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Importance of modeling uncertainty

e Autonomous Car Accident | have never seen those

symptoms before. I'm
completely uncertain what

e (Google app racial discrimination it could be. Better see a

@octor! .
e Safety Critical Systems

e Medical Applications I
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e Model decides which data should be labeled
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Example: Active Learning

e Model decides which data should be labeled

e Collect the best data at low cost
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Source: “Cost-Effective Active Learning for Deep Image Classification”
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Example: Reinforcement Learning

e No knowledge at the start

1UpP HIGH SCORE

e Make decision each step 220 1366

o Explore ?

o Exploit ?

e Intelligent exploration
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Aleatoric uncertainty

e Natural randomness
Modeling the result of dice throw.

In latin aleae: a die
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Aleatoric uncertainty

e Natural randomness
e Sensor quality
e Can’t be reduced

e But can be learned
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e Stays constant for different
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Source:Gal, Y. Uncertainty in Deep Learning. PhD thesis,
University of Cambridge, 2016.



Homoscedastic uncertainty

e Stays constant for different
iInput values .
e Limited, captures ‘average’

uncertainty

Source:Gal, Y. Uncertainty in Deep Learning. PhD thesis,
University of Cambridge, 2016.
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Heteroscedastic uncertainty

e Depends on the input

Source:Gal, Y. Uncertainty in Deep Learning. PhD thesis,
University of Cambridge, 2016.
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Heteroscedastic uncertainty

e Depends on the input
e Important for CV tasks

e Learned from the data

Source:Gal, Y. Uncertainty in Deep Learning. PhD thesis,
University of Cambridge, 2016.



Uncertainty
Epitemic

Homoscedastic Heteroscedastic




Epistemic uncertainty

e Lack of knowledge about the process

Episteme Greek meaning: knowledge.



Epistemic uncertainty

e |ack of knowledge about the process

e Detects samples far from the training distribution



Epistemic uncertainty

e Lack of knowledge about the process

e Detects samples far from training distribution

e Disappears given enough data.



Epistemic uncertainty

e Lack of knowledge about the process

e Detects samples far from training distribution
e Disappears given enough data.

e Train many models, detect where models disagree



Epistemic uncertainty

e Lack of knowledge about the process

e Detects samples far from training distribution
e Disappears given enough data.
e Train many models, detect where models disagree

e Use distribution over model weights
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Bayesian Neural Networks

e Neural Network X ]
w
o Finds a function y = f(x)
o One best model ]

e Bayesian Neural Network
o Distribution over weights
o Output is a distribution

o Many models within a network
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Bayesian Neural Networks

e |deas from 30 years ago
e BNN with «© many weights > Gaussian Process
e Difficult to make inference on:
o Multimodal correlated distribution
o Nonlinearities

e Different approximation techniques

Source:Gal, Y.
http://mlg.eng.cam.ac.uk/yarin/index.html
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Bayesian Neural Networks

e Likelihood (Gaussian, Laplace)

o Measures how likely model with weights W generated Y

p(ylf™ (x)) = N(f (x),0?%)
p(Y|X, W)p(W)
p(Y[X)

p(W[X,Y) =



Bayesian Neural Networks

e Prior

o Usually a Gaussian distribution with mean at O
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Bayesian Neural Networks

e Prior
o Usually a Gaussian distribution with mean at O

o Acts as a regularizer

p(Y|X, W)p(W)
p(Y|X)

p(W‘X, Y) :



Bayesian Neural Networks

e Marginal Probability

o Normalizes probability

p(Y X, W)p(W)
p(Y|X)

p(W‘X, Y) :




Bayesian Neural Networks

e Marginal Probability
o Normalizes probability

o Can not be evaluated

p(Y|X, W)p(W)

P = v

/ (Y X, W)p(W)dW
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Bayesian Neural Networks

e Ingeneral p(W|X,Y) can be a complex distribution

e \Ne need an approximation

e Approximate complex p(W|X,Y) .

with qg(W) from a tractable family

(Gaussian, Bernoulli)

e Minimize the distance between

them (KL Divergence)
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Dropout Variational Inference

e Randomly drop network units
e Bernoulli approximation  gp (W)
e One of the simplest possible

e We learn 0 for each weight
80%

20°%% Source: “Dropout: A Simple Way to Prevent
Neural Networks from Overfitting”
Srivastava et. al.
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e Neural network trained with dropout is already a BNN
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e Neural network trained with dropout is already a BNN

o Because we have a distribution over its weights
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Training with dropout

e Neural network trained with dropout is already a BNN

L(0.p) =~ > logp(y: | FHED + —L110]
1=1

For each training point

draw a new dropout mask



Training with dropout

e Neural network trained with dropout is already a BNN

1 _
L(0,p) = | H9H2

Minimize negative log likelihood



Training with dropout

e Neural network trained with dropout is already a BNN

L(0.p) Zlogp ul 17 @2)) + Fan I8l

Regularization term (prior)
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Training with dropout

e Neural network trained with dropout is already a BNN

L(6,p) Zlogp ul 17 @) + LIl

e In this work dropout probability p is set to 0.2

e Minimizing this loss we also minimize KL divergence

between (W |X,Y) and gy (W)
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Modeling uncertainties

Uncertainty
Epitemic

Homoscedastic Heteroscedastic
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Homoscedastic uncertainty

e Regression Problem
N

L(0,p) = 1 Zlogp(yﬂfm(ﬂ?i)) .

