

Current Works in Computer Vision

Learning Correspondence from the Cycle-consistency of Time

Xiaolong Wang Allan Jabri Alexei A. Efros

Outline

- Introduction
- Related Works
- Approach
- Experiments
- Limitations and Conclusion
- References

 Given two images depicting roughly the same scene.

- Given two images depicting roughly the same scene.
- Finding the corresponding pixel of p in the second image

- Given two images depicting roughly the same scene.
- Finding the corresponding pixel of p in the second image.
- One of the most important problems in computer vision.

- Low-level learning approach difficult to be generalized.
- High-level learning approach expensive at large scale.
- Unsupervised learning of correspondence

Related Work

- Tracking
- Optical flow
- Self-supervised representation learning from video
- Temporal Continuity in Visual Learning
- Forward/backward cycle Consistency

Related Work

Tracking

- Two types of tracking.
- Repeated recognition tracking.
- Tracking by matching.
- Optical flow
 - Correspondence at the pixel level.
 - difficulties with longrange correspondence.
 - Mid-level optical flow.

(a) Unsupervised Tracking in Videos

- Self-supervised representation learning from video
 - Off-the-shelf tools.
 - Limitation by those tools.
 - Joint learning as a solution.

Related Work

- Forward/Backward and Cycle Consistency
 - How to achieve cycle-consistency
 when facing some challenges.
 - The usage of cycle-consistency over multiple steps.

- Temporal Continuity in Visual Learning
- Importance of Temporal stability.
- Computational methods.
- Slow feature learning with fixation without supervision.

- Cycle Consistency Losses
 - Recurrent Tracking Formulation
 - Learning Objectives
- Architecture for Mid-level correspondence
 - Spatial Feature Encoder
 - Differentiable Tracker
 - End-to-end Joint Training

٠

extract a patch p_t from image I_t

- Extract a patch p_t from image I_t
- · Learn feature space ϕ by tracking the patch backwards and then forwards in time.
- Minimization of the cycle consistency loss.

- Extract a patch p_t from image I_t
- · Learn feature space ϕ by tracking the patch backwards and then forwards in time.
- Minimization of the cycle consistency loss.
- · \mathcal{T} returns best match feature region in the target image.

Track operation applied iteratively in a forward manner:

 $\mathcal{T}^{(i)}(x_{t-i}^I, x^p) = \mathcal{T}(x_{t-1}^I, \mathcal{T}(x_{t-2}^I, \dots \mathcal{T}(x_{t-i}^I, x^p)))$

Track operation applied iteratively in a forward manner:

$$\mathcal{T}_{\checkmark}^{(i)}(x_{t-i}^{I}, x^{p}) = \mathcal{T}(x_{t-1}^{I}, \mathcal{T}(x_{t-2}^{I}, ... \mathcal{T}(x_{t-i}^{I}, x^{p})))$$
i times forwards
Finishing at
Starting from

Track operation applied iteratively in a forward manner:

$$\mathcal{T}^{(i)}(\overbrace{x_{t-i}^{I},x^{p}}) = \mathcal{T}(x_{t-1}^{I},\mathcal{T}(x_{t-2}^{I},\ldots\mathcal{T}(x_{t-i}^{I},x^{p})))$$

$$x_{t-k:t}^{I} = \phi(I_{t-k:t})$$

$$x_{t}^{p} = \phi(p_{t})$$

Pixels mapped to a feature space by an encoder ϕ .

Track operation is applied iteratively in a forward manner:

$$\mathcal{T}^{(i)}(x_{t-i}^{I}, x^{p}) = \mathcal{T}(x_{t-1}^{I}, \mathcal{T}(x_{t-2}^{I}, ... \mathcal{T}(x_{t-i}^{I}, x^{p})))$$

Summary:

- Input: features of both image & a patch.
- Output: the most similar patch feature to the input patch.
- Can be applied iteratively in both forward and backward manner.

Track operation is applied iteratively in a backward manner:

$$\mathcal{T}^{(-i)}(x_{t-1}^{I}, x^{p}) = \mathcal{T}(x_{t-i}^{I}, \mathcal{T}(x_{t-i+1}^{I}, \dots \mathcal{T}(x_{t-1}^{I}, x^{p})))$$

Learning Objectives

Learning Objectives Feature Similarity

$$\mathcal{L} = \sum_{i=1}^{k} \mathcal{L}_{sim}^{i} + \lambda \mathcal{L}_{skip}^{i} + \lambda \mathcal{L}_{long}^{i}.$$

$$\mathcal{L}^i_{sim} = -\langle x^p_t, \mathcal{T}(x^I_{t-i}, x^p_t) \rangle$$

- Similarity measure between feature query patch & the localized patch.
- Negative Frobenius inner product.

