Peeking into the Future: Predicting Future Person Activities and Locations in Videos

Junwei Liang, Lu Jiang, Juan Carlos Niebles, Alexander Hauptmann, Li Fei-Fei

Seminar Computer Vision
10th of July 2019
Naya Baslan
Supervisor: Osama Makansi
Outline

- Motivation
- Related Work (for trajectory and activity prediction)
- Approach: Next Model
 - Person Behavior Module
 - Person Interaction Module
 - Trajectory Generator with Focal Attention
 - Activity Prediction
- Experiments: ActEV/VIRAT and ETH & UCY
- Conclusion
Motivation

Main Contribution of this Paper:
Path Prediction Activity Prediction

joint task

Results in better prediction of future path and activity

Figure 1: Introduction
Outline

- Introduction

- Related Work (for trajectory and activity prediction)
 - Approach: Next Model
 - Person Behavior Module
 - Person Interaction Module
 - Trajectory Generator with Focal Attention
 - Activity Prediction
 - Experiments: ActEV/VIRAT and ETH & UCY
 - Conclusion
Related Work for Trajectory Prediction

Person-person models:

- Human Interactions and Behaviour
- Trajectory Prediction

examples:
Social-LSTM and Social-GAN

- Allows sharing of hidden states between different LSTMs

Source: Social LSTM Human Trajectory
Related Work for Trajectory Prediction

Person-scene models:

- Models the interaction between the person and the surrounding

Examples:
- Scene-LSTM, Car-Net and SoPhie

Source: Scene-LSTM: A Model for Human Trajectory Prediction

• Models the interaction between the person and the surrounding
• Using LSTMs to recognize human activities
• In this paper: both activity and trajectories are jointly predicted using rich visual features and focal attention

Source: Learning Activity Progression in LSTMs for Activity Detection and Early Detection
Outline

- Introduction
- Related Work (for trajectory and activity prediction)
- Approach: Next Model
 - Person Behavior Module
 - Person Interaction Module
 - Trajectory Generator with Focal Attention
 - Activity Prediction
- Experiments: ActEV/VIRAT and ETH & UCY
- Conclusion
Approach:

- Next: Multi-task learning model used to predict path and activity.

Problem Formulation:

<table>
<thead>
<tr>
<th>1 to T_{obs}</th>
<th>T_{obs+1} to T_{pred}</th>
<th>T_{pred}</th>
</tr>
</thead>
<tbody>
<tr>
<td>make observations</td>
<td>predict positions of person</td>
<td>predict activity</td>
</tr>
</tbody>
</table>

- Trajectory prediction from T_{obs+1} to T_{pred}.
- Activity prediction at T_{pred}.
Next Model: Framework

Figure 2: Model Overview

- Person Behavior Module
- Person Interaction Module
- Trajectory Generator
- Activity Prediction
This module has 2 sub-modules:
- Person Appearance Encoder (uses a pre-trained object detection model)
 Source: J. Liang et al.
- Person Keypoint Encoder (uses a pre-trained person keypoint model)
 Source: H.-S. Fang et al.

(both related to visual information about every person in the scene)
- Model person-scene interactions
- Model person-object interactions
Person Interaction Module: Person-Object Encoder

 observes person
 \((x_b, y_b, w_b, h_b)\)

 observes object
 \((x_k, y_k, w_k, h_k)\)

\(k \in [1, K]\)

- compute the geometric relation \(G\) where

\[
G_k = \left[\log\left(\frac{|x_b - x_k|}{w_b} \right), \log\left(\frac{|y_b - y_k|}{h_b} \right), \log\left(\frac{w_k}{w_b} \right), \log\left(\frac{h_k}{h_b} \right) \right]
\]

- geometric distance
- fraction box size
Visual Features

Person Appearance Features
Person Keypoint Features
Person-Object Features
Person-Scene Features

