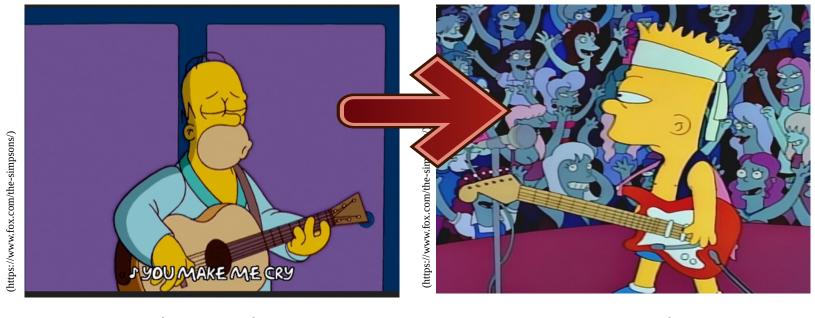


Big Transfer (BiT): General Visual Representation Learning

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly and Neil Houlsby

What is transfer learning?

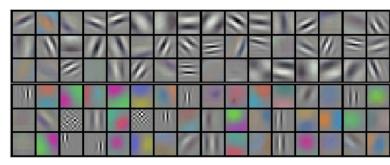


base task target task

- Mastering the base task, makes learning the target task easier
- Basic representations learned from the base task can be used on the target task

Transfer for representation learning

- Task ~ Dataset
- Most often:
 - Base dataset: large
 - Target dataset: small
- Allows to target small datasets without over-fitting
- But also increases generalization on large datasets
- Transferring even from a distant task is often better than random initialization (Yosinki, et. al., 2014)



(Krizhevsky et. al., 2012)

Terminology warning

base vs. target pre-training vs. transfer upstream vs. downstream

Big Transfer (BiT)

What BiT is NOT about:

- Creating a new component or analysis
- Bringing new theoretical insights
- Getting to bottom of why something works or doesn't

Base training

- Very expensive
- But done only once
- Creates a highly adaptable model

Target tuning

- Cheap
- No hyper-parameters to optimize
- Good performance even with a very limited amount of examples

The three BiT ingredients:

For the base training:

1 - Scale:

Large datasets

Large networks

Large computational budgets

2 - Normalization:

Group normalization
Weight standardization

For the target tuning:

3 - Pre-optimized hyper-parameters:

Image scaling
Number of training steps
Use of mix-up

Scale

Base datasets:

Model	Base dataset	Size
BiT-S	ILSVRC-2012	1.3 M
BiT-M	ImageNet-21K	14 M
BiT-L	JFT	300 M

Target datasets:

ILSVCR-2012

CIFAR-10

CIFAR-100

Oxford-IIIT Pet

Oxford Flowers-102

VTAB (Visual Task Adaptation Benchmark)

Network architecture:

- ResNet-152x4
- 928M parameters
- Same architecture for all models

Terminology warning

Models are not named after their sizes, but after the size of their base datasets.

What if a parameter weighted 1 mg...

1M pars = 1 kg

EfficientNet-L2 (480 kg)

Inception-v4 (48 kg)

pot.com) (https://www.thetimes.co.uk)

(https://oceanwide-expeditions.com)

(http://jumbhoanimal.blogspot.com)

ResNet-50 (26 kg)

What if a parameter weighted 1 mg...

BiT-L (928 kg)

ResNet-50 26M

Inception-v4 48M

EfficientNet-L2 480M

BiT (ResNet-152x4) 928M

(https://www.wowamazing.com)

The three BiT ingredients:

For the base training:

1 - Scale:

Large datasets

Large networks

Large computational budgets

2 - Normalization:

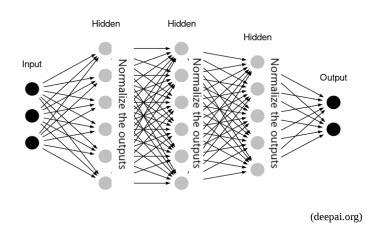
Group normalization
Weight standardization

For the target tuning:

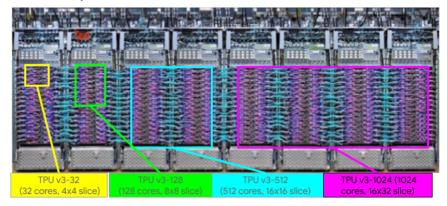
3 - Pre-optimized hyper-parameters:

Image scaling
Number of training steps
Use of mix-up

The problem with batch normalization



TPU pod **v3-512**:



(cloud.google.com)

BiT batching:

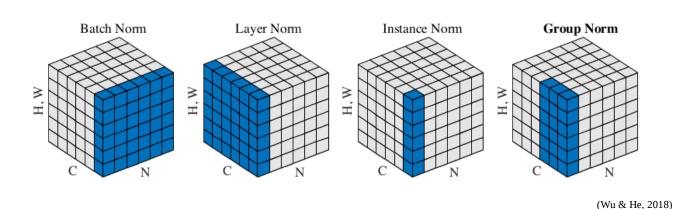
- Batch size: 4096
- Therefore, 8 images per TPU core

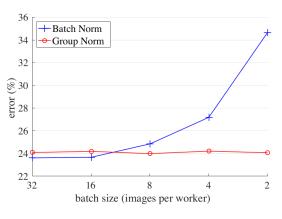
Options:

- Share batch statistics across TPUs → increased latency
- Use (less accurate) local batch statistics

(cloud.google.com)

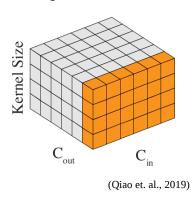
Group normalization & weight standardization

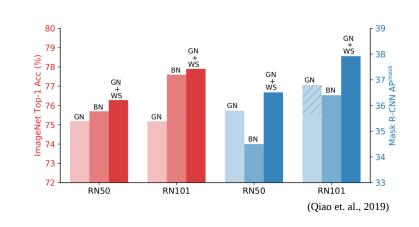




(Wu & He, 2018)

Weight Standardization





base training

	Plain Conv	Weight Std.	
Batch Norm.	75.6	75.8	
${\bf Group\ Norm.}$	70.2	76.0	

target tuning

	Plain Conv	Weight Std.
Batch Norm.	67.72	66.78
Group Norm.	68.77	70.39

(Kolesnikov et. al., 2020)

The three BiT ingredients:

For the base training:

1 - Scale:

Large datasets

Large networks

Large computational budgets

2 - Normalization:

Group normalization
Weight standardization

For the target tuning:

3 - Pre-optimized hyper-parameters:

Image scaling
Number of training steps
Use of mix-up

Fixed hyper-parameters

SGD

- Momentum: 0.9
- Initial learning rate: 0.03
- LR decay by a factor of 10 at specific epochs
- Batch size: 4096 distributed equally among 512 workers

Weight decay

- wd: 0.0001
- Just during base task training

Architecture

- ResNet152x4
- Replace BN by GN
- Add WS to all convolutional layers

BiT-HyperRule

Image area	Resize to	Random crop	
≤ 96 x 96 px	160x160 px	128x128 px	
> 96 x 96 px	448x448 px	384x384 px	

Number of examples	Training steps	Mix up alpha
≤ 20k	500	0.0
> 20k ≤ 500k	10k	0.1
> 500k	20k	0.1

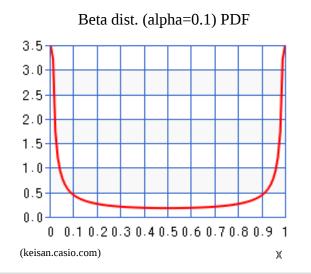
Mix-up

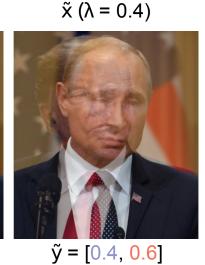
- A data augmentation technique
- From two data points, generates a third one

$$\tilde{x} = \lambda x_i + (1 - \lambda)x_j$$
, where x_i, x_j are raw input vectors $\tilde{y} = \lambda y_i + (1 - \lambda)y_j$, where y_i, y_j are one-hot label encodings

(Zhang et. al., 2018)

