End-to-End Learning of Visual Representations from Uncurated Instructional Videos

Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, Andrew Zisserman

Julia Guerrero Viu Seminar on Current Works in Computer Vision Summer Semester 2020

Outline

- 1. Motivation
- 2. Related Work
- 3. The MIL-NCE objective
- 4. Experiments
- 5. Conclusion and discussion impulses

Motivation

- **Objective:** Learning video representations
- **Challenge:** Most current video representation models require extensive annotations. Annotating videos is expensive and not scalable
- **Possible solution:** Leveraging narrated videos that are available at scale on the web

Motivation

- Narrated / instructional videos: Videos that include an oral description of what it is happening
- HowTo100M: dataset of 100 million clips-narrations from YouTube

Challenges: Narration supervision is weak and noisy.
 In particular, weak alignment between text and image (~50% misalignment)

Motivation

In this work...

- Learning embeddings of video and text in a self-supervised manner directly from uncurated instructional videos
- MIL-NCE objective: New specific loss to address misalignments in narrated videos

Related Work

- 1. Self-supervised learning on videos
- 2. Joint video-language
- 3. Multiple Instance Learning
- 4. Noise Contrastive Estimation

Self-supervised learning on videos

- Use metadata from social media videos as labels [Ghadiyaram et al. 2019]
- Self-supervised: learn a proxy task with labels taken directly from videos

Domain gap between curated and uncurated videos [Caron et al. 2019]

Joint video-language

- Learn a **joint embedding space** for visual and textual data
 - Supervised: Manual annotated datasets
 - Self-Supervised: Exploit **semantic** information from natural language (audio speech or Automatic Speech Recognition)
- [Miech et al. HowTo100M 2019] and [Sun et al. CBT 2019]: Self-supervised using ASR but leverage pre-trained visual representations on ImageNet and Kinetics

Multiple Instance Learning (MIL)

- Weakly supervised learning with **labeled sets** of many samples instead of individual labels per sample
- Multiple instances of the same object, where the label refers to the object
- MIL deals with problems with incomplete knowledge

Multiple Instance Learning (MIL)

- MIL applied to video understanding
 - Max-pooling: MIL-SVM
 - Discriminative clustering: DIFFRAC

Person recognition in movies [Miech et al. 2017]

Noise Contrastive Estimation (NCE)

- Discriminate between samples from a 'real' distribution and an artificially generated noise distribution
- Used to train classifiers with a very large number of classes

Noise Contrastive Estimation (NCE)

- [Hénaff et al. 2019] and [Van den Oord et al. 2018] apply NCE to self-supervised learning using *InfoNCE* loss
- [Sun et al. CBT 2019] apply NCE loss to video-text representation learning:
 - Different way of constructing the negative samples

- Learning joint embedding space from video and text
- Embedding similarity when text and video content semantically similar

 "Maximizing ratio of the sum of positive candidate scores to the sum of negative samples scores, where score is exponentiated dot product of the embeddings"

Building the MIL-NCE objective step by step...

- 1. Simple joint probabilistic model
- 2. MIL contribution: Multiple options for matching video with narration
- 3. NCE contribution

Joint probabilistic model

- Input: Set of *n* video-text pairs from the joint data distribution $\{(x_i, y_i)\}_{i=1}^n \in (\mathcal{X} \times \mathcal{Y})^n$
- **Output:** Two parametrized functions *f* and *g* that map video and text to a *d*-dimensional vector space

$$f : \mathcal{X} \to \mathbb{R}^d \qquad g : \mathcal{Y} \to \mathbb{R}^d$$

• **Probability** of a matching pair (x, y) can be estimated up to a constant as:

$$p(x, y; f, g) \propto e^{f(x)^{\top} g(y)}$$

MIL contribution

- Key idea: Consider **multiple options** to match a video with a narration
- Given a video-clip *x*, *K* positive narrations that are close in time Joint probability of *x* happening with any of the *y*_k (mutually exclusive):

$$p(\bigcup_k \{(x, y_k)\}) = \sum_k p(x, y_k) \propto \sum_k e^{f(x)^\top g(y_k)}$$

• Symmetric joint probability $(x, y) \longrightarrow \mathcal{P} = (x^k, y^k)_{k=1}^K$

$$p(\mathcal{P}) \propto \sum_{(x,y)\in\mathcal{P}} e^{f(x)^{\top}g(y)}$$

NCE contribution

- A lot of all possible pairs of video-text: intractable for *generative* loss
- Discriminative loss: softmax version of NCE [Jozefowicz et al. 2016]