Tensor Q contains the hidden states of all LSTM encoders

5 x T_{obs} x d

Visual Feature Tensor Q

Trajectory embedding:
\[e_{t-1} = \tanh \{ W_e [x_{t-1}, y_{t-1}] \} + b_e \in \mathbb{R}^d \]
(fully connected layer with activation function \tanh)

The trajectory embedding function is obtained from the trajectory output at the last time instant and is fed into an LSTM encoder.
The hidden states of all 5 LSTMs are packed into a tensor.
Input feature vectors are all passed into a 3D tensor. Then multi-task prediction is done (simultaneously predicting both the trajectory and the future activity).
Trajectory Generator

Without Focal Attention:

LSTM decoder: \[h_t = \text{LSTM} \left(h_{t-1}, [e_{t-1}] \right) \]

With Focal Attention:

LSTM decoder: \[h_t = \text{LSTM} \left(h_{t-1}, [e_{t-1}, \tilde{q}_t] \right) \]

Focal attention identifies what content of the sequential data needs to be focused on to make correct predictions.
In summary: focal attention models the correlation among different features and summarizes them into a lower dimensional feature vector.
Main Task: activity label prediction

Auxiliary Task: activity label prediction

Purpose of auxiliary task:
- to bridge the gap between trajectory generation and activity label prediction
- to minimize the errors in trajectory that have been accumulating over time
Activity Location Prediction:

- predicts the final location of the person's activity

Manhattan Grid

$h \times w$
• **Activity Label Prediction:**
 • Predicts the person's future activity at time T_{pred}

\[
\text{cls}_{act} = \text{softmax}(W_a \cdot [Q_{1T_{obs}}, \cdots, Q_{MT_{obs}}])
\]
Training: (3 Losses)

Total Loss: \[L = L_{xy} + \lambda (L_{grid_cls} + L_{grid_reg}) + L_{act} \]

- Trajectory Prediction Loss
- Activity Location Prediction Loss
- Activity Label Prediction Loss
Outline

- Introduction
- Related Work (for trajectory and activity prediction)
- Approach: Next Model
 - Person Behavior Module
 - Person Interaction Module
 - Trajectory Generator with Focal Attention
 - Activity Prediction
- Experiments: ActEV/VIRAT and ETH & UCY
- Conclusion
Public dataset for activity detection released by NIST in 2018

Metrics used for trajectory prediction:

Average Displacement Error (ADE)

\[
ADE = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T_{pred}} \| \tilde{Y}_t^i - Y_t^i \|_2}{N \times T_{pred}}
\]

Final Displacement Error (FDE)

\[
FDE = \frac{\sum_{i=1}^{N} \| \tilde{Y}_{T_{pred}}^i - Y_{T_{pred}}^i \|_2}{N}
\]
Comparison to Baseline Methods Quantitative Results

<table>
<thead>
<tr>
<th>Method</th>
<th>ADE</th>
<th>FDE</th>
<th>move_ADE</th>
<th>move_FDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>32.19</td>
<td>60.92</td>
<td>42.82</td>
<td>80.18</td>
</tr>
<tr>
<td>LSTM</td>
<td>23.98</td>
<td>44.97</td>
<td>30.55</td>
<td>56.25</td>
</tr>
<tr>
<td>Social LSTM</td>
<td>23.10</td>
<td>44.27</td>
<td>28.59</td>
<td>53.75</td>
</tr>
<tr>
<td>SGAN-PV</td>
<td>30.51</td>
<td>60.90</td>
<td>37.65</td>
<td>73.01</td>
</tr>
<tr>
<td>SGAN-V</td>
<td>30.48</td>
<td>62.17</td>
<td>35.41</td>
<td>68.77</td>
</tr>
<tr>
<td>Ours</td>
<td>17.99</td>
<td>37.24</td>
<td>20.34</td>
<td>42.54</td>
</tr>
<tr>
<td>Ours-Noisy</td>
<td>34.32</td>
<td>57.04</td>
<td>40.33</td>
<td>66.73</td>
</tr>
<tr>
<td>SGAN-PV-20</td>
<td>23.11</td>
<td>41.81</td>
<td>29.80</td>
<td>53.04</td>
</tr>
<tr>
<td>SGAN-V-20</td>
<td>21.16</td>
<td>38.05</td>
<td>26.97</td>
<td>47.57</td>
</tr>
<tr>
<td>Ours-20</td>
<td>16.00</td>
<td>32.99</td>
<td>17.97</td>
<td>37.28</td>
</tr>
</tbody>
</table>

