What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision

Patryk Chrabąszcz

Outline:

• Motivation

- Types of Uncertainty
- Bayesian Neural Networks
- Dropout Variational Inference
- Modeling uncertainties
- Experiments
- Results Analysis
- Summary

Autonomous Car Accident

- Autonomous Car Accident
- Google app racial discrimination

- Autonomous Car Accident
- Google app racial discrimination
- Safety Critical Systems

- Autonomous Car Accident
- Google app racial discrimination
- Safety Critical Systems
- Medical Applications

I have never seen those symptoms before. I'm completely uncertain what it could be. Better see a doctor!

Model decides which data should be labeled

Model decides which data should be labeled

Source: "Cost-Effective Active Learning for Deep Image Classification"

- Model decides which data should be labeled
- Collect the best data at low cost

Source: "Cost-Effective Active Learning for Deep Image Classification"

• No knowledge at the start

- No knowledge at the start
- Make decision at each step
 - Explore ?
 - Exploit ?

- No knowledge at the start
- Make decision each step
 - Explore ?
 - Exploit ?
- Intelligent exploration

Outline:

- Motivation
- Types of Uncertainty
- Bayesian Neural Networks
- Dropout Variational Inference
- Modeling uncertainties
- Experiments
- Results Analysis
- Summary

Natural randomness

Modeling the result of dice throw.

In latin āleae: a die

- Natural randomness
- Sensor quality

- Natural randomness
- Sensor quality
- Can't be reduced

- Natural randomness
- Sensor quality
- Can't be reduced
- But can be learned

Homoscedastic uncertainty

- Stays constant for different
- input values

Source:Gal, Y. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Homoscedastic uncertainty

• Stays constant for different

input values

 Limited, captures 'average' uncertainty

Source:Gal, Y. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Heteroscedastic uncertainty

• Depends on the input

Source:Gal, Y. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Heteroscedastic uncertainty

- Depends on the input
- Important for CV tasks

Source:Gal, Y. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Heteroscedastic uncertainty

- Depends on the input
- Important for CV tasks
- Learned from the data

Source:Gal, Y. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Lack of knowledge about the process

Epistēmē Greek meaning: knowledge.

- Lack of knowledge about the process
- Detects samples far from the training distribution

- Lack of knowledge about the process
- Detects samples far from training distribution
- Disappears given enough data.

- Lack of knowledge about the process
- Detects samples far from training distribution
- Disappears given enough data.
- Train many models, detect where models disagree

- Lack of knowledge about the process
- Detects samples far from training distribution
- Disappears given enough data.
- Train many models, detect where models disagree
- Use distribution over model weights

Outline:

- Motivation
- Types of Uncertainty
- Bayesian Neural Networks
- Dropout Variational Inference
- Modeling uncertainties
- Experiments
- Results Analysis
- Summary
Neural Network

- Neural Network
 - Finds a function y = f(x)

- Neural Network
 - Finds a function y = f(x)
 - One best model

- Neural Network
 - Finds a function y = f(x)
 - One best model
- Bayesian Neural Network

- Neural Network
 - Finds a function y = f(x)
 - One best model
- Bayesian Neural Network
 - Distribution over weights

- Neural Network
 - Finds a function y = f(x)
 - One best model
- Bayesian Neural Network
 - Distribution over weights
 - Output is a distribution

- Neural Network
 - Finds a function y = f(x)
 - One best model
- Bayesian Neural Network
 - Distribution over weights
 - Output is a distribution
 - Many models within a network

• Ideas from 30 years ago

- Ideas from 30 years ago
- BNN with ∞ many weights → Gaussian Process

- Ideas from 30 years ago
- BNN with ∞ many weights → Gaussian Process
- Difficult to make inference on:
 - Multimodal correlated distribution
 - Nonlinearities

- Ideas from 30 years ago
- BNN with ∞ many weights → Gaussian Process
- Difficult to make inference on:
 - Multimodal correlated distribution
 - Nonlinearities
- Different approximation techniques

• Find p(W|X,Y)

• Find p(W|X,Y)

• Find models that are likely to generate our training data

• Find p(W|X,Y)