Learning Objectives Skip Cycle

$$\mathcal{L} = \sum_{i=1}^{\kappa} \mathcal{L}_{sim}^{i} + \lambda \mathcal{L}_{skip}^{i} + \lambda \mathcal{L}_{long}^{i}.$$

Error in alignment measure
$$\mathcal{L}_{skip}^{i} = \boxed{l_{\theta}}(x_{t}^{p}, \mathcal{T}(x_{t}^{I}, \mathcal{T}(x_{t-i}^{I}, x_{t}^{p}))).$$

- Long-range matching is allowed.
- It is achieved by skipping frames.
- Above an example of skipping to the i^{th} frame away.

Learning Objectives Skip Cycle

$$\begin{aligned} \mathcal{L} &= \sum_{i=1}^{\kappa} \mathcal{L}_{sim}^{i} + \lambda \overline{\mathcal{L}_{skip}^{i}} + \lambda \mathcal{L}_{long}^{i}. \end{aligned}$$
Error in alignment measure
$$\begin{aligned} \mathcal{L}_{skip}^{i} &= \boxed{l_{\theta}}(x_{t}^{p}, \mathcal{T}(x_{t}^{I}, \mathcal{T}(x_{t-i}^{I}, x_{t}^{p}))). \end{aligned}$$

Learning Objectives Tracking

The following is sums of the overall learning objectives over k cycles:

$$\begin{aligned} \mathcal{L} &= \sum_{i=1}^{k} \mathcal{L}_{sim}^{i} + \lambda \mathcal{L}_{skip}^{i} + \lambda \mathcal{L}_{long}^{i} \\ \text{ror in alignment measure} \\ \mathcal{L}_{long}^{i} &= \boxed{l_{\theta}}(x_{t}^{p}, \mathcal{T}^{(i)}(x_{t-i+1}^{I}, \mathcal{T}^{(-i)}(x_{t-1}^{I}, x_{t}^{p}))). \end{aligned}$$

• The tracker chase the features.

Ε

- At first it goes *i*th steps backwards.
- Then goes forwards till it reaches the initial query.

Architecture for Mid-level Correspondence

Spatial Feature Affinity function Localizer Bilinear Sampler Encoder

Architecture for Mid-level Correspondence spatial Feature Encoder

- Spatial Feature Encoder
 - determines the type of correspondence (mid-level in this case).
 - Maps pixels into feature space.
 - In this research ResNet-50 without res₅ was used.

Differentiable Tracker Affinity function

Affinity function

- A similarity measure between two coordinates of spatial features.
- Dot product between embeddings.
- $f: \mathbb{R}^{c \times 30 \times 30} \times \mathbb{R}^{c \times 10 \times 10} \to \mathbb{R}^{900 \times 100}$.

Differentiable Tracker Localizer

Localizer

- Uses the resulting Affinity matrix A to find the best match for the corresponding patch.
- Outputs localization parameters θ
- Consist of 2 convolutional layers & 1 linear layer.

Differentiable Tracker Bilinear sampler

Bilinear sampler

- Uses both the image feature and the localization parameters.
- Produce a new feature patch.
- $h: \mathbb{R}^{c \times 30 \times 30} \times \mathbb{R}^3 \to \mathbb{R}^{c \times 10 \times 10}$.

End-to-end Training

- The spatial encoder and the tracking operation together forms a differentiable patch tracker.
- This allows end-to-end training.

$$x^{I}, x^{p} = \phi(I), \phi(p)$$
$$\mathcal{T}(x^{I}, x^{p}) = h(x^{I}, g(f(x^{I}, x^{p})).$$

Experiments

- Setup and baselines
 - Training Inference Propagation results Baselines
- Davis-2017 (experiment I & IV)
- JHMDB (II)
- VIP (III)

Experiments Training

- Model trained with VLOG dataset.
- No annotation or pre-training was used.
- 114K videos with overall length of 344 hrs.
- They set the past frames to be 4
- They trained the model for 30 epochs.

Experiments Inference

- The trained encoder was used to compute dense correspondences.
- Labels are given for the first frame of video.
- The initial labels were propagated to the rest of frames.
- Labels of pixels are quantified by C classes.
 (e.g. for segmentation masks C is the number of semantic labels).
- Labels are propagated in the feature space.

Experiments Inference

- The Experiments tasks depend on the labels type.
- For instance masks labels Davis-2017 was used.
 - Multiple instances are annotated at each video sequence.
- For human pose keypoints JHMDB was used.
 - Fully annotated for human poses & actions.
- For both instance masks and semantic-level VIP was used.
 - Semantic labels are used for different human parts.
 - Instance labels are used to differentiate humans.

Experiments Propagation Results

- The feature can propagate The initial labels to the rest of frames.
- In the examples above instance masks labels were propagated. (DAVIS-2017).

Experiments Baseline

Unsupervised

- Identity
- Optical flow
- SIFT flow
- Transitive Invariance
- DeepCluster
- Video Colorization
- Supervised
 - ImageNet pre-trained
 - Fully-Supervised Methodes

Experiments Baseline

Unsupervised

- Identity
- Optical flow
- SIFT flow
- Transitive Invariance
- DeepCluster
- Video Colorization
- Supervised
 - ImageNet pre-trained
 - Fully-Supervised Methodes

- Self supervised.
- Trained with Kinetics.
- Self-supervision via color propagation.

