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Introduction

 Given two images 
depicting roughly the 
same scene.

 Finding the 
corresponding pixel of p 
in the second image.

 One of the most 
important problems in 
computer vision.
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 Low-level learning approach
difficult to be generalized.

 High-level learning approach
expensive at large scale.

 Unsupervised learning of correspondence

Introduction
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Related Work

 Tracking

 Optical flow

 Self-supervised representation learning from video

 Temporal Continuity in Visual Learning

 Forward/backward cycle Consistency
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Related Work
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 Tracking
● Two types of tracking.
● Repeated recognition

tracking.
● Tracking by matching.

 Optical flow
● Correspondence at the 

pixel level.
● difficulties with long-

range correspondence.
● Mid-level optical flow.

 Self-supervised representation 
learning from video
● Off-the-shelf tools.
● Limitation by those tools.
● Joint learning as a solution.



  

 Forward/Backward and Cycle 
Consistency
● How to achieve cycle-consistency 

when facing some challenges. 
● The usage of cycle-consistency 

over multiple steps.

Related Work
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 Temporal Continuity in Visual 
Learning

● Importance of Temporal 
stability.

● Computational methods.
● Slow feature learning with 

fixation without supervision.



  

 Cycle Consistency Losses
● Recurrent Tracking Formulation
● Learning Objectives

 Architecture for Mid-level correspondence
● Spatial Feature Encoder
● Differentiable Tracker
● End-to-end Joint Training

Approach
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•  extract a patch       from image
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• Extract a patch       from image
• Learn feature space     by tracking the patch backwards 

and then forwards in time.
• Minimization of the cycle consistency loss.
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Approach

• Extract a patch       from image
• Learn feature space     by tracking the patch backwards 

and then forwards in time.
• Minimization of the cycle consistency loss.
•      returns best match feature region in the target image.
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Cycle-Consistency Losses
Recurrent Tracking Formulation
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Track operation applied iteratively in a forward manner:
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Track operation applied iteratively in a forward manner:

starting from

i times forwards
Finishing at
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Track operation applied iteratively in a forward manner:

Pixels mapped to a feature space by an encoder    .



  

Cycle-Consistency Losses
Recurrent Tracking Formulation
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Track operation is applied iteratively in a forward manner:

Summary:
● Input: features of both image & a patch.
● Output: the most similar patch feature to the input patch.
● Can be applied iteratively in both forward and backward 

manner.

Track operation is applied iteratively in a backward manner:
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Learning Objectives

The following is sums of the overall learning objectives over k 
cycles:

Weight parameter set to equal:= 0.1
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Learning Objectives
Feature Similarity
The following is sums of the overall learning objectives over k 
cycles:

● Similarity measure between feature query patch & the 
localized patch.

● Negative Frobenius inner product. 
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Learning Objectives
Skip Cycle
The following is sums of the overall learning objectives over k 
cycles:

● Long-range matching is allowed.
● It is achieved by skipping frames.
● Above an example of skipping to the ith frame away.

Error in alignment measure 
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Learning Objectives
Skip Cycle
The following is sums of the overall learning objectives over k 
cycles:

Error in alignment measure 
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Learning Objectives
Tracking
The following is sums of the overall learning objectives over k 
cycles:

Error in alignment measure 

● The tracker chase the features.
● At first it goes ith steps backwards.
● Then goes forwards till it reaches the initial query.



  

Architecture for Mid-level Correspondence
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Spatial Feature 
Encoder

Affinity function Localizer Bilinear Sampler



  

Architecture for Mid-level Correspondence
spatial Feature Encoder
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 Spatial Feature Encoder
● determines the type of correspondence (mid-level in this 

case).
● Maps pixels into feature space.
● In this research ResNet-50 without res5 was used.



  

Differentiable Tracker
Affinity function 
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 Affinity function
● A similarity measure between two coordinates of spatial 

features.
● Dot product between embeddings.
●



  

Differentiable Tracker
Localizer
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 Localizer
● Uses the resulting Affinity matrix A to find the best match 

for the corresponding patch.
● Outputs localization parameters      .
● Consist of 2 convolutional layers & 1 linear layer.



