Combining Self-Supervised Learning and Imitation for Vision-Based Rope Manipulation

Presenter: Salih Hasan Siddiqi Advisor: Artemij Amiranashvili

Outline

- Introduction
- Robot Specification
- Neural Network Training
- Evaluation

Deformable Objects

- Such as ropes and cloths.
- Manipulation skills requires high degree of dexterity.

Examples:

- 1. Children need help learning to tie their shoes.
- 2. Folding paper into an origami flower needs practice.

Deformable Objects

Problems

- Material can shift in unpredictable ways.
- Pose estimation difficult

Reasons:

- 1. Difficult to define degrees of freedom.
- 2. Lack of enough suitable training data.

Key Idea

- Inspired by how we as humans learn to manipulate deformable objects.
- Humans can learn to "tie a tie" by looking at the picture on the right.
- We know how to perform small manipulations based on our past experience.
- A robot could learn in a similar way.

Key Idea

Robot execution

Human demonstration

Key Idea

- Self supervised learning of robot to learn small deformations.
- Human provided demonstration as a high level plan.

Problems With Previous Approaches

- Modelling for deformable objects is challenging
- Kinematic models fail to capture full variability of the deformable object.
- Direct human Imitation fails in conditions that deviate from those in demonstrations.

Difference with Previous Approaches

- Model free approach with Deep Convolutional Neural Networks.
- Behaviour driven approach.
- Use raw images of rope which provides representational flexibility.
- Generalizable to other deformable objects.

Outline

- Introduction
- Robot Specification
- Neural Network Training
- Evaluation

• Baxter robot.

- Baxter robot.
- One hand with parallel jaw gripper.

Actions available: 1) Rotate 2) Open 3) Close

- Baxter robot.
- One hand with Parallel jaw gripper.
- Single action primitive
 1. Pick the rope at (x1, y1)
 2. Drop the rope at (x2, y2)

- Baxter robot.
- One hand with parallel jaw gripper.
- Single action primitive
 1. Pick the rope at (x1, y1)
 2. Drop the rope at (x2, y2)
- Visual inputs via RGB channels of Kinect camera.

Outline

- Introduction
- Robot Specification
- Neural Network Training
- Evaluation

Inverse Dynamics Model

• A model that predicts the action **u** that relates a pair of input states is called an inverse dynamics model

ut=**F(I**t,**I**t+1)

- Data autonomously collected by robot is used to train Inverse dynamics model.
- Human provides demonstration in the form of a sequence of images

$V = \{I_t | t = 1...T\}$

• The robot executes a series of actions to transform I_1 into I_2 , then I_2 into I_3 , and so on until the end of the sequence

• Representation is used to predict the action.

- For training, turn action prediction into a classification problem.
- Discretize Action space (pt, θt, It)

 $\begin{array}{l} \mbox{pt} (action \mbox{ location}) \ -> \ \mbox{Discretised onto} \ a \ 20^*20 \ \mbox{spatial grid} \\ \mbox{θ_t} (direction) \ -> \ \mbox{Discretised over 36 bins} \\ \mbox{I_t} (length) \ -> \ \mbox{Discretised over 10 bins} \\ \end{array}$

- Classify action elements independently
- Decompose joint discrete Distribution of action

 $P(p_t, \theta_t, l_t) = P(p_t)P(\theta_t | p_t)P(l_t | \theta_t, p_t)$

$$P(p_t) \xrightarrow{(\mathbf{x}_t, \mathbf{x}_{t+1}), (\hat{p}_t)} P(\theta_t | p_t) \xrightarrow{(\mathbf{x}_t, \mathbf{x}_{t+1}), (\hat{p}_t), (\hat{\theta}_t)} P(l_t | \theta_t, p_t)$$

Learning Through Self Exploration

- 1. Segment the rope using point cloud from Kinect camera.
- 2. Pick uniformly at random a pick point from this segment.
- 3. Drop point as displacement vector from pick point. Displacement Vector = $\theta \in [0, 2\pi) + I \in [1, 15]$ θ and I are picked uniformly at random

Learning Through Self Exploration

- 4. Execute the Following Actions
 - 1. Grasp the rope at the pick point.
 - 2. Move the arm 5 cm vertically above the pick point.
 - 3. Move the arm to a point 5 cm above the drop point.
 - 4. Release the rope by opening the gripper.
- 5. Resetting after 50 actions

Autonomous Data Collection to train NN

Active Data Collection

- Bias data collection towards interesting configurations.
- Manually arrange rope in Random configuration (i.e. the goal buffer).
- Instead of randomly sampling an action, randomly sample an image from goal buffer.
- Pass the current and goal image into the inverse model and use the action predicted for data collection.

Training Hyperparameters

- First five layers with pre-trained AlexNet weights.
- For first 5k iterations, Learning Rate = 0
- Rest of training, Learning Rate = 1e-4 && Adam
 Optimizer.
- All other layers initialised with small randomly distributed weights + Learning Rate= 1e-4.
- Validation set of 2.5 image pair for Hyperparameter tuning.

Testing the System

Outline

- Introduction
- Robot Specification
- Neural Network Training
- Evaluation

Evaluation Procedure

- Task the robot to do different configurations.
- Calculate distance between human demonstrations and robot executions.

Distance calculation:

- 1. Segment the rope in each image
- 2. Align points with (TPS-RPM)

3. Calculate the mean pixel distance between the matched points.

Hand-Engineered Baseline

- Pick the rope at the point with the largest deformation in the first image w.r.t second image.
- 2. Drop the rope at the corresponding point in the second image.

Nearest Neighbour Baseline

Given high level current and target Images (It, It'+1):

- Pick pair of images (Ik,Ik+1) in the training set that is closest to (It,It'+1).
- 2. Execute ground truth action used to collect this training sample.
- 3. Euclidean distance for nearest neighbour calculation.

No Imitation Baseline

- 1. Only the initial and goal image (I_1, I_T') is fed to NN.
- Predicted action is executed by robot and image I₂ is obtained.
- 3. The pair (I_2 , I_T') is fed to Inverse Model.
- 4. This process is repeated iteratively until we get to the final configuration.

Evaluation Results

Further Results

Knot Tying Success Rate

Imitation?	30K	60K
Yes	6/50	19/50
No	5/50	11/50

Method Generalization to other Ropes

- Successful at manipulating simpler shapes.
- Unsuccessful at manipulating complex configuration.
- Changed background also resulted in failure.

Summary

- Deformable object manipulation is a complicated task.
- Neural Nets can be used to teach robot to perform small deformations.
- Complex configurations could be learned via human imitation.
- Lot of work needs to be done in this area.

Thank You