Instance segmentation with Mask R-CNN

Seminar: Current Works in Computer Vision

Silvio Galesso

<ロト <四ト <注入 <注下 <注下 <

Scene understanding

Image classification

Object detection

Semantic segmentation

Instance segmentation

Mask R-CNN: Motivation and goals

- object detection
- classification
- instance segmentation
- Highly modular and easy to train
- Flexible: e.g. human pose estimation with minor changes

Background: R-CNN architechture

- Based on proposed Regions of Interest (RoI)
- Requires region warping for fixed size features
- Very inefficient pipeline

Background: Fast R-CNN

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Background: Faster R-CNN

Mask R-CNN: overview

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Region Proposal Network

- Shared conv layers with main model
- $n \times n$ sliding window, large receptive field
- Parallel branches:
 - object probability classification
 - box regression

Region Proposal Network

Anchor boxes:

- for every window position, k region prototypes
- multiple scales, e.g. 128^2 , 256^2 , 512^2
- multiple ratios, e.g. 1:1, 1:2, 2:1

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Region Proposal Network

- Multiple anchor scales and ratios \rightarrow single scale images

- Proposal evaluation based on Intersection over Union with ground truth boxes:
 - best regions are kept as positive examples
 - worst (IoU < 0.3) are kept as negatives for training

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Rol feature extraction

- RolPool: quantized bins + pooling
- RolAlign: continuous bins + bilinear interpolation + pooling \Rightarrow better preserved spatial correspondence

RolPool (Faster R-CNN)

	2
	ß
-z	
	١Ľ -

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

Source: https://deepsense.io/region-of-interest-pooling-explained/

Input activation

RolPool (Faster R-CNN)

2	
B	
SH I	

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

Region projection and pooling sections

RolPool (Faster R-CNN)

Max pooling output

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

Input activation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48
0.20	0.14	0.16	0.10	0.73	0.65	0.96	0.32
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91

Region projection and pooling sections

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26
^{0.85} >	0.34	0.7 <mark>6</mark>	0.84	0.29	0.75	<mark>%</mark> .62	0.25
0.32	0.74	0.21 ×	0.39	0.34 ×	0.03	0.33 ×	0.48
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32
0.19	0.69	× 0.09	0.86	× 0.88	0.07	× 0.01	0.48
0.83 >	0.24	0.9 7	0.04	0.24	0.35	<mark>∛</mark> 0.50	0.91

Sampling locations

Bilinear interpolated values

Max pooling output

Class prediction & box regression

- K+1 softmax for classification
- $4 \cdot K$ box regression targets: $\mathbf{t}^k = (t_x^k, t_w^k, t_w^k, t_b^k)$
- Multitask loss:
 - L_{cls}: negative log likelihood
 - L_{reg} : smooth L1 loss

$$L_{box} = L_{cls} + \lambda \mathbf{1}_{[u=u^*]} L_{reg}$$

Segmentation

Mask branch features:

- Fully convolutional
- $K \cdot (m \times m)$ sigmoid outputs:
 - $\rightarrow\,$ pixel-wise binary classification
 - $\rightarrow\,$ one mask for each class, no competition
- *L_{mask}*: mean binary cross-entropy

Overall head loss:

$$L = L_{box} + L_{mask}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Experiments

Dataset & metrics

- Main dataset: MS COCO
 - 80 classes
 - 115k training images
 - 5k images for ablation experiments
 - undisclosed ground truth test-dev for main results
- Similarity measure: Intersection over Union (IoU)
- AP_{50} & AP_{75} (PASCAL VOC metrics): Average Precision: IoU threshold (.50, .75) for true positives \rightarrow precision-recall curve \rightarrow area under curve
- AP (MS COCO metric): mean Average Precision over different IoU thresholds.