NCE contribution

- A lot of all possible pairs of video-text: intractable for *generative* loss
- Discriminative loss: softmax version of NCE [Jozefowicz et al. 2016]
 MIL-NCE

- NCE: Discriminate between positive and negative candidates
- Model a symmetric joint probability between text and video
- MIL: Solve the temporal misalignments between text and video

Experiments

- 1. Implementation details
- 2. Downstream tasks
- 3. Ablation studies
- 4. Comparison to state-of-the-art

Implementation details

• Video-model:

I3D [Carreira et al. 2017] / S3D [Xie et al. 2018]

- Text-model: word2Vec pre-trained on Google News [Mikolov et al. 2013]
- Train on HowTo100M dataset
 - 120M pairs 15 years
 - 3.2 seconds video (32 frames)
 - Automatic Speech Recognition
 - max. 16 words narration

Motivation - Related Work - MIL-NCE objective - Experiments - Conclusion 24

Implementation details

• Positive samples

Size of the positive set: |P| = 3

Implementation details

Downstream tasks

(a) Training loss

(b) Negatives per positive

Loss	YR10	MR10	CTR	HMDB	UCF
Binary-Classif	18.5	23.1	32.6	44.2	68.5
Max margin	16.3	24.1	29.3	56.2	76.6
NCE	29.1	27.0	35.6	55.4	77.5

$\ \mathcal{N}\ $	YR10	MR10	CTR	HMDB	UCF
64	26.0	25.5	33.1	56.1	76.0
128	27.1	26.4	33.3	57.2	76.2
256	28.7	28.7	36.5	56.5	77.5
512	28.8	29.0	35.6	55.4	77.4

(c) Number of positive candidate pair

	NCE	MIL-NCF						
	ITCL		141	11-110				
$\ \mathcal{P}\ \to$	1	3	5	9	17	33		
YR10	29.1	33.6	35.0	33.1	32.4	28.3		
MR10	27.0	30.2	31.8	30.5	29.2	30.4		
CTR	35.6	37.3	34.2	31.8	25.0	25.0		
HMDB	55.4	57.8	56.7	55.7	54.8	51.4		
UCF	77.5	79.7	80.4	79.5	78.5	77.9		

(d) MIL strategy

Method	YR10	MR10	CTR	HMDB	UCF
Cat+NCE	31.9	30.8	35.2	56.3	78.9
Max+NCE	32.3	31.3	32.2	55.3	79.2
Attn+NCE	32.4	30.2	33.4	55.2	78.4
MIL-NCE	35.0	31.8	34.2	56.7	80.4

(e) Symmetric vs asymmetric negatives

Negatives	YR10	MR10	CTR	HMDB	UCF
(x y)	34.4	29.0	33.9	55.1	78.1
(y x)	19.3	19.4	28.2	57.1	79.2
(x,y)	35.0	31.8	34.2	56.7	80.4

Text model	YR10	MR10	CTR	HMDB	UCF
LSTM	16.6	15.6	23.8	53.1	80.1
GRU	16.8	16.9	22.2	54.7	82.8
Transformer	26.7	26.5	32.7	53.4	78.4
NetVLAD	33.4	29.2	35.5	51.8	79.3
Ours	35.0	31.8	34.2	56.7	80.4

(a) **Training loss**

Loss	YR10	MR10	CTR	HMDB	UCF
Binary-Classif	18.5	23.1	32.6	44.2	68.5
Max margin	16.3	24.1	29.3	56.2	76.6
NCE	29.1	27.0	35.6	55.4	77.5

21 N 38	т	1.0		
(b)	Vega:	TIVES	ner	nosifive
(0)1	1054	11103	per	positive

$\ \mathcal{N}\ $	YR10	MR10	CTR	HMDB	UCF
64	26.0	25.5	33.1	56.1	76.0
128	27.1	26.4	33.3	57.2	76.2
256	28.7	28.7	36.5	56.5	77.5
512	28.8	29.0	35.6	55.4	77.4

(c) Number of positive candidate pair

	NCE		MIL-NCE						
$\ \mathcal{P}\ \to$	1	3	5	9	17	33			
YR10	29.1	33.6	35.0	33.1	32.4	28.3			
MR10	27.0	30.2	31.8	30.5	29.2	30.4			
CTR	35.6	37.3	34.2	31.8	25.0	25.0			
HMDB	55.4	57.8	56.7	55.7	54.8	51.4			
UCF	77.5	79.7	80.4	79.5	78.5	77.9			