- This method outperforms all other baseline methods
- Experiments are divided into static and moving scenes
- Best performance is achieved when repeated 20 times
Comparison to Baseline Methods Qualitative Results

- Next model results in better trajectory predictions for all 3 people.
- In addition to that, it also predicts future activities.
Further Qualitative Results - Next Model

- Successful case is where both future trajectory and activity are predicted correctly
- Imperfect case predicts the correct trajectory but incorrect activity
- Failed case predicts both trajectory and activity incorrectly
• Few frames are observed and then predictions are made on both the future activity and trajectory
Ablation Studies

<table>
<thead>
<tr>
<th>Method</th>
<th>ADE ↓</th>
<th>FDE ↓</th>
<th>Act mAP ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our full model</td>
<td>17.91</td>
<td>37.11</td>
<td>0.192</td>
</tr>
<tr>
<td>No p-behavior</td>
<td>18.99</td>
<td>39.82</td>
<td>0.139</td>
</tr>
<tr>
<td>No p-interaction</td>
<td>18.83</td>
<td>39.35</td>
<td>0.163</td>
</tr>
<tr>
<td>No focal attention</td>
<td>19.93</td>
<td>42.08</td>
<td>0.144</td>
</tr>
<tr>
<td>No act label loss</td>
<td>19.48</td>
<td>41.45</td>
<td>-</td>
</tr>
<tr>
<td>No act location loss</td>
<td>19.07</td>
<td>39.91</td>
<td>0.152</td>
</tr>
<tr>
<td>No multi-task</td>
<td>20.37</td>
<td>42.79</td>
<td>-</td>
</tr>
</tbody>
</table>

- Person behavior features are more essential
- Worse results if focal attention is removed
- Worse results if multi-task learning is removed
- These datasets are for predicting person trajectory

<table>
<thead>
<tr>
<th>Method</th>
<th>ETH</th>
<th>HOTEL</th>
<th>UNIV *</th>
<th>ZARA1</th>
<th>ZARA2</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>1.33/2.94</td>
<td>0.39/0.72</td>
<td>0.82/1.59</td>
<td>0.62/1.21</td>
<td>0.77/1.48</td>
<td>0.79/1.59</td>
</tr>
<tr>
<td>LSTM</td>
<td>1.09/2.41</td>
<td>0.86/1.91</td>
<td>0.61/1.31</td>
<td>0.41/0.88</td>
<td>0.52/1.11</td>
<td>0.70/1.52</td>
</tr>
<tr>
<td>Alahi et al. [1]</td>
<td>1.09/2.35</td>
<td>0.79/1.76</td>
<td>0.67/1.40</td>
<td>0.47/1.00</td>
<td>0.56/1.17</td>
<td>0.72/1.54</td>
</tr>
<tr>
<td>Ours-single-model</td>
<td>0.88/1.98</td>
<td>0.36/0.74</td>
<td>0.62/1.32</td>
<td>0.42/0.90</td>
<td>0.34/0.75</td>
<td>0.52/1.14</td>
</tr>
<tr>
<td>20 Outputs Single Model</td>
<td>0.81/1.52</td>
<td>0.72/1.61</td>
<td>0.60/1.26</td>
<td>0.34/0.69</td>
<td>0.42/0.84</td>
<td>0.58/1.18</td>
</tr>
<tr>
<td>Gupta et al. 7</td>
<td>0.87/1.62</td>
<td>0.67/1.37</td>
<td>0.76/1.52</td>
<td>0.35/0.68</td>
<td>0.42/0.84</td>
<td>0.61/1.21</td>
</tr>
<tr>
<td>Gupta et al. 7</td>
<td>0.70/1.43</td>
<td>0.76/1.67</td>
<td>0.54/1.24</td>
<td>0.30/0.63</td>
<td>0.38/0.78</td>
<td>0.54/1.15</td>
</tr>
<tr>
<td>Sadeghian et al. [26]</td>
<td>0.73/1.65</td>
<td>0.30/0.59</td>
<td>0.60/1.27</td>
<td>0.38/0.81</td>
<td>0.31/0.68</td>
<td>0.46/1.00</td>
</tr>
<tr>
<td>Ours-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADE FDE
DEMO
Peeking into the Future: Predicting Future Person Activities and Locations in Videos