• Find models that are likely to generate our training data

$$p(W|X,Y) = \frac{p(Y|X,W)p(W)}{p(Y|X)}$$

- Likelihood (Gaussian, Laplace)
 - Measures how likely model with weights W generated Y

$$p(W|X,Y) = \frac{p(Y|X,W)}{p(Y|X)}p(W)$$

- Likelihood (Gaussian, Laplace)
 - Measures how likely model with weights W generated Y

$$p(y|f^{W}(x)) = \mathcal{N}(f^{W}(x), \sigma^{2})$$
$$p(W|X, Y) = \frac{p(Y|X, W)p(W)}{p(Y|X)}$$

• Prior

• Usually a Gaussian distribution with mean at 0

$$p(W|X,Y) = \frac{p(Y|X,W)p(W)}{p(Y|X)}$$

• Prior

- Usually a Gaussian distribution with mean at 0
- Acts as a regularizer

$$p(W|X,Y) = \frac{p(Y|X,W)p(W)}{p(Y|X)}$$

- Marginal Probability
 - Normalizes probability

$$p(W|X,Y) = \frac{p(Y|X,W)p(W)}{p(Y|X)}$$

- Marginal Probability
 - Normalizes probability
 - Can not be evaluated

$$p(W|X,Y) = \frac{p(Y|X,W)p(W)}{p(Y|X)}$$
$$\int p(Y|X,W)p(W)dW$$

- In general $\,p(W|X,Y)\,$ can be a complex distribution

- In general p(W|X,Y) can be a complex distribution
- We need an approximation

- In general p(W|X,Y) can be a complex distribution
- We need an approximation
- Replace complex $p(W|\boldsymbol{X},\boldsymbol{Y})$
- with $q^*_{\theta}(W)$ from a tractable family

(Gaussian, Bernoulli)

- In general p(W|X,Y) can be a complex distribution
- We need an approximation
- Approximate complex p(W|X,Y) with $q_{\theta}^{*}(W)$ from a tractable family

(Gaussian, Bernoulli)

Minimize the distance between

them (KL Divergence)

Outline:

- Motivation
- Types of Uncertainty
- Bayesian Neural Networks
- Dropout Variational Inference
- Modeling uncertainties
- Experiments
- Results Analysis
- Summary

Randomly drop network units

- Randomly drop network units
- Bernoulli approximation $q_{\theta}^{*}(W)$

- Randomly drop network units
- Bernoulli approximation $q^*_{ heta}(W)$
- One of the simplest possible

- Randomly drop network units
- Bernoulli approximation $q^*_{ heta}(W)$
- One of the simplest possible
- We learn θ for each weight

Neural network trained with dropout is already a BNN

- Neural network trained with dropout is already a BNN
 - Because we have a distribution over its weights

Neural network trained with dropout is already a BNN

$$L(\theta, p) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i | f^{\hat{W}_i}(x_i)) + \frac{1-p}{2N} ||\theta||^2$$

Neural network trained with dropout is already a BNN

$$L(\theta, p) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i | f^{\hat{W}_i}(x_i)) + \frac{1-p}{2N} ||\theta||^2$$

For each training point

draw a new dropout mask

Neural network trained with dropout is already a BNN

$$L(\theta, p) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i | f^{\hat{W}_i}(x_i)) + \frac{1-p}{2N} ||\theta||^2$$

Minimize negative log likelihood

Neural network trained with dropout is already a BNN

$$L(\theta, p) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i | f^{\hat{W}_i}(x_i)) + \frac{1-p}{2N} ||\theta||^2$$

Regularization term (prior)
Training with dropout

Neural network trained with dropout is already a BNN

$$L(\theta, p) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i | f^{\hat{W}_i}(x_i)) + \frac{1-p}{2N} ||\theta||^2$$

• In this work dropout probability p is set to 0.2

Training with dropout

Neural network trained with dropout is already a BNN

$$L(\theta, p) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i | f^{\hat{W}_i}(x_i)) + \frac{1-p}{2N} ||\theta||^2$$

- In this work dropout probability **p** is set to 0.2
- Minimizing this loss we also minimize KL divergence between p(W|X,Y) and $q_{\theta}^{*}(W)$

Outline:

- Motivation
- Types of Uncertainty
- Bayesian Neural Networks
- Dropout Variational Inference
- Modeling uncertainties
- Experiments
- Results Analysis
- Summary