N

1_

1=1

e If Laplace Likelihood:

1
p”yqz

— Vi)

logaﬁ

H9H2

o Minimize the distance between model predictions and the

training data



Homoscedastic uncertainty

e Regression Problem

1

L(va) :

N

N

2

1=1

log p(yi| MV (24)) - S

1
o IfLaplace Likelihood  ggillus —-H + log

H9H2

e Use sigma and dropout samples to estimate uncertainty



Estimated variance

e Sum of aleatoric and epistemic variance



Estimated variance

e Sum of aleatoric and epistemic variance

o Epistemic variance: variance over multiple dropout draws

1 T

Var(y) ~ o + T Z(fm () — E(y))?
T

By)~ 5 3 ()

t=1



Heteroscedastic uncertainty

Uncertainty
Epitemic

Homoscedastic Heteroscedastic
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Heteroscedastic uncertainty

e Start as before

e Uncertainty as a

function of the input

1 W, 2
ﬁ”yi_f (z;)|| + loge

Ly — £ @) + LogBEDR
O'(,CU,L)Q (/ 1 1

o Ifitis hard to predict correct output,

Increase uncertainty to reduce loss

o Uncertainty acts as a loss attenuation

o Robust to outliers




Heteroscedastic uncertainty

e Start as before

e Uncertainty as a

function of the input

1 W, 2
—{lyi — [ (@3)[| + logg
Ly — £ ()| + LogBEED
i — Ty 0qgo(X;
O_(xi)Q Yy g
y(x)
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Classification with Uncertainty

e Modeling uncertainty for classification
o Add noise to the output of the network (logits)

o Variance of this noise depends on the input

Xzf:fw‘ﬂLEh et ~ N(0, |

L. _TZ x?fr+logZexpx?fr

a’)?)

rﬂ.




Classification with Uncertainty

e Modeling uncertainty for classification
o Add noise to the output of the network (logits)

o Variance of this noise depends on the input
£ +e, e ~N(O, (5,")%)

1 5 .
‘[-.’:I’J — ? Zt:(_xi,t,n + log Z €Xp Ii,t,n’)

Xit =

e If model is wrong, bigger uncertainty results in a lower

loss



Classification with Uncertainty

e Example



Classification with Uncertainty

Network outputs:
@ First class: 1
- Second class: 2

Value



Classification with Uncertainty

Probability
(=) o — -
M

Val
®

Class

Class

After softmax:
First class: 27%

Second class: 73%



Classification with Uncertainty

27%
N 73%

Probability
o o

Value

Class Class

Sample 50 times logits with
noise (variance = 0.5)

Value
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Classification with Uncertainty

Value

Value
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CamVid

e Road scene understanding dataset B
e 367 train, 233 test

e Day and dusk scenes
e 11 classes

e Resized to 360x480




NYUv2 40-Class

e Indoor segmentation dataset

e 40 different semantic classes
e 464 different indoor scenes.
e 1449 images

e 640%x480




NYUv2 Depth

e Indoor dataset

e 464 different indoor scenes.
e 1449 images

e 640x480




Make 3D

e 400 training, 134 test
e 3-D laser scanner.
e Resized to 345%x460
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Semantic Segmentation




Semantic Segmentation
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Pixel-wise Depth Regression

Aleatoric Epistemic



Pixel-wise Depth Regression

Aleatoric Epistemic



Quality of Uncertainty Metric

e Uncertainty
correlates with

accuracy



Quality of Uncertainty Metric

1.00 1

e Uncertainty
correlates with
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decreases as we

increase uncertainty
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e If prediction
has a probability
of “p”’, we would
like this prediction
to be correct with

frequency “p”



Calibration

e If prediction
has a probability
of “p”’, we would
like this prediction
to be correct with

frequency “p”
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- Aleatoric, MSE = 0.031
= Epistemic, MSE = 0.00364
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(a) Regression (Make3D)
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- Non-Bayesian, MSE = 0.00501

— Aleatoric, MSE = 0.00272

- Epistemic, MSE = 0.007

- Epistemic+Aleatoric, MSE = 0.00214
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(b) Classification (CamVid)



Dataset size

e Modeling epistemic variance should be more

beneficial when our training data is small



Dataset size

e Modeling epistemic variance should be more

e Epistemic variance captures data from

beneficial when our training data is small

different distribution

Train Test Aleatoric | Epistemic
dataset dataset RMS | wvariance variance
Make3D /4 | Make3D | 5.76 0.506 7.73
Make3D /2 | Make3D | 4.62 0.521 4 38
Make3D Make3D | 3.87 0.485 2.78
Make3D /4 | NYUv2 - 0.388 15.0
Make3D NYUv2 - 0.461 4 .87

Train Test Aleatoric Epistemic logit
dataset dataset IoU entropy | variance (x1072)
CamVid /4 | CamVid | 57.2 0.106 1.96
CamVid /2 | CamVid | 62.9 0.156 1.66
CamVid CamVid | 67.5 0.111 1.36
CamVid /4 | NYUv2 - 0.247 10.9
CamVid NYUv2 - 0.264 11.8




Improvement over Baseline
CamVid Results ~ loUAccuracy

DenseNet (State of the art baseline) 67.
+ Aleatoric Uncertainty 67.4
+ Epistemic Uncertainty 67.2
+ Aleatoric & Epistemic 67.5

DenseNet (State of the art baseline) 0.167
+ Aleatoric Uncertainty 0.149
+ Epistemic Uncertainty 0.162
+ Aleatoric & Epistemic 0.145

Source: http://alexgkendall.com/talks/
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Summary:

e Aleatoric uncertainty:
o Can be used for real time applications
o Can be used alone for large datasets
e Epistemic uncertainty:
o Can detect samples out of the training data
o Useful for small datasets

o Expensive to evaluate (MC Sampling)



Thank you