λ is sampled from a beta distribution



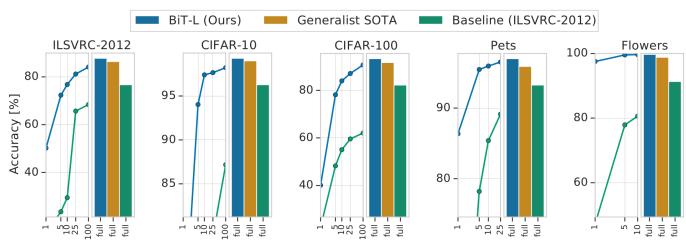


Results

Results: Classic benchmarks

	BiT-L	Generalist SOTA	Specialist SOTA
ILSVRC-2012	$\textbf{87.54}\pm\textbf{0.02}$	86.4 [57]	88.4 [61]*
CIFAR-10	99.37 ± 0.06	99.0 [19]	-
CIFAR-100	93.51 ± 0.08	91.7 [55]	-
Pets	96.62 ± 0.23	95.9 [19]	97.1[38]
Flowers	99.63 ± 0.03	98.8 [55]	97.7[38]
VTAB (19 tasks)	$\textbf{76.29}\pm\textbf{1.70}$	70.5 [58]	

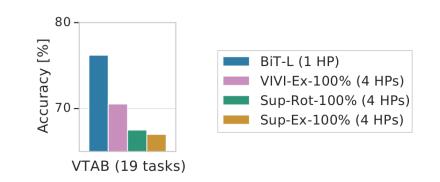
(Kolesnikov et. al., 2020)

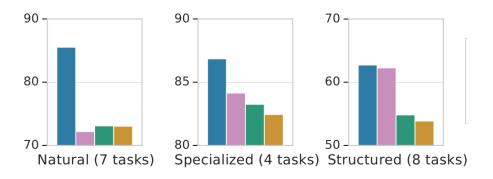


(Kolesnikov et. al., 2020)

Results: VTAB

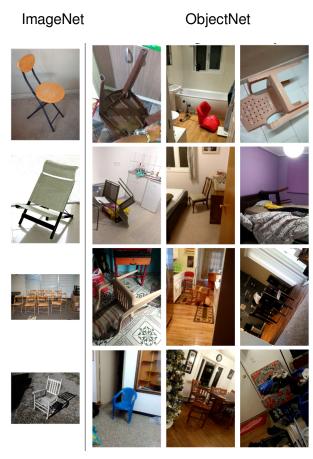
Natural	Specialized	Structured
Caltech101	Camelyon	Clevr-Count
CIFAR-100	EuroSAT	Clevr-Dist
DTD	Resisc45	DMLab
Flowers102	Retinopathy	dSpr-Loc
Pets		Dspr-Ori
Sun397		KITTI-Dist
SVHN		sNORB-Azim
		SNORB-Elev





(Kolesnikov et. al., 2020)

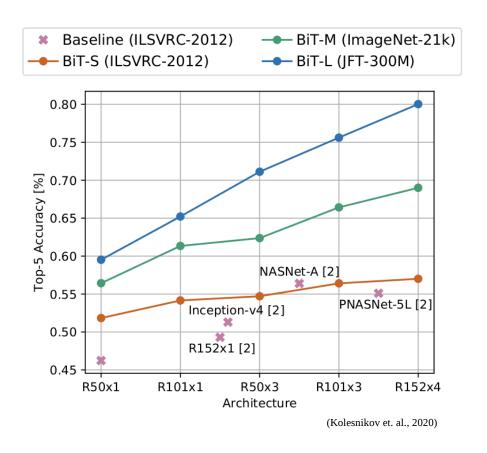
Results: ObjectNET



100 90 ImageNet Top-5 ImageNet Top-1 Overlap Top-5 Overlap Top-1 70 ObjectNet Top-5 ObjectNet Top-1 60 Accuracy % 50 40-45% performance drop 30 20 10 ResNet-152
2016 Inception V4
2018 PNASNet-5L
2018 PNASNet-5L Detectors AlexNet 2012 VGG-19 2014 by year

(Barbu & Mayo et. al, 2019)

