representation:

    Action recognition
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Comparison to SOTA
● Video-only representation:

           Action Segmentation      
pred GT
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Comparison to SOTA
● Joint text-video representation: 

      
Video-to-text retrieval for Action Step Localization

without fine-tuning!

Add egg

Pour mixture
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Comparison to SOTA
● Joint text-video representation: Text-to-video retrieval

without fine-tuning!

Output:

Input: cut tomato
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Experiments https://www.di.ens.fr/willow/research/mil-nce/

https://www.di.ens.fr/willow/research/mil-nce/


Conclusion
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“ Use the novel MIL-NCE objective to learn video representations 
without annotations, by dealing with misalignments from uncurated 
instructional videos ” 
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Conclusion
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“ Use the novel MIL-NCE objective to learn video representations 
without annotations, by dealing with misalignments in uncurated 
instructional videos ” 
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Thank you!



Discussion impulses
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● How does their self-supervised fine-tuned version compare to supervised 
SOTA? 

● Further explanation about differences among datasets in ablation studies

● In which other applications could it be interesting to use MIL-NCE loss?
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