Regression Problem

Regression Problem

$$L(\theta, p) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i | f^{\hat{W}_i}(x_i)) + \frac{1-p}{2N} ||\theta||^2$$

Regression Problem

$$L(\theta, p) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i | f^{\hat{W}_i}(x_i)) + \frac{1-p}{2N} ||\theta||^2$$

• If Laplace Likelihood:

$$\frac{1}{\sigma^2}||y_i - f^{\hat{W}_i}(x_i)|| + \log\sigma^2$$

Regression Problem

$$L(\theta, p) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i | f^{\hat{W}_i}(x_i)) + \frac{1-p}{2N} ||\theta||^2$$

• If Laplace Likelihood:

$$\frac{1}{\sigma^2}||y_i - f^{\hat{W}_i}(x_i)|| + \log\sigma^2$$

• Minimize the distance between model predictions and the

training data

Regression Problem

$$L(\theta, p) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i | f^{\hat{W}_i}(x_i)) + \frac{1-p}{2N} ||\theta||^2$$

• If Laplace Likelihood $\frac{1}{\sigma^2} ||y_i - f^{\hat{W}_i}(x_i)|| + \log \sigma^2$

Use sigma and dropout samples to estimate uncertainty

Estimated variance

• Sum of aleatoric and epistemic variance

Estimated variance

- Sum of aleatoric and epistemic variance
 - Epistemic variance: variance over multiple dropout draws

$$Var(y) \approx \sigma^2 + \frac{1}{T} \sum_{t=1}^T (f^{\hat{W}_t}(x) - E(y))^2$$
$$E(y) \approx \frac{1}{T} \sum_{t=1}^T f^{\hat{W}_t}(x)$$

• Start as before

$$\frac{1}{\sigma^2}||y_i - f^{\hat{W}_i}(x_i)|| + \log\sigma^2$$

• Start as before

$$\frac{1}{\sigma^2}||y_i - f^{\hat{W}_i}(x_i)|| + \log\sigma^2$$

• Uncertainty as a

function of the input

$$\frac{1}{\sigma(x_i)^2} ||y_i - f^{\hat{W}_i}(x_i)|| + \log \sigma(x_i)^2$$

• Start as before

$$\frac{1}{\sigma^2} ||y_i - f^{\hat{W}_i}(x_i)|| + \log \sigma^2$$

• Uncertainty as a

function of the input

$$\frac{1}{\sigma(x_i)^2} ||y_i - f^{\hat{W}_i}(x_i)|| + \log \sigma(x_i)^2$$

• If it is hard to predict correct output,

increase uncertainty to reduce loss

- Uncertainty acts as a loss attenuation
- Robust to outliers

• Start as before

$$\frac{1}{\sigma^2} ||y_i - f^{\hat{W}_i}(x_i)|| + \log \sigma^2$$

- Uncertainty as a
- function of the input

Х

Modeling uncertainty for classification

- Modeling uncertainty for classification
 - Add noise to the output of the network (logits)

- Modeling uncertainty for classification
 - Add noise to the output of the network (logits)
 - Variance of this noise depends on the input

- Modeling uncertainty for classification
 - Add noise to the output of the network (logits)
 - Variance of this noise depends on the input

$$\hat{\mathbf{x}}_{i,t} = \frac{\mathbf{f}_i^{\mathbf{W}}}{T} + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, (\sigma_i^{\mathbf{W}})^2)$$
$$\mathcal{L}_x = \frac{1}{T} \sum_{i,t} (-\hat{x}_{i,t,c} + \log \sum_{c'} \exp \hat{x}_{i,t,c'})$$

- Modeling uncertainty for classification
 - Add noise to the output of the network (logits)
 - Variance of this noise depends on the input

$$\hat{\mathbf{x}}_{i,t} = \mathbf{f}_i^{\mathbf{W}} + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \ (\sigma_i^{\mathbf{W}})^2)$$
$$\mathcal{L}_x = \frac{1}{T} \sum_{i,t} (-\hat{x}_{i,t,c} + \log \sum_{c'} \exp \hat{x}_{i,t,c'})$$

If model is wrong, bigger uncertainty results in a lower loss

• Example

Network outputs: First class: 1 Second class: 2

After softmax: First class: 27% Second class: 73%

Sample 50 times logits with noise (variance = 0.5)

Outline:

- Motivation
- Types of Uncertainty
- Bayesian Neural Networks
- Dropout Variational Inference
- Modeling uncertainties
- Experiments
- Results Analysis
- Summary

CamVid

- Road scene understanding dataset
- 367 train, 233 test
- Day and dusk scenes
- 11 classes
- Resized to 360×480

NYUv2 40-Class

- Indoor segmentation dataset
- 40 different semantic classes
- 464 different indoor scenes.
- 1449 images
- 640×480

NYUv2 Depth

- Indoor dataset
- 464 different indoor scenes.
- 1449 images
- 640×480

Make 3D

- 400 training, 134 test
- 3-D laser scanner.
- Resized to 345×460

Outline:

- Motivation
- Types of Uncertainty
- Bayesian Neural Networks
- Dropout Variational Inference
- Modeling uncertainties
- Experiments
- Results Analysis
- Summary

Semantic Segmentation

Epistemic

Semantic Segmentation

Aleatoric

Epistemic

Pixel-wise Depth Regression

Aleatoric

Pixel-wise Depth Regression

Epistemic

Aleatoric
Quality of Uncertainty Metric

- Uncertainty
- correlates with
- accuracy

Quality of Uncertainty Metric

• Uncertainty

correlates with

accuracy

• Precision

decreases as we

(log 1 SWR) roisional Aleatoric Uncertainty Aleatoric Uncertainty 0.0 0.2 0.4 0.6 0.8 1.0 Recall

(b) Regression (Make3D)

(a) Classification (CamVid)

increase uncertainty

Calibration

- If prediction
- has a probability
- of "p", we would
- like this prediction
- to be correct with
- frequency "p"

Calibration

Non-Bayesian, MSE = 0.00501Aleatoric, MSE = 0.00272• If prediction Epistemic, MSE = 0.007Epistemic+Aleatoric, MSE = 0.002141.0 1.0 Aleatoric, MSE = 0.031has a probability Epistemic, MSE = 0.003640.8 0.8 Frequency ^{0.6} 0.6 of "p", we would 0.4 like this prediction 0.2 0.2 -0.0 0.0 0.2 0.4 0.6 0.8 0.6 0.8 0.0 1.0 0.0 0.2 0.4 to be correct with Probability Probability (a) Regression (Make3D) (b) Classification (CamVid) frequency "p"

1.0

Dataset size

Modeling epistemic variance should be more

beneficial when our training data is small

Dataset size

Modeling epistemic variance should be more

beneficial when our training data is small

• Epistemic variance captures data from

different distribution

Train	Test		Aleatoric	Epistemic		Train	Test		Aleatoric	Epistemic logit
dataset	dataset	RMS	variance	variance		dataset	dataset	IoU	entropy	variance ($\times 10^{-3}$)
Make3D / 4	Make3D	5.76	0.506	7.73		CamVid / 4	CamVid	57.2	0.106	1.96
Make3D / 2	Make3D	4.62	0.521	4.38		CamVid / 2	CamVid	62.9	0.156	1.66
Make3D	Make3D	3.87	0.485	2.78		CamVid	CamVid	67.5	0.111	1.36
Make3D / 4	NYUv2	-	0.388	15.0	-	CamVid / 4	NYUv2	-	0.247	10.9
Make3D	NYUv2	-	0.461	4.87		CamVid	NYUv2	-	0.264	11.8

Improvement over Baseline

CamVid Results	IoU Accuracy			
DenseNet (State of the art baseline)	67.1			
+ Aleatoric Uncertainty	67.4			
+ Epistemic Uncertainty	67.2			
+ Aleatoric & Epistemic	67.5			
NYU Depth Results	Rel. Error			
DenseNet (State of the art baseline)	0.167			
+ Aleatoric Uncertainty	0.149			
+ Epistemic Uncertainty	0.162			

Source: http://alexgkendall.com/talks/

Outline:

- Motivation
- Types of Uncertainty
- Bayesian Neural Networks
- Dropout Variational Inference
- Modeling uncertainties
- Experiments
- Results Analysis
- Summary

Summary:

- Aleatoric uncertainty:
 - Can be used for real time applications
 - Can be used alone for large datasets
- Epistemic uncertainty:
 - Can detect samples out of the training data
 - Useful for small datasets
 - Expensive to evaluate (MC Sampling)

Thank you