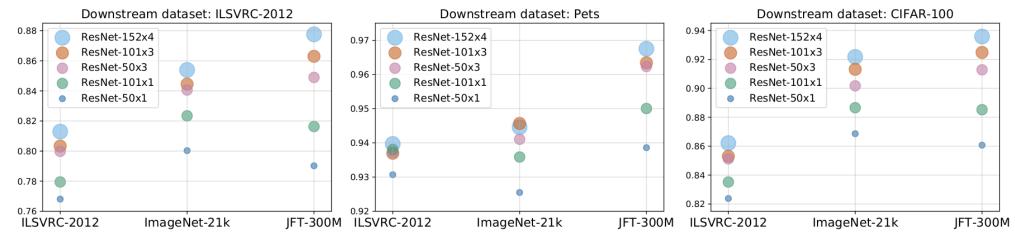
Results: ObjectNET



Network and dataset sizes

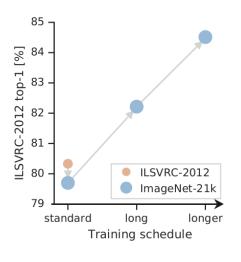
	ILSVRC- 2012	CIFAR- 10	CIFAR- 100	Pets	Flowers	VTAB-1k (19 tasks)
BiT-S (ILSVRC-2012)	81.30	97.51	86.21	93.97	89.89	66.87
BiT-M (ImageNet-21k)	85.39	98.91	92.17	94.46	99.30	70.64
Improvement	+4.09	+1.40	+5.96	+0.49	+9.41	+3.77

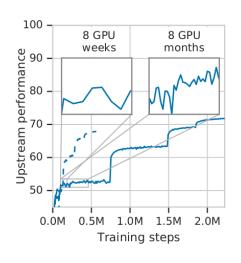
(Kolesnikov et. al., 2020)

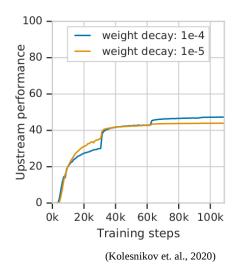


(Kolesnikov et. al., 2020)

Training budget

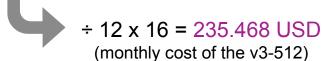


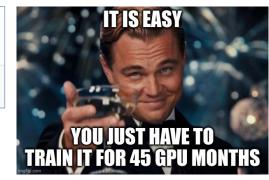




Cloud TPU v3 Pod	Evaluation Price / hr	1-yr Commitment Price (37% discount)	3-yr Commitment Price (55% discount)	
32-core Pod slice	\$32 USD	\$176,601 USD	\$378,432 USD	

(cloud.google.com)





Conclusion

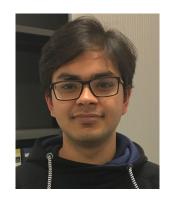
- Bigger was better
 Big models, datasets and computers
 But they all have to be scaled up simultaneously
- 2. Normalization was essential

 But the technique has to be appropriate to the hardware
- 3. It was possible to get solid target performance, with little HPO A pre-tuned hyper-parameter lookup table worked fine

References

- Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., ... & Katz, B. (2019). **Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition models**. In Advances in Neural Information Processing Systems (pp. 9453-9463).
- Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., & Houlsby, N. (2019). **Big transfer (BiT): General visual representation learning**. arXiv preprint arXiv:1912.11370.
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). **Imagenet classification with deep convolutional neural networks**. In Advances in neural information processing systems (pp. 1097-1105).
- Qiao, S., Wang, H., Liu, C., Shen, W., & Yuille, A. (2019). Weight standardization. arXiv preprint arXiv:1903.10520.
- Wu, Y., & He, K. (2018). **Group normalization**. In Proceedings of the European conference on computer vision (ECCV) (pp. 3-19).
- Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). **How transferable are features in deep neural networks?.** In Advances in neural information processing systems (pp. 3320-3328).
- Zhai, X., Puigcerver, J., Kolesnikov, A., Ruyssen, P., Riquelme, C., Lucic, M., ... & Beyer, L. (2019). A large-scale study of representation learning with the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867.
- Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412.

Acknowledgments



Sudhanshu Mittal

Alexander Kolesnikov

Lucas Beyer

25

Thank you