CVPR Submission
Paper ID 2601
Outline

- Introduction
- Related Work (for trajectory and activity prediction)
- Approach: Next Model
 - Person Behavior Module
 - Person Interaction Module
 - Trajectory Generator with Focal Attention
 - Activity Prediction
- Experiments: ActEV/VIRAT and ETH & UCY
- Conclusion
Conclusion

• The proposed model in this paper is used to predict future activities of pedestrians as well as future activities

• A person is modeled using visual semantics such as appearance and behavior

• Experiments were done on two common benchmarks and results show that it outperforms state-of-the-art methods

• Applications of this model range from autonomous driving to human assisting robots
References

Thank you!

Questions?
• Focal Attention

\[S^t = h_{t-1}^T \cdot Q_{ij} \]

\[A^t = \text{softmax}(\max_{i=1}^{M} S^t_i:) \in \mathbb{R}^M \]

\[B^t = [\text{softmax}(S^t_{1,:}), \cdots, \text{softmax}(S^t_{M,:})] \in \mathbb{R}^{M \times T_{obs}} \]

\[\tilde{q}_t = \sum_{j=1}^{M} A^t_j \sum_{k=1}^{T_{obs}} B^t_{jk} Q_{jk} : \in \mathbb{R}^d \]
Object and Activity Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object</td>
<td>Bike, Construction_Barrier, Construction_Vehicle, Door, Dumpster, Parking_Meter, Person, Prop, Push_Pulled_Object, Vehicle</td>
</tr>
<tr>
<td>Activity</td>
<td>Carry, Close_Door, Close_Trunk, Crouch, Enter, Exit, Gesture, Interaction, Load, Object_Transfer, Open_Door, Open_Trunk, PickUp, PickUp_Person, Pull, Push, Ride_Bike, Run, SetDown, Sit, Stand, Talk, Talk_phone, Texting, Touch, Transport, Unload, Use_tool, Walk</td>
</tr>
</tbody>
</table>
- Single Feature Ablation and Activity Detection Experiments

<table>
<thead>
<tr>
<th>Method</th>
<th>ADE ↓</th>
<th>FDE ↓</th>
<th>Act mAP ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our full model</td>
<td>17.91</td>
<td>37.11</td>
<td>0.192</td>
</tr>
<tr>
<td>No p-object</td>
<td>18.17</td>
<td>37.13</td>
<td>0.198</td>
</tr>
<tr>
<td>No p-scene</td>
<td>18.18</td>
<td>37.75</td>
<td>0.206</td>
</tr>
<tr>
<td>No p-keypoint</td>
<td>18.25</td>
<td>37.96</td>
<td>0.190</td>
</tr>
<tr>
<td>No p-appearance</td>
<td>18.20</td>
<td>37.79</td>
<td>0.154</td>
</tr>
<tr>
<td>Act Detect</td>
<td>18.27</td>
<td>37.68</td>
<td>0.155</td>
</tr>
</tbody>
</table>