(d) MIL strategy YR10 MR10 CTR HMDB UCF Method Cat+NCE 31.9 30.8 35.2 56.3 78.9 Max+NCE 32.3 31.3 32.2 55.3 79.2 Attn+NCE 32.4 30.2 33.4 55.2 78.4

31.8 34.2

56.7

80.4

35.0

MIL-NCE

(e) Symmetric vs asymmetric negatives									
Negatives	YR10	MR10	CTR	HMDB	UCF				
(x y)	34.4	29.0	33.9	55.1	78.1				
(y x)	19.3	19.4	28.2	57.1	79.2				
(x, y)	35.0	31.8	34.2	56.7	80.4				

	/	0 0			
Text model	YR10	MR10	CTR	HMDB	UCF
LSTM	16.6	15.6	23.8	53.1	80.1
GRU	16.8	16.9	22.2	54.7	82.8
Transformer	26.7	26.5	32.7	53.4	3 8.4
NetVLAD	33.4	29.2	35.5		
Ours	35.0	31.8	34.2	E 1	
			11.56		338

(a) **Training loss**

(b) Negatives per positive

Loss	YR10	MR10	CTR	HMDB	UCF
Binary-Classif	18.5	23.1	32.6	44.2	68.5
Max margin	16.3	24.1	29.3	56.2	76.6
NCE	29.1	27.0	35.6	55.4	77.5

$\ \mathcal{N}\ $	YR10	MR10	CTR	HMDB	UCF
64	26.0	25.5	33.1	56.1	76.0
128	27.1	26.4	33.3	57.2	76.2
256	28.7	28.7	36.5	56.5	77.5
512	28.8	29.0	35.6	55.4	77.4

(c) Number of positive candidate pair

	NCE		MIL-NCE						
$\ \mathcal{P}\ \to$	1	3	5	9	17	33			
YR10	29.1	33.6	35.0	33.1	32.4	28.3			
MR10	27.0	30.2	31.8	30.5	29.2	30.4			
CTR	35.6	37.3	34.2	31.8	25.0	25.0			
HMDB	55.4	57.8	56.7	55.7	54.8	51.4			
UCF	77.5	79.7	80.4	79.5	78.5	77.9			

Text model	YR10	MR10	CTR	HMDB	UCF
LSTM	16.6	15.6	23.8	53.1	80.1
GRU	16.8	16.9	22.2	54.7	82.8
Transformer	26.7	26.5	32.7	53.4	₹8.4
NetVLAD	33.4	29.2	35.5		
Ours	35.0	31.8	34.2	× 16	
			100		

(d) MIL strategy								
Method	YR10	MR10	CTR	HMDB	UCF			
Cat+NCE	31.9	30.8	35.2	56.3	78.9			
Max+NCE	32.3	31.3	32.2	55.3	79.2			
Attn+NCE	32.4	30.2	33.4	55.2	78.4			
MIL-NCE	35.0	31.8	34.2	56.7	80.4			

(e) Symm	netric	vs asyr	nmet	ric nega	atives
Negatives	YR10	MR10	CTR	HMDB	UCF
(x y)	34.4	29.0	33.9	55.1	78.1
(y x)	19.3	19.4	28.2	57.1	79.2
(x, y)	35.0	31.8	34.2	56.7	80.4

(a) **Training loss**

Loss	YR10	MR10	CTR	HMDB	UCF
Binary-Classif	18.5	23.1	32.6	44.2	68.5
Max margin	16.3	24.1	29.3	56.2	76.6
NCE	29.1	27.0	35.6	55.4	77.5

71.5	The T	1.0		
(h)	Nega	TIVAC	ner	nositive
(0)	Incga	UIVUS	pu	positive

$\ \mathcal{N}\ $	YR10	MR10	CTR	HMDB	UCF
64	26.0	25.5	33.1	56.1	76.0
128	27.1	26.4	33.3	57.2	76.2
256	28.7	28.7	36.5	56.5	77.5
512	28.8	29.0	35.6	55.4	77.4

(c) Number of positive candidate pair

	NCE	MIL-NCE						
$\ \mathcal{P}\ \to$	1	3	5	9	17	33		
YR10	29.1	33.6	35.0	33.1	32.4	28.3		
MR10	27.0	30.2	31.8	30.5	29.2	30.4		
CTR	35.6	37.3	34.2	31.8	25.0	25.0		
HMDB	55.4	57.8	56.7	55.7	54.8	51.4		
UCF	77.5	79.7	80.4	79.5	78.5	77.9		

