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What is transfer learning?

target taskbase task

● Mastering the base task, makes learning the target task easier
● Basic representations learned from the base task can be used on the target task
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Transfer for representation learning

● Task ~ Dataset
● Most often:

- Base dataset: large

- Target dataset: small
● Allows to target small datasets without over-fitting
● But also increases generalization on large datasets
● Transferring even from a distant task is often better 

than random initialization (Yosinki, et. al., 2014) 

Terminology warning

base vs. target

pre-training vs. transfer

upstream vs. downstream

(Krizhevsky et. al., 2012)
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Big Transfer (BiT)

BiT is a recipe for transfer learning where:

What BiT is NOT about:
● Creating a new component or analysis
● Bringing new theoretical insights
● Getting to bottom of why something works or doesn’t

Base training
● Very expensive
● But done only once
● Creates a highly adaptable model

Target tuning
● Cheap
● No hyper-parameters to optimize
● Good performance even with a 

very limited amount of examples
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The three BiT ingredients:

For the base training:

1 - Scale: 
Large datasets

Large networks 

Large computational budgets

2 – Normalization:
Group normalization 

Weight standardization

For the target tuning:

3 - Pre-optimized hyper-parameters:
Image scaling

Number of training steps

Use of mix-up
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Scale

Model Base dataset Size

BiT-S ILSVRC-2012 1.3 M

BiT-M ImageNet-21K 14 M

BiT-L JFT 300 M

Base datasets:

Target datasets:
ILSVCR-2012
CIFAR-10
CIFAR-100
Oxford-IIIT Pet
Oxford Flowers-102
VTAB (Visual Task Adaptation Benchmark)

Network architecture:
• ResNet-152x4
• 928M parameters
• Same architecture for all models

Terminology warning

Models are not named after 
their sizes, but after the size 

of their base datasets.
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What if a parameter weighted 1 mg...

ResNet-50
(26 kg)

Inception-v4
(48 kg)

EfficientNet-L2
(480 kg)

1M pars = 1 kg

(http://jumbhoanimal.blogspot.com) (https://www.thetimes.co.uk) (https://oceanwide-expeditions.com)
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What if a parameter weighted 1 mg...

Developer

I wonder if it
runs on a

smartphone..

ResNet-50 26M

Inception-v4 48M

EfficientNet-L2 480M

BiT (ResNet-152x4) 928M

BiT-L
(928 kg)

(https://www.wowamazing.com)
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The three BiT ingredients:

For the base training:

1 - Scale: 
Large datasets

Large networks 

Large computational budgets

2 – Normalization:
Group normalization 

Weight standardization

For the target tuning:

3 - Pre-optimized hyper-parameters:
Image scaling

Number of training steps

Use of mix-up
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The problem with batch normalization

(deepai.org)

TPU pod v3-512:

(cloud.google.com)

(cloud.google.com)

BiT batching:
● Batch size: 4096 
● Therefore, 8 images per TPU core

Options:
● Share batch statistics across TPUs → increased latency
● Use (less accurate) local batch statistics
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Group normalization & weight standardization

base training

target tuning

(Wu & He, 2018) (Wu & He, 2018)

(Qiao et. al., 2019) (Qiao et. al., 2019)

(Kolesnikov et. al., 2020)
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The three BiT ingredients:

For the base training:

1 - Scale: 
Large datasets

Large networks 

Large computational budgets

2 – Normalization:
Group normalization 

Weight standardization

For the target tuning:

3 - Pre-optimized hyper-parameters:
Image scaling

Number of training steps

Use of mix-up
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Fixed hyper-parameters

Architecture
• ResNet152x4
• Replace BN by GN
• Add WS to all convolutional layers

Weight decay
• wd: 0.0001
• Just during base task training

SGD
• Momentum: 0.9
• Initial learning rate: 0.03
• LR decay by a factor of 10 at specific epochs
• Batch size: 4096 distributed equally among 512 workers
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BiT-HyperRule 

Image area Resize to Random crop

≤ 96 x 96 px 160x160 px 128x128 px

> 96 x 96 px 448x448 px 384x384 px

Number of 
examples

Training steps Mix up alpha

≤ 20k 500 0.0

> 20k 
≤ 500k

10k 0.1

> 500k 20k 0.1
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Mix-up

● A data augmentation technique
● From two data points, generates a third one

● λ  is sampled from a beta distribution
(Zhang et. al., 2018)

Beta dist. (alpha=0.1) PDF
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Results
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Results: Classic benchmarks

(Kolesnikov et. al., 2020)

(Kolesnikov et. al., 2020)
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Results: VTAB

(Kolesnikov et. al., 2020)

Natural Specialized Structured

Caltech101 Camelyon Clevr-Count

CIFAR-100 EuroSAT Clevr-Dist

DTD Resisc45 DMLab

Flowers102 Retinopathy dSpr-Loc

Pets Dspr-Ori

Sun397 KITTI-Dist

SVHN sNORB-Azim

SNORB-Elev
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Results: ObjectNET
ImageNet ObjectNet

(Barbu & Mayo et. al, 2019)(Barbu & Mayo et. al, 2019)
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Results: ObjectNET
ImageNet ObjectNet

(Barbu & Mayo et. al., 2019)

(Kolesnikov et. al., 2020)
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Network and dataset sizes

(Kolesnikov et. al., 2020)

(Kolesnikov et. al., 2020)
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Training budget

÷ 12 x 16 = 235.468 USD
(monthly cost of the v3-512)

(cloud.google.com)

(Kolesnikov et. al., 2020)



Presented by Guilherme Miotto 23

Conclusion

1. Bigger was better
Big models, datasets and computers
But they all have to be scaled up simultaneously

2. Normalization was essential
But the technique has to be appropriate to the hardware

3. It was possible to get solid target performance, with little HPO
A pre-tuned hyper-parameter lookup table worked fine
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