  

Differentiable Tracker
Bilinear sampler
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 Bilinear sampler
● Uses both the image feature and the localization 

parameters.
● Produce a new feature patch.
●



  

End-to-end Training

 The spatial encoder and the tracking operation together 
forms a differentiable patch tracker.

 This allows end-to-end training.
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 Setup and baselines
- Training   -  Inference   - Propagation results  -Baselines

 Davis-2017 (experiment I & IV)
 JHMDB (II)
 VIP (III)

Experiments
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Experiments
Training

 Model trained with VLOG dataset.

 No annotation or pre-training was used.

 114K videos with overall length of 344 hrs.

 They set the past frames to be 4

 They trained the model for 30 epochs.
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Experiments
Inference
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 The trained encoder was used to compute dense 
correspondences.

 Labels are given for the first frame of video.

 The initial labels were propagated to the rest of frames.

 Labels of pixels are quantified by C classes.
(e.g. for segmentation masks C  is the number of semantic 
labels).

 Labels are propagated in the feature space.



  

Experiments
Inference
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 The Experiments tasks depend on the labels type.

 For instance masks labels Davis-2017 was used.
● Multiple instances are annotated at each video sequence.

 For human pose keypoints JHMDB was used.
● Fully annotated for human poses & actions.

 For both instance masks and semantic-level VIP was used.
● Semantic labels are used for different human parts.
● Instance labels are used to differentiate humans.
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Experiments
Propagation Results

 The feature can propagate The initial labels to the rest of 
frames.

 In the examples above instance masks labels were 
propagated. (DAVIS-2017).
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Experiments
Baseline

 Unsupervised
● Identity
● Optical flow
● SIFT flow
● Transitive Invariance
● DeepCluster
● Video Colorization

 Supervised 
● ImageNet pre-trained
● Fully-Supervised 

Methodes
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Experiments
Baseline

 Unsupervised
● Identity
● Optical flow
● SIFT flow
● Transitive Invariance
● DeepCluster
● Video Colorization

 Supervised 
● ImageNet pre-trained
● Fully-Supervised 

Methodes

● Self supervised.
● Trained with  Kinetics.
● Self-supervision via color 

propagation.
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Experiments
Baseline

 Unsupervised
● Identity
● Optical flow
● SIFT flow
● Transitive Invariance
● DeepCluster
● Video Colorization

 Supervised 
● ImageNet pre-trained
● Fully-Supervised 

Methodes

● Supervised method.
● ResNet-50.
● Trained on ImageNet.



  

Experiment I
Evaluation Metrics
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 Region similarity (IoU)
● Intersection over union

 Contour-based accuracy
● How well both objects 

fits together.



  

Experiment I
Instance Propagation on DAVIS-2017
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7.3% in J 
6.7% in F

4.4% in J 
6.2% in F

2% worse

 ImageNet preforms better.
 ImageNet has advantage cause of the use of curated object-centric 

annotation.



  

Experiment II
Evaluation Metrics

 The standard metric PCK
● Measures the accuracy of 

the localization of the body 
joints.

● In other words measures 
how many keypoints close 
to the ground truth in 
precentage.
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Experiment II
Pose Keypoint Propagation on JHMDB
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8.7% in PCK@.1
9.9% in PCK@.2

0.7% in PCK@.1



  

Experiment II
Pose Keypoint Propagation on JHMDB

28



  

Experiment III
Semantic and Instance Propagation on VIP
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Experiment III
Semantic and Instance Propagation on VIP

 ImageNet preforms better at smaller threshold.
 ImageNet has advantage at coarse corresponding.
 The “Ours” model preforms better at spatial precision.



  

Experiment IV
Texture Propagation
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Experiment V
Video Frame Reconstructions
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Limitations and Conclusion

 Despite the method should keep improving with more data, in 
practice, after a considerable amount of time learning seems to 
enter state of little change.

 Correspondence learning using cycle consistency was shown to 
outperform most of the unsupervised methods.

 Yet in practice it did not outperform supervised approaches 
such as ImageNet.
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