Experiments Baseline

Unsupervised

- Identity
- Optical flow
- SIFT flow
- Transitive Invariance
- DeepCluster
- Video Colorization
- Supervised
 - ImageNet pre-trained
 - Fully-Supervised Methodes

- Supervised method.
- ResNet-50.
- Trained on ImageNet.

Experiment I Evaluation Metrics

- Region similarity (IoU) J
 - Intersection over union
- Contour-based accuracy F
 - How well both objects fits together.

Experiment I Instance Propagation on DAVIS-2017

		model		Supervised	$\mathcal{J}(Mean)$	$\mathcal{F}(Mean)$	
		Identity			22.1	23.6	
		Random Weights (Re	sNet-50)		12.4	12.5	
		Optical Flow (FlowN	et2) [22]		26.7	25.2	
		SIFT Flow [39]			33.0	35.0	
		Transitive Inv. [74]			32.0	26.8	
		DeepCluster [8]			37.5	33.2	
.4% in \mathcal{J}		Video Colorization [6	59]		34.6	32.7	
.2% in <i>T</i>		Ours (ResNet-18)			40.1	38.3	7.3% in $\mathcal J$
		Ours (ResNet-50)	2% wors	se	41.9	39.4	6.7% in F
	200 m	ImageNet (ResNet-50	D) [18]	~	50.3	49.0	
		Fully Supervised [81,	,7]	\checkmark	55.1	62.1	

- ImageNet preforms better.
- ImageNet has advantage cause of the use of curated object-centric annotation.

Experiment II Evaluation Metrics

The standard metric PCK

- Measures the accuracy of the localization of the body joints.
- In other words measures how many keypoints close to the ground truth in precentage.

Experiment II Pose Keypoint Propagation on JHMDB

	model	Supervised	PCK@.1	PCK@.2	
	Identity		43.1	64.5	
	Optical Flow (FlowNet2) [22]		45.2	62.9	
	SIFT Flow [39]		49.0	68.6	
	Transitive Inv. [74]		43.9	67.0	
	DeepCluster [8]		43.2	66.9	8.7% in PCK@.1
	Video Colorization [69]		45.2	69.6	9.9% in PCK@.2
0.7% in DCK@ 1	Ours (ResNet-18)		57.3	78.1	
0.7 % III PCK@.1	Ours (ResNet-50)		57.7	78.5	
L	ImageNet (ResNet-50) [18]	✓	58.4	78.4	
	Fully Supervised [59]	\checkmark	68.7	92.1	

Experiment II Pose Keypoint Propagation on JHMDB

Experiment III Semantic and Instance Propagation on VIP

model	Supervised	mIoU	$AP_{\rm vol}^r$
Identity		13.6	4.0
Optical Flow (FlowNet2) [22]		16.1	8.3
SIFT Flow [39]		21.3	10.5
Transitive Inv. [74]		19.4	5.0
DeepCluster [8]		21.8	8.1
Ours (ResNet-50)		28.9	15.6
ImageNet (ResNet-50) [18]	~	34.7	16.1
Fully Supervised [85]	~	37.9	24.1

Experiment III Semantic and Instance Propagation on VIP

	ADT	<u>Io</u> U	threshol	ld	
model	APvol	0.3	0.5	0.7	
Ours (ResNet-50)	15.6	23.0	12.7	5.4	
ImageNet (ResNet-50) [18]	16.1	24.2	11.9	4.8	

- ImageNet preforms better at smaller threshold.
- ImageNet has advantage at coarse corresponding.
- The "Ours" model preforms better at spatial precision.

Experiment IV Texture Propagation

Experiment V Video Frame Reconstructions

model	5-F	10-F
Identity	82.0	97.7
Optical Flow (FlowNet2) [22]	62.4	90.3
ImageNet (ResNet-50) [18]	64.0	79.2
Ours (ResNet-50)	60.4	76.4

Limitations and Conclusion

- Despite the method should keep improving with more data, in practice, after a considerable amount of time learning seems to enter state of little change.
- Correspondence learning using cycle consistency was shown to outperform most of the unsupervised methods.
- Yet in practice it did not outperform supervised approaches such as ImageNet.

References

- A. Jabri, Alexei A. Efros and Xiaolong Wang, Learning Correspondence from the Cycle-consistency of Time.
- Xiaolong Wang and Abhinav Gupta, Unsupervised Learning of Visual Representations using Videos.
- David Fouhey, Weicheng Kuo, Alexei Efros and Jitendra Malik, The VLOG Dataset.
- Animated GIF from : Xiaolong Wang, https://github.com/xiaolonw/TimeCycle
- Videos from : Xiaolong Wang, https://youtu.be/vk1DwG75ewQ