Related methods: MNC

Multi-task Network Cascade:

- bounding box regression
- mask estimation
- classification

Related methods: FCIS

- Fully Convolutional Instance Segmentation
- Challenge: translation invariance \rightarrow no instance awareness
- Proposed solution: positional aware sliding masks

Segmentation results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Model	backbone	AP	AP_{50}	AP_{75}
MNC	ResNet-101-C4	24.6	44.3	24.8
FCIS+++	ResNet-101-C5-dil.	33.6	54.5	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4

FPN (Feature Pyramid Network):

multi-scale hierarchical convolutional features, good for detection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cityscape dataset: smaller (5k fine + 20k coarse), urban scenery for segmentation

Model	training set	AP	AP_{50}
SAIS	fine	17.4	36.7
DIN	fine+coarse	20.0	38.8
Mask R-CNN	fine	26.2	49.9
Mask R-CNN	fine+COCO pretrain	32.0	58.1

Example results

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Example results

Example results

FCIS vs Mask R-CNN

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Model	backbone	AP^{bb}	AP_{50}^{bb}	AP_{75}^{bb}
Faster R-CNN	ResNet-101-FPN	36.2	59.1	39.0
Faster R-CNN	same + RolAlign	37.3	59.6	40.3
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4

- Backbone (ResNeXt): $+1.6AP^{bb}$
- RoiAlign: $+1.1AP^{bb}$
- Multitask training: +0.9AP^{bb}

Ablation experiments

(ロ)、(型)、(E)、(E)、 E) の(の)

Backbone architecture:

net-depth-features	AP	AP_{50}	AP_{75}
ResNet-50-C4	30.3	51.2	31.5
ResNet-101-C4	32.7	54.2	34.3
ResNet-50-FPN	33.6	55.2	35.3
ResNet-101-FPN	35.4	57.3	37.5
ResNeXt-101-FPN	36.7	59.5	38.9

Ablation experiments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

RolAlign layer:

		stride 16			stride 32*	
	AP	AP_{50}	AP_{75}	AP	AP_{50}	AP_{75}
RolPool	26.9	48.8	26.4	23.6	46.5	21.6
RolAlign	30.2	51.0	31.8	30.9	51.8	32.1

* larger stride means larger misalignments

(ロ)、(型)、(E)、(E)、 E) の(の)

Mask branch independence:

last fc layer	AP	AP_{50}	AP_{75}
softmax + multinomial loss	24.8	44.1	25.1
sigmoid $+$ binomial loss	30.3	51.2	31.5
	+5.5	+7.1	+6.4

Human pose estimation

- Task: localize anatomical keypoints
- K keypoint types (e.g. left shoulder, right elbow) $\rightarrow K$ one-hot masks \rightarrow cross-entropy loss, m^2 softmax
- No other domain knowledge employed

Model	AP^{kp}	AP_{50}^{kp}	AP_{75}^{kp}
CMU-Pose+++	61.8	84.9	67.5
G-RMI	62.4	84.0	68.5
Mask R-CNN, keypoint only	62.7	87.0	68.4
Mask R-CNN, keypoint & mask	63.1	87.3	68.7

Examples

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣ぬ⊙

Examples

- Mask R-CNN does detection, classification and instance segmentation.
- Based on Faster R-CNN + mask branch, RolAlign
- State of the art detection and instance segmentation on MS COCO and Cityscapes
- Can do human pose estimation with small adaptations

Literature

- K. He, G. Gkioxari, P. Dollr, R. Girshick. Mask R-CNN. ArXiv, Mar. 2017.
- S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.
- R. Girshick. Fast R-CNN. In ICCV, 2015.
- R. Girshick, J. Donahue, T. Darrell and J. Malik. Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. In IEEE TPAMI, vol. 38, no. 1, pp. 142-158, Jan. 1 2016.
- Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convolutional instance-aware semantic segmentation. In CVPR, 2017.
- J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive fully convolutional networks. In ECCV, 2016.
- J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network cascades. In CVPR, 2016.
- T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollr, and C. L. Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014.
- M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The Cityscapes dataset for semantic urban scene understanding. In CVPR, 2016.
- T. Lin, P. Dollr, R. Girshick, K. He, B. Hariharan, S. Belongie. Feature Pyramid Networks for Object Detection. In CoRR, 2016.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

Mask R-CNN head architectures

Extended Faster R-CNN head, on ResNet-C4 feature map

Extended Faster R-CNN head, on FPN feature map

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Feature Pyramid Network

UNI FREIBURG

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

FPN exploits the inherent heirarchy of CNNs to compute multi-scale features:

Source: Lin et al., Feature Pyramid Networks for Object Detection