(f) Language models

Text model	YR10	MR10	CTR	HMDB	UCF
LSTM	16.6	15.6	23.8	53.1	80.1
GRU	16.8	16.9	22.2	54.7	82.8
Transformer	26.7	26.5	32.7	53.4-	₹8.4
NetVLAD	33.4	29.2	35.5		
Ours	35.0	31.8	34.2	145.20	2

	(u) IV	IIL SU	aleg	у	
Method	YR10	MR10	CTR	HMDB	UCF

Cat+NCE	31.9	30.8	35.2	56.3	78.9
Max+NCE	32.3	31.3	32.2	55.3	79.2
Attn+NCE	32.4	30.2	33.4	55.2	78.4
MIL-NCE	35.0	31.8	34.2	56.7	80.4

(e) Symmetric vs asymmetric negatives

Negatives	YR10	MR10	CTR	HMDB	UCF
$\overline{(x y)}$	34.4	29.0	33.9	55.1	78.1
(y x)	19.3	19.4	28.2	57.1	79.2
(x, y)	35.0	31.8	34.2	56.7	80.4

(a) **Training loss**

(b) Negatives per positive

Loss	YR10	MR10	CTR	HMDB	UCF
Binary-Classif	18.5	23.1	32.6	44.2	68.5
Max margin	16.3	24.1	29.3	56.2	76.6
NCE	29.1	27.0	35.6	55.4	77.5

$\ \mathcal{N}\ $	YR10	MR10	CTR	HMDB	UCF
64	26.0	25.5	33.1	56.1	76.0
128	27.1	26.4	33.3	57.2	76.2
256	28.7	28.7	36.5	56.5	77.5
512	28.8	29.0	35.6	55.4	77.4

(c) Number of positive candidate pair

	NCE		М	IL-NO	CE	
$\ \mathcal{P}\ \to$	1	3	5	9	17	33
YR10	29.1	33.6	35.0	33.1	32.4	28.3
MR10	27.0	30.2	31.8	30.5	29.2	30.4
CTR	35.6	37.3	34.2	31.8	25.0	25.0
HMDB	55.4	57.8	56.7	55.7	54.8	51.4
UCF	77.5	79.7	80.4	79.5	78.5	77.9

(d) MIL strategy								
Method	YR10	MR10	CTR	HMDB	UCF			
Cat+NCE	31.9	30.8	35.2	56.3	78.9			
Max+NCE	32.3	31.3	32.2	55.3	79.2			
Attn+NCE	32.4	30.2	33.4	55.2	78.4			
MIL-NCE	35.0	31.8	34.2	56.7	80.4			

(e) Symn	netric v	vs asyı	nmet	ric nega	atives
Negatives	YR10	MR10	CTR	HMDB	UCF
(x y)	34.4	29.0	33.9	55.1	78.1
(y x)	19.3	19.4	28.2	57.1	79.2
(x, y)	35.0	31.8	34.2	56.7	80.4

Text model	YR10	MR10	CTR	HMDB	UCF
LSTM	16.6	15.6	23.8	53.1	80.1
GRU	16.8	16.9	22.2	54.7	82.8
Transformer	26.7	26.5	32.7	53.4	78.4
NetVLAD	33.4	29.2	35.5	51.8	79.3
Ours	35.0	31.8	34.2	56.7	80.4

Input word vectors	YR10	MR10
BERT wo. stop words	19.0	19.7
BERT w. stop words	17.6	23.9

- Importance of Multiple Instance Learning: trade-off between likelihood to align and noise
- Many symmetric negative candidates
- Simple language models

	${\mathcal P}$ Positive candidates
50	main body of the laptop cover the
63	duct tape with aluminum cover all
61	remaining gaps edges with aluminum
56	tape use the leftover poster board to
50	create the keyboard keys I made my
	${\mathcal P}$ Positive candidates
67	spinach what's the name
57	keep it simple you just want to add
58	fresh herbs maybe some oregano
50	you can add cilantro basil they give

.50 it a couple more copies and when you

• Video-only representation:

Action recognition

Method	Dataset	MM	Model	Frozen	HMDB	UCF
OPN [45]	UCF	X	VGG	X	23.8	59.6
Shuffle & Learn [53]*	K600	X	S3D	X	35.8	68.7
Wang <i>et al.</i> [77]	K400	Flow	C3D	X	33.4	61.2
CMC [73]	UCF	Flow	CaffeNet	X	26.7	59.1
Geometry [25]	FC	Flow	FlowNet	X	23.3	55.1
Fernando et al. [24]	UCF	×	AlexNet	X	32.5	60.3
ClipOrder [85]	UCF	×	R(2+1)D	X	30.9	72.4
3DRotNet [37]*	K600	X	S3D	X	40.0	75.3
DPC [30]	K400	X	3D-R34	X	35.7	75.7
CBT [70]	K600	×	S3D	1	29.5	54.0
CBT [70]	K600	×	S3D	×	44.6	79.5
AVTS [42]	K600	Audio	I3D	×	53.0	83.7
AVTS [42]	Audioset	Audio	MC3	×	61.6	89.0
			12D	1	54.8	83.4
0	LITA	T	15D	×	59.2	89.1
Ours	HIM	Text	C2D	1	53.1	82.7
			53D	×	61.0	91.3
Fully-supervised	S3D	×	75.9	96.8		

• Video-only representation:

Action Segmentation

4	pas	te protector		1
place	the label	paste on	e protecto the screer	or 1
545	653 655	730	851	895
	pred	G	т	

Mathad	Mat	Pretrain	EA		
Method	Net	Dataset	Labels	FA	
	R50	ImNet	1	52.0	
Ours	I3D	K400	1	52.9	
	I3D	K700	1	54.2	
CBT [70]	S3D	K600+HTM	1	53.9	
Ours	I3D	HTM	X	59.4	
Ours	S3D	HTM	×	61.0	
	(a) (COIN			

• Joint text-video representation:

Video-to-text retrieval for Action Step Localization

	Method	Labels used	CTR
	Alayrac et al. [2]	ImNet+K400	13.3
	CrossTask [90]	ImNet+K400	22.4
	CrossTask [90]	ImNet+K400+CT	31.6
	Miech <i>et al</i> . [51]	ImNet+K400	33.6
without fine-tuning!	Ours (I3D)	None	36.4
	Ours (S3D)	None	40.5

(d) CrossTask (CT)

Method

Input: cut tomato

IBURG

Contput: Contput: Contput: R@1↑ R@5↑ R@10↑ MedR↓

I abeled dataset used

Wieurou	Labered dataset used	Ker	Res	Reito	meany		and
Random	None	0.03	0.15	0.3	1675		alt the second
HGLMM FV CCA	[41] ImNet + K400 + YouCook2	2 4.6	14.3	21.6	75		
Miech et al. [51]	ImNet + K400	6.1	17.3	24.8	46		
Miech et al. [51]	ImNet + K400 + YouCook2	8.2	24.5	35.3	24		
Ours (I3D)	None	11.4	30.6	42.0	16		
Ours (S3D)	None	15.1	38.0	51.2	10		
	(a) YouCook2					without fine-tuning!	
Method	Labeled dataset used R	@1† F	R@5 ↑ I	R@10↑	MedR↓		
Random	None (0.01	0.05	0.1	500		
Miech et al. [51]	ImNet + K400	7.5	21.2	29.6	38		
Ours (I3D)	None	9.4	22.2	30.0	35		
Ours (S3D)	None	9.9	24.0	32.4	29.5		- 2111-1 Q

(b) MSRVTT

https://www.di.ens.fr/willow/research/mil-nce/

Zero-shot Text-to-Video retrieval on YouCook2

crack eggs

۹

Ranked 1: IdEZ7LvLZPE -- Score: 9.83

Ranked 2: Vuy2nrJz0Zw -- Score: 9.73

Conclusion

" Use the novel **MIL-NCE objective** to learn **video representations without annotations**, by dealing with **misalignments** from uncurated instructional videos "

MIL-NCE

MIL Multiple Instance Learning

Noise Contrastive Estimation

Conclusion

"Use the novel MIL-NCE objective to learn video representations without annotations, by dealing with misalignments in uncurated instructional videos " Thank you!

MIL-NCE NCE Nultiple Instance Learning NIL-NCE Noise Contrastive Estimation

Discussion impulses

- How does their self-supervised fine-tuned version compare to supervised SOTA?
- Further explanation about differences among datasets in ablation studies
- In which other applications could it be interesting to use MIL